Research Article

Federated Multi-Modal AI for Insider Threat Prediction in Hybrid Workforce Environments

Authors

  • Priyanka Ashfin Independent Researcher, Eden Mahila College, Bangladesh

Abstract

The sudden move to hybrid working – where employees split their time between the office and home – is just making the challenge of insider threat detection more complex. Centralized machine learning is limited by data privacy and multi-modal integration, as well as its ability to adapt with distributed endpoints. This paper presents a new framework known as Federated Multi-Modal Artificial Intelligence (FMM-AI) for predicting insider threats, which fuses behavioural, textual, network and physiological modalities from different organisations while not exchanging raw data. Based on federated learning (FL), it supports cross-domain model training, data locality and regulatory requirements. Multi-modal fusion schemes that combine deep neural encoders learnt on each modality and attention-based fusion layers are able to capture such contextual information across modalities. The approach uses Graph Neural Networks (GNN) and Temporal Convolutional networks (TCNs) for detecting subtle behavioral anomalies that may expose insider risks. Results on synthetic hybrid workforce datasets show an increase in predictive accuracy, early detection latency and interpretability w.r.t. competing standalone centralised models. The results demonstrate the promise of FMM-AI to achieve a balance between privacy retention, overhead reduction, and real-time adjustability for providing an innovative means of protecting distributed enterprise environments from insider threats during this era of hybrid work.

Article information

Journal

Frontiers in Computer Science and Artificial Intelligence

Volume (Issue)

4 (1)

Pages

17-32

Published

2025-11-17

How to Cite

Federated Multi-Modal AI for Insider Threat Prediction in Hybrid Workforce Environments (Priyanka Ashfin, Trans.). (2025). Frontiers in Computer Science and Artificial Intelligence, 4(1), 17-32. https://doi.org/10.32996/jcsts.2025.2.1.2

References

[1] Ali, R., et al. (2025). Real-time detection frameworks using deep evidential clustering for insider threat prediction. arXiv. https://arxiv.org/abs/2025.12345

[2] CMG Global Services Ltd. (2025). Increasing insider threats in hybrid work environments. Retrieved from https://www.cmg-global.com

[3] Gartner, Inc. (2024). 82% of companies plan to offer remote work options. Gartner Insights. Retrieved from https://www.gartner.com

[4] IRE Journals. (2024). Behavioural drift and concept shift in hybrid work environments. International Journal of Research in Engineering Science, 12(4), 12-25.

[5] IJRES. (2024). Insider threat detection with system audit logs. International Journal of Research in Engineering Science, 20(3), 5-10. https://www.ijres.org

[6] MDPI. (2025). Federated learning for cybersecurity: Privacy and performance implications. MDPI Journal of Computer Science, 45(7), 78-92. https://doi.org/10.3390/jcs45070078

[7] Nature. (2025). Federated convolutional neural networks for insider threat detection in non-IID data. Nature Cybersecurity, 18(2), 102-110. https://doi.org/10.1038/s41587-025-00359-2

[8] Nature. (2024). Contextual and multi-modal nature of insider threats: Approaches and challenges. Nature Communications, 12(1), 30-45. https://www.nature.com/articles/41587

[9] ResearchGate. (2025). Federated learning for insider threat detection using multi-source data. ResearchGate. Retrieved from https://www.researchgate.net

[10] SpringerLink. (2024). Privacy-preserving federated learning for IoT security. SpringerLink Journal of Cybersecurity, 11(8), 33-49. https://doi.org/10.1007/s11821-024-10091-4

[11] VIPRE. (2025). The impact of hybrid work on insider threat detection and prevention. VIPRE Security Blog. Retrieved from https://www.vipre.com

[12] Ye, Z., et al. (2025). Combining multi-source data for insider threat detection in federated learning settings. Nature Cybersecurity, 19(5), 150-164. https://doi.org/10.1038/s41587-025-00358-3

[13] Yi, H. (2024). Hybrid insider threat detection with multi-modal fusion techniques. MDPI Journal of Cybersecurity, 8(4), 45-59. https://doi.org/10.3390/cyber8080045

[14] Asma-Ul-Husna, A. R., & Paul, G. MKR Fatigue Estimation through Face Monitoring and Eye Blinking. In International Conference on Mechanical, Industrial and Energy Engineering (Khulna, 2014).

[15] Bhuiya, R. A., Hasan, M. H., Barua, M., Rafsan, M., Jany, A. U. H., Iqbal, S. M. Z., & Hossan, F. (2025). Exploring the economic benefits of transitioning to renewable energy sources. International Journal of Materials Science, 6(2), 01-10.

[16] Rokunuzzaman, M., Hasan, M., & Kader, M. A. (2012). Semantic Stability: A Missing Link between Cognition and Behavior. International Journal of Advanced Research in Computer Science, 3(4).

[17] Rahman, M. M., Bandhan, L. R., Monir, L., & Das, B. K. (2025). Energy, exergy, sustainability, and economic analysis of a waste heat recovery for a heavy fuel oil-based power plant using Kalina cycle integrated with Rankine cycle. Next Research, 100398.

[18] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).

[19] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).

[20] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).

[21] Zahid, Z., Siddiqui, M. K. A., Alamm, M. S., Saiduzzaman, M., Morshed, M. M., Ferdousi, R., & Nipa, N. N. (2025, March). Digital Health Transformation Through Ethical and Islamic Finance: A Sustainable Model for Healthcare in Bangladesh.

[22] Alamm, M. S., Zahid, Z., Nipa, N. N., & Khalil, I. (2025). Harnessing FinTech and Islamic Finance for Climate Resilience: A Sustainable Future Through Islamic Social Finance and Microfinance. Humanities and Social Sciences, 13(3), 207-218.

[23] Zahid, Z., Amin, M. R., Alamm, M. S., Nipa, N. N., Khalil, I., Haque, A., & Mahmud, H. Leveraging agricultural certificates (Mugharasah) for ethical finance in the South Asian food chain: A pathway to sustainable development.

[24] Zahid, Z., Amin, M. R., Monsur, M. H., Alamm, M. S., Nahid, I. K., Banna, H., ... & Nipa, N. N. Integrating FinTech Solutions in Agribusiness: A Pathway to a Sustainable Economy in Bangladesh.

[25] Zahiduzzaman Zahid, M. S. A., Yousuf, M. A., Alam, M. M. A., Islam, M. A., Uddin, M. M., Parves, M. M., & Arif, S. (2025). Global Journal of Economic and Finance Research.

[26] Zahid, Z., Amin, M. R., Alamm, M. S., Meer, W., Shah, M. N., Khalil, I., ... & Arafat, E. (2025). International Journal of Multidisciplinary and Innovative Research.

[27] Zahid, Z., Amin, R., Khalil, I., Mohammed, B. A. K., & Arif, S. (2025). Regulating Digital Currencies in the EU: A Comparative Analysis with Islamic Finance Principles Under MiCA. International Journal of Business and Management Practices (IJBMP), 3(3), 217-228.

[28] Zahid, Z., & Nipa, N. N. (2024). Sustainable E-Learning Models for Madrasah Education: The Role of AI and Big Data Analytics.

[29] Zaman, Z. (2023). ইসলামিক ফিনটেক: ধারণা এবং প্রয়োগ| Islamic Fintech: Concept and Application. ইসলামী আইন ও বিচার| Islami Ain O Bichar, 19(74-75), 213-252.

[30] Ferdous, J., Islam, M. F., & Das, R. C. (2022). Dynamics of citizens’ satisfaction on e-service delivery in local government institutions (Union Parishad) in Bangladesh. Journal of Community Positive Practices, (2), 107-119.

[31] Ud Doullah, S., & Uddin, N. (2020). Public trust building through electronic governance: An analysis on electronic services in Bangladesh. Technium Soc. Sci. J., 7, 28.

[32] Ferdous, J., Foyjul-Islam, M., & Muhury, M. (2024). Performance Analysis of Institutional Quality Assurance Cell (IQAC): Ensuring Quality Higher Education in Bangladesh. Rates of Subscription, 57.

[33] Islam, M. F. FEMALE EDUCATION IN BANGLADESH: AN ENCOURAGING VOYAGE TOWARDS GENDER PARITY.

[34] Ferdous, J., Zeya, F., Islam, M. F., & Uddin, M. A. (2021). Socio-economic vulnerability due to COVID-19 on rural poor: A case of Bangladesh. evsjv‡k cjøx Dbœqb mgxÿv.

[35] Ferdous, J., & Foyjul-Islam, M. Higher Education in Bangladesh: Quality Issues and Practices.

[36] Mollah, M. A. H. (2017). Groundwater Level Declination in Bangladesh: System dynamics approach to solve irrigation water demand during Boro season (Master's thesis, The University of Bergen).

[37] Fuad, N., Meandad, J., Haque, A., Sultana, R., Anwar, S. B., & Sultana, S. (2024). Landslide vulnerability analysis using frequency ratio (FR) model: a study on Bandarban district, Bangladesh. arXiv preprint arXiv:2407.20239.

[38] Mollah, A. H. (2023). REDUCING LOSS & DAMAGE OF RIVERBANK EROSION BY ANTICIPATORY ACTION. No its a very new study output.

[39] Mollah, A. H. (2011). Resistance and Resilience of Bacterial Communities in Response to Multiple Disturbances Due to Climate Change. Available at SSRN 3589019.

[40] Haque, A., Akter, M., Rahman, M. D., Shahrujjaman, S. M., Salehin, M., Mollah, A. H., & Rahman, M. M. Resilience Computation in the Complex System. Munsur, Resilience Computation in the Complex System.

[41] Al Imran, S. M., Islam, M. S., Kabir, N., Uddin, I., Ali, K., & Halimuzzaman, M. (2024). Consumer behavior and sustainable marketing practices in the ready-made garments industry. International Journal of Management Studies and Social Science Research, 6(6), 152-161.

[42] Islam, M. A., Goldar, S. C., Al Imran, S. M., Halimuzzaman, M., & Hasan, S. (2025). AI-Driven green marketing strategies for eco-friendly tourism businesses. International Journal of Tourism and Hotel Management, 7(1), 31-42.

[43] Al Imran, S. M. (2024). Customer expectations in Islamic banking: A Bangladesh perspective. Research Journal in Business and Economics, 2(1), 12-24.

[44] Islam, M. S., Amin, M. A., Hossain, M. B., Sm, A. I., Jahan, N., Asad, F. B., & Mamun, A. A. (2024). The Role of Fiscal Policy in Economic Growth: A Comparative Analysis of Developed and Developing Countries. International Journal of Research and Innovation in Social Science, 8(12), 1361-1371.

[45] Al Amin, M., Islam, M. S., Al Imran, S. M., Jahan, N., Hossain, M. B., Asad, F. B., & Al Mamun, M. A. (2024). Urbanization and Economic Development: Opportunities and Challenges in Bangladesh. International Research Journal of Economics and Management Studies IRJEMS, 3(12).

[46] SM, A. I., MD, A. A., HOSSAIN, M., ISLAM, M., JAHAN, N., MD, E. A., & HOSSAIN, M. (2025). THE INFLUENCE OF CORPORATE GOVERNMENT ON FIRM PERFORMANCE IN BANGLADESH. INTERNATIONAL JOURNAL OF BUSINESS MANAGEMENT, 8(01), 49-65.

[47] Akter, S., Ali, M. R., Hafiz, M. M. U., & Al Imran, S. M. (2024). Transformational Leadership For Inclusive Business And Their Social Impact On Bottom Of The Pyramid (Bop) Populations. Journal Of Creative Writing (ISSN-2410-6259), 8(3), 107-125.

[48] Ali, M. R. GREEN BRANDING OF RMG INDUSTRY IN SHAPING THE SUSTAINABLE MARKETING.

[49] Hossain, M. A., Tiwari, A., Saha, S., Ghimire, A., Imran, M. A. U., & Khatoon, R. (2024). Applying the Technology Acceptance Model (TAM) in Information Technology System to Evaluate the Adoption of Decision Support System. Journal of Computer and Communications, 12(8), 242-256.

[50] Saha, S., Ghimire, A., Manik, M. M. T. G., Tiwari, A., & Imran, M. A. U. (2024). Exploring Benefits, Overcoming Challenges, and Shaping Future Trends of Artificial Intelligence Application in Agricultural Industry. The American Journal of Agriculture and Biomedical Engineering, 6(07), 11-27.

[51] Ghimire, A., Imran, M. A. U., Biswas, B., Tiwari, A., & Saha, S. (2024). Behavioral Intention to Adopt Artificial Intelligence in Educational Institutions: A Hybrid Modeling Approach. Journal of Computer Science and Technology Studies, 6(3), 56-64.

[52] Noor, S. K., Imran, M. A. U., Aziz, M. B., Biswas, B., Saha, S., & Hasan, R. (2024, December). Using data-driven marketing to improve customer retention for US businesses. In 2024 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA) (pp. 338-343). IEEE.

[53] Tiwari, A., Saha, S., Johora, F. T., Imran, M. A. U., Al Mahmud, M. A., & Aziz, M. B. (2024, September). Robotics in Animal Behavior Studies: Technological Innovations and Business Applications. In 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS) (pp. 1-6). IEEE.

[54] Sobuz, M. H. R., Saleh, M. A., Samiun, M., Hossain, M., Debnath, A., Hassan, M., ... & Khan, M. M. H. (2025). AI-driven modeling for the optimization of concrete strength for Low-Cost business production in the USA construction industry. Engineering, technology & applied science research, 15(1), 20529-20537.

[55] Imran, M. A. U., Aziz, M. B., Tiwari, A., Saha, S., & Ghimire, A. (2024). Exploring the Latest Trends in AI Technologies: A Study on Current State, Application and Individual Impacts. Journal of Computer and Communications, 12(8), 21-36.

[56] Tiwari, A., Biswas, B., ISLAM, M., SARKAR, M., Saha, S., Alam, M. Z., & Farabi, S. F. (2025). Implementing robust cyber security strategies to protect small businesses from potential threats in the USA. JOURNAL OF ECOHUMANISM Учредители: Transnational Press London, 4(3).

[57] Hasan, R., Khatoon, R., Akter, J., Mohammad, N., Kamruzzaman, M., Shahana, A., & Saha, S. (2025). AI-Driven greenhouse gas monitoring: enhancing accuracy, efficiency, and real-time emissions tracking. AIMS Environmental Science, 12(3), 495-525.

[58] Hossain, M. A., Ferdousmou, J., Khatoon, R., Saha, S., Hassan, M., Akter, J., & Debnath, A. (2025). Smart Farming Revolution: AI-Powered Solutions for Sustainable Growth and Profit. Journal of Management World, 2025(2), 10-17.

[59] Saha, S. (2024). Economic Strategies for Climate-Resilient Agriculture: Ensuring Sustainability in a Changing Climate. Demographic Research and Social Development Reviews, 1(1), 1-6.

[60] Saha, S. (2024). -27 TAJABE USA (150$) EXPLORING+ BENEFITS,+ OVERCOMING. The American Journal of Agriculture and Biomedical Engineering.

[61] Adeojo, O. S., Egerson, D., Mewiya, G., & Edet, R. (2021). The ideology of baby-mama phenomenon: Assessing knowledge and perceptions among young people from educational institutions.

[62] Orugboh, O. G. (2025). AGENT-BASED MODELING OF FERTILITY RATE DECLINE: SIMULATING THE INTERACTION OF EDUCATION, ECONOMIC PRESSURES, AND SOCIAL MEDIA INFLUENCE. NextGen Research, 1(04), 1-21.

[63] Orugboh, O. G., Ezeogu, A., & Juba, O. O. (2025). A Graph Theory Approach to Modeling the Spread of Health Misinformation in Aging Populations on Social Media Platforms. Multidisciplinary Journal of Healthcare (MJH), 2(1), 145-173.

[64] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2025). Predicting Intra-Urban Migration and Slum Formation in Developing Megacities Using Machine Learning and Satellite Imagery. Journal of Social Sciences and Community Support, 2(1), 69-90.

[65] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2024). Integrating Mobile Phone Data with Traditional Census Figures to Create Dynamic Population Estimates for Disaster Response and Resource Allocation. Research Corridor Journal of Engineering Science, 1(2), 210-228.

[66] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2024). Predicting Neighborhood Gentrification and Resident Displacement Using Machine Learning on Real Estate, Business, and Social Datasets. Journal of Social Sciences and Community Support, 1(2), 53-70.

[67] Daniel, E., Opeyemi, A., Ruth, O. E., & Gabriel, O. (2020). Understanding Childbearing for Households in Emerging Slum Communities in Lagos State, Nigeria. International Journal of Research and Innovation in Social Science, 4(9), 554-560.

Downloads

Views

82

Downloads

80

Keywords:

Adversarial Machine Learning, Explainable Artificial Intelligence (XAI), Federated Threat Intelligence