Research Article

On Absolute Valued Algebras with a Central Algebraic Element and Satisfying Some Identities

Authors

  • Abdelhadi Moutassim Centre Régional des Métier de l’Education et de la Formation, Casablanca-Settat Annexe Provinciale Settat, Morocco

Abstract

In [8], we have proven that if  is an absolute valued algebra containing a nonzero central algebraic element, then  is a pre-Hilbert algebra. Here we show that    is finite dimensional in the following cases:

1) A satisfies  (x2, x, x) = 0 or (x, x, x2) = 0,

2) A satisfies  (x2, x2, x) = 0 or (x, x2, x2) = 0, .

In these cases  A is isomorphic to R, C, H or O.

Article information

Journal

Journal of Mathematics and Statistics Studies

Volume (Issue)

4 (2)

Pages

49-53

Published

2023-04-20

How to Cite

Moutassim, A. (2023). On Absolute Valued Algebras with a Central Algebraic Element and Satisfying Some Identities. Journal of Mathematics and Statistics Studies, 4(2), 49–53. https://doi.org/10.32996/jmss.2023.4.2.6

Downloads

Keywords:

Absolute valued algebra, pre-Hilbert algebra, algebraic element, central element