Research Article

NEW MULTIPLE SOLUTIONS FOR SOME PERIODIC BOUNDARY VALUE PROBLEMS WITH ψ-LAPLACIAN

Authors

  • Konan Charles Etienne Goli Department of Pedagogy, Ecole Supérieure Africaine des Technologies de l'Information et de la Communication (ESATIC), Abidjan, Côte D'Ivoire
  • David Paul Tuo Applied Mathematics Department, Mathematics and Computing, Université Félix Houphouet Boigny, Abidjan, Côte D'Ivoire
  • Franck Steincy Peala Applied Mathematics Department, Mathematics and Computing, Université Félix Houphouet Boigny, Abidjan, Côte D'Ivoire

Abstract

We study the existence of multiple solutions of the quasilinear equation
(ψ(u'(t)))'= f(t,u(t),u'(t)), t∈[0,T]
submitted to periodic boundary conditions, where ψ:]-a,a[→R, with 0<a < +∞, is an increasing homeomorphism such that ψ(0)=0. Combining some sign conditions and lower and upper solutions method, we obtain existence of two or Three solutions.

Article information

Journal

Journal of Mathematics and Statistics Studies

Volume (Issue)

7 (1)

Pages

09-13

Published

2026-01-18

How to Cite

Konan Charles Etienne Goli, David Paul Tuo, & Franck Steincy Peala. (2026). NEW MULTIPLE SOLUTIONS FOR SOME PERIODIC BOUNDARY VALUE PROBLEMS WITH ψ-LAPLACIAN . Journal of Mathematics and Statistics Studies, 7(1), 09-13. https://doi.org/10.32996/jmss.2026.7.1.2

Downloads

Views

14

Downloads

7

Keywords:

ψ- Laplacian; L^1-Carathéodory function; nonlinear Neumann-Steklov problem; Periodic problem; Lower and upper-solutions; sign conditions.