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| ABSTRACT 

The difficulties of modeling failure rates that exhibit both monotonic and non-monotonic behavior, as well as appropriately 

capturing the bathtub curve in reliability engineering, remains a significant difficulty. In study, paper a Chen Inverse Raleigh (CIR) 

distribution within the context of the Chen-G family was developed, to eliminate the difficulty of modeling failure rates. The 

Probability Distribution (PDF), Cumulative Distribution Function (CDF) and the statistical properties of these CIR distributions like 

the survival function, hazard function, cumulative hazard function, reverse hazard function, quartile function, skewness, kurtosis, 

moments, linear representation and Maximum Likelihood Estimation (MLE) was also provided in the study. Our Proposed 

distribution provided a mild to moderate right-skewedness, while majority of the data reveals mild to moderate left-skewness, it 

also models leptokurtic data (heavy-tailed distributions), with kurtosis values indicating effectiveness and consistent tail behavior. 

A simulation study written in R provides a comparison for the CIRDs with different parameters of (β, λ, δ) and sample sizes (n) = 

50, 100, 200, and 500 proved that our model converges successfully for all initial parameter settings across all sample sizes, 

which confirmed the robustness of the MLE optimization process. The consistency in convergence, even for smaller datasets, 

highlights the CIR model’s reliability and adaptability to different data conditions. The real-life data utilized to validate the 

efficiency of our proposed model was the survival times (in days) for patients diagnosed with head and neck cancer whose 

values range from 12.20 to 1776. Result showed that the CIR model demonstrates the best fit, with the lowest AIC and BIC values 

among the competing models.  Additionally, the CIR model achieves higher p-values in goodness-of-fit tests indicating excellent 

agreement between the model and the observed data. 
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1. Introduction 

Statistical probability distributions serve as an important foundation for both theoretical frameworks and practical 

implementations in statistical techniques. They are crucial in assisting statistical thinking and decision-making because they serve 

as the foundation for many parametric statistical procedures such as modeling, survival analysis, reliability analysis, and 

inference. The difficulties of modeling failure rates that exhibit both monotonic and non-monotonic behavior, as well as 

appropriately capturing the bathtub curve in reliability engineering, remains a significant difficulty. Traditional probability 

distributions frequently fail to convey the intricate patterns inherent in real-world circumstances with varying failure rates. These 

issues are addressed by the proposed Chen Inverse Rayleigh probability distribution. It is specifically interested in the subtle 

behaviors of failure rates, allowing for a more precise representation of both monotonic and non-monotonic patterns. This 

capacity is critical for applications where failure rates exhibit complex patterns those traditional distributions may miss. 

Furthermore, the propose distribution address the necessity for accurate modeling of the bathtub curve, a key topic in reliability 

engineering. The bathtub curve depicts the three phases of a device's failure rates across its lifecycle: lowering rates during the 
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first phase (infant mortality), relatively constant rates during the steady-state phase, and increasing rates during the wear-out 

phase. Exact modeling of this curve is required for forecasting and improving device reliability. 

 

Akpojaro & Aronu (2024) introduced a variant of the generalized Chen (GC) distribution with parameters α, β, γ, δ, and λ, termed 

the Modified Generalized Chen (MGC) distribution. The study evaluated several Chen distribution variants theoretically, focusing 

on the MGC distribution. Variants considered include the Generalized Chen (GC), Half-Cauchy Chen (HCC), New Extended Chen 

(NEC), and Exponentially Generalized Modified Chen (EGMC) distributions. Chen (2000) proposed a two-parameter distribution 

with an increasing failure rate function or bathtub shape. Because it is associated with accurate confidence intervals and joint 

confidence regions for the parameters, this distribution is favorable (Cordeiro, et al., 2014). The exponentiated Chen distribution 

was introduced in an effort to increase flexibility and offer new hazard shapes by utilizing the family of distributions proposed by 

Chaubey and Zhang (2015) (Chaubey & Zhang, 2015; Nadarajah, et al., 2012). Chen-geometric and Marshall-Olkin Chen 

distributions have similar parameters to the Chen distribution (Chen, 2000; Pappas, Adamidis, & Loukas, 2011). Following that, 

other compounding distributions, such as the Chen-logarithmic distribution, were investigated, thereby expanding the 

parameter space of the logarithmic distribution (Pappas et al., 2011). As recorded in the literature, numerous variations of the 

Chen distribution have been presented in recent times (Anafo, et al. 2022; Joshi & Pandit, 2018; Reis, et al., 2020; Joshi & Kumar, 

2021).  

 

The rationale to develop the distribution stems from a desire for more accuracy in depicting various failure rate patterns and 

resolving the difficulties of the bathtub curve in reliability engineering applications. This study is part of a larger effort to improve 

probability distribution modeling capabilities, particularly in cases with non-normal data exist. The proposed Chen Inverse 

Rayleigh Distribution aims to give a more flexible and versatile model, it will enable a better fit to datasets with properties that 

are not covered by standard distributions. It is part of a larger trend in statistical research that recognizes the diverse and 

complex character of real-world data, highlighting the importance of distributions that can handle such complexities. The 

iterative process of incorporating new parameters and methodologies exhibited in these improvements reflects the ongoing 

pursuit of more accurate and adaptable statistical modeling tools across a wide range of fields. 

 

This study therefore aimed to development a Chen Inverse Raleigh (CIR) distribution within the context of the Chen-G family. The 

study also intends to establish the statistical properties and compare the distribution with that of existing models. 

 

2.0 Materials and Methods 

2.1 PDF and CDF of the Proposed Chen Inverse Rayleigh (CIR) Distribution 

Within the T-X framework, the random variable T acts as a ’transformer,’ allowing the random variable X to be converted into a 

new set of generalized X distributions. Bourguignon, et al. (2014) defines the cumulative distribution function (CDF) of this 

generalized family as the following: 

 

The distribution function 𝐹𝑍(𝑥) is given by:  

 𝐹𝑍(𝑥) = ∫
𝐺(𝑥)

1−𝐺(𝑥)
𝑎

𝑓𝑇(𝑡) 𝑑𝑡 = 𝐹𝑇(𝑄𝑌(𝐹𝑅(𝑥)))   (1) 

The function 𝐺(𝑥) is defined as:  

 𝐺(𝑥) = 1 − 𝑒𝛿(1−𝑒
𝑥𝛽) 

Otoo et al., (2023) define the cumulative distribution function 𝐹(𝑥) for the Chen family for (3.1) as; 

 𝐹(𝑥) = [1 − exp(𝛿 (1 − exp [(
𝐺(𝑥)

1−𝐺(𝑥)
)𝛽]))] (2) 

 where 𝛿 and 𝛽 are the extra shape parameters. Differentiating (2), Otoo et al., (2023) obtained the PDF of the chen family of 

distributions as 

𝑓(𝑥) = 𝛿𝛽𝑔(𝑥;𝜓)𝐺(𝑥;𝜓)𝛽−1[1 − 𝐺(𝑥;𝜓)]−(𝛽−1) 

× exp (
𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
𝛽
exp(𝛿 (1 − exp (1 −

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
))

𝛽

)  (3) 

The Rayleigh distribution is derived from the two-parameter Weibull distribution and is a suitable model for life-testing 

investigations. A transformation of random variables shows that if a random variable T has a Rayleigh distribution, the 

corresponding random variable 𝑋 = (
1

𝑇
) will have an inverse Rayleigh distribution (IRD). Rosaiah & Kantam (2005) give reliability 
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sampling plans for the Inverse Rayleigh Distribution (IRD). The PDF and CDF of a random variable 𝑋 with Inverse Rayleigh 

distribution and scale parameter 𝜆 are given by:  

 𝑔(𝑥, 𝜆) =
2𝜆2

𝑥3
𝑒−(𝜆/𝑥)

2
    ;     𝑥, 𝜆 > 0 (4) 

 𝐺(𝑥, 𝜆) = 𝑒−(𝜆/𝑥)
2
 (5) 

substituting (5) into (2), we obtain the CDF of the proposed probability density function CIRD(𝛽, 𝜆, 𝛿)  

 𝐹(𝑥) = [1 − exp (𝛿 (1 − exp [
exp(−(𝜆/𝑥)2)

1−exp(−(𝜆/𝑥)2)
])
𝛽

)] (6) 

 And this can be further expressed as  

 𝐹(𝑥) = 1 − exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

)) (7) 

 

Figure 1: CDF Plot of a probability distributions CIRD(β, λ, δ) 

 Figure 1, shows the CDF plot for the  proposed probability distribution CIRD(𝛽, 𝜆, 𝛿) for different paramter values. Substituting 

(5) and (4) into (3), we obtain the PDF of proposed probability density function CIRD(𝛽, 𝜆, 𝛿) as  

𝑓(𝑥) =
2𝛿𝛽𝜆2

𝑥3
𝑒𝑥𝑝 [− (

𝜆

𝑥
)
2
] {𝑒𝑥𝑝 [−(

𝜆

𝑥
)
2
]}
𝛽−1

{1 − 𝑒𝑥𝑝 [− (
𝜆

𝑥
)
2
]}
−𝛽−1

exp [𝑒𝑥𝑝 (
𝜆

𝑥
)
2
− 1]

−𝛽

𝑒𝑥𝑝(𝛿 (1 − exp [𝑒𝑥𝑝 (
𝜆

𝑥
)
2
− 1]

−𝛽

))  

which can be rewritten as 

𝑓(𝑥) =
2𝛿𝛽𝜆2

𝑥3
[exp [−(

𝜆

𝑥
)
2

]]

𝛽

[1 − exp [−(
𝜆

𝑥
)
2

]]

−𝛽−1

exp [exp (
𝜆

𝑥
)
2

− 1]

−𝛽

 

 × exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

)) (8) 

Figure 2, displayed the PDF plot for the  proposed probability distribution CIRD(𝛽, 𝜆, 𝛿) for different paramter values. 
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Figure 2: PDF Plot of a probability distribution CIRD(β, λ, δ) 

2.2 Survival Function of the CIR Distribution 

The survival function, 𝑆𝑋(𝑥), for a continuous random variable 𝑋 that follows the probability density function CIRD(𝛽, 𝜆, 𝛿) is 

obtained by substituting (7) into (9). 

 𝑆𝑋(𝑥) = 1 − 𝐹(𝑥) (9) 

 So therefore, the survival function  is expressed as;  

𝑆𝑋(𝑥) =

exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

)) (10) 

Figure 3:  Survival Plot of a probability distributions CIRD(β, λ, δ) 

Figure 3 displayed the survival plot for the  proposed probability distribution CIRD(𝛽, 𝜆, 𝛿) for different paramter values.  

2.3: Hazard Function of CIR Distribution 

The mathematical expression for hazard function ℎ𝑋(𝑥) for any probability distribution function is given as:  

 ℎ𝑋(𝑥) = 𝑓𝑋(𝑥)/𝑆𝑋(𝑥). (11) 

To obtain the ℎ𝑋(𝑥) the probability density function CIRD(𝛽, 𝜆, 𝛿), equations (8) and (10) are subtituted into (11)  
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ℎ𝑋(𝑥) =
2𝛿𝛽𝜆2

𝑥3
[exp [−(

𝜆

𝑥
)
2

]]

𝛽

[1 − exp [− (
𝜆

𝑥
)
2

]]

(−𝛽−1)

exp [exp ((
𝜆

𝑥
)
2

) − 1]

−𝛽

 

  (12) 

 

Figure 4: Hazard Plot of a Probability Distributions CIRD(β, λ, δ) 

Figure 4, shows the hazard plot for the  proposed probability distribution CIRD(𝛽, 𝜆, 𝛿) for different paramter values.  

2.4 Cumulative Hazard Function of CIR Distribution 

The cumulative hazard function of a random 𝑋 denoted as 𝐻(𝑥) = Δℎ(𝑥), is given by:  

 𝐻(𝑥) = −log(𝑆(𝑥)).   (13) 

 The cumulative hazard function for the probability density function CIRD(𝛽, 𝜆, 𝛿) is obtained by substituting (10) into (13)  

 𝐻(𝑥) = −log(exp(𝛿 (1 − exp [(exp (
𝜆

𝑥
)
2
− 1)

−𝛽

]))) (14) 

 𝐻(𝑥) = −𝛿 (1 − exp [(exp (
𝜆

𝑥
)
2
− 1)

−𝛽

]) (15) 

2.5: Quantile Function, Median, Skewness, Kurtosis and Mode of CIRD 

2.5.1 Quantile of CIRD 

If 𝑋 is a random variable that has CIRD (𝑥, 𝛽, 𝜆, 𝛿) and let 𝑄𝑋(𝑝) denote the quantile function for the CIRD, such that 0 ≤ 𝑝 ≤ 1, 

then 𝑄𝑋(𝑝) is given by:  

 𝑄𝑋(𝑝; 𝛽, 𝜆, 𝛿) =
𝜆

√ln

(

 1+
1

(ln(1−
ln(1−𝑝)

𝛿
))

1/𝛽

)

 

 (16) 

 

Proof: Let p = F(X)  

 𝑝 = 1 − exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

)) 
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 exp(𝛿 (1 − exp((exp (
𝜆

𝑥
)
2
− 1)

−𝛽

))) = 1 − 𝑝 

 𝛿 (1 − exp((exp (
𝜆

𝑥
)
2
− 1)

−𝛽

)) = ln(1 − 𝑝) 

 1 − exp((exp (
𝜆

𝑥
)
2
− 1)

−𝛽

) =
ln(1−𝑝)

𝛿
 

 −exp((exp (
𝜆

𝑥
)
2
− 1)

−𝛽

) = 1 −
ln(1−𝑝)

𝛿
 

 exp ((exp (
𝜆

𝑥
)
2
− 1)

−𝛽

) =
ln(1−𝑝)

𝛿
− 1 

 (exp (
𝜆

𝑥
)
2
− 1)

−𝛽

= ln (1 −
ln(1−𝑝)

𝛿
) 

 (
1

exp(
𝜆

𝑥
)
2
−1
)

𝛽

= ln (1 −
ln(1−𝑝)

𝛿
) 

 exp (
𝜆

𝑥
)
2
− 1 =

1

ln(1−
ln(1−𝑝)

𝛿
)
1/𝛽 

 exp (
𝜆

𝑥
)
2
= 1 +

1

ln(1−
ln(1−𝑝)

𝛿
)
1/𝛽 

 (
𝜆

𝑥
)
2
= ln (1 +

1

ln(1−
ln(1−𝑝)

𝛿
)
1/𝛽) 

  

 𝑄𝑋(𝑝) =
𝜆

√ln(1+
1

ln(1−
ln(1−𝑝)

𝛿
)
1/𝛽)

 (17) 

 We get the first three quantiles, 𝑄1 = 𝑄(1/4), 𝑄1 = 𝑄(1/2) and 𝑄3 = 𝑄(3/4), by putting 𝑝 = 0.25,𝑝 = 0.5 and 𝑝 = 0.75 into 𝑋𝑝, 

respectively. Quantiles also help calculate the distribution’s skewness, median and kurtosis.  

2.5.2: Median of CIRD 

To obtain, the median of the probability density function CIRD (𝑥, 𝛽, 𝜆, 𝛿), we substitute p=0.5 in (3.17), we have  

 𝑄𝑋(0.5) =
𝜆

√ln(1+
1

ln(1−
ln(1−0.5)

𝛿
)
1/𝛽)

 (18) 

2.5.3: Skewness of CIRD 

The skewness and kurtosis coefficients are frequently computed using distribution moments. However, in this study, we will use 

skewness (S) metrics based on quantiles proposed by Galton(1983). 

The mathematical expression is expressed as  

 𝑆 =
𝑄(6/8)−2𝑄(4/8)+𝑄(2/8)

𝑄(6/8)−𝑄(2/8)
 (19) 

 Substituting the appropriate value of p into (17) and substituting the results into (19) results into  
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 𝑆 =

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−2
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.5)
𝛿

)
1/𝛽

)

 
 

+
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

 (20) 

 2.5.4: Kurtosis of CIRD 

The kurtosis coefficients are frequently computed using distribution moments. However, in this study, we will use kurtosis (K) 

metrics based on quantiles proposed by Moors (1988). Thus, the mathematical expression is expressed as 

 

 𝐾 =
𝑄(7/8)−𝑄(5/8)+𝑄(3/8)−𝑄(1/8)

𝑄(6/8)−𝑄(2/8)
 (21) 

 𝐾 =

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.125)

𝛿
)
1/𝛽

)

 
 

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

 

 −

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.375)

𝛿
)
1/𝛽

)

 
 

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

 

 +

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.625)

𝛿
)
1/𝛽

)

 
 

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

 

 −

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.875)

𝛿
)
1/𝛽

)

 
 

𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.75)

𝛿
)
1/𝛽

)

 
 

−
𝜆

√
  
  
  
  
 

ln

(

 
 
1+

1

ln(1−
ln(0.25)

𝛿
)
1/𝛽

)

 
 

 (22) 

 

 

2.6: Linear Representation of CIRD  

Theorem 1:  Let 𝑋 be a random variable that follows a CIR distribution with parameters 𝛿, 𝛽 and 𝜆 then the linear representation 

is a modified Inverse Rayleigh distribution with the form  

𝑓(𝑥) = (
2𝛿𝛽𝜆2

𝑥3
) ∑

∞

𝑖,𝑗,𝑘,𝑚,𝑛=0

(−1)𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗! 𝑗!𝑚!
 

 exp [−
(𝑛+𝛽−𝑖𝑗𝑘+𝑘𝑚+𝑖𝑗)𝜆2

𝑥2
] 

where  

 Φ(𝑥) = ∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)
𝑖+𝑘+𝑛 (

𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛽𝛿𝑚+1

𝑗!𝑗!𝑚!
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  Proof.  

Given the PDF of the CIR distribution with parameters 𝛿, 𝛽 and 𝜆  

 𝑓(𝑥) =
2𝛿𝛽𝜆2

𝑥3
exp [− (

𝜆

𝑥
)
2
] {exp [−(

𝜆

𝑥
)
2
]}
𝛽−1

{1 − exp [−(
𝜆

𝑥
)
2
]}
−𝛽−1

 

 × exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2
− 1]

−𝛽

)) 

 using the Taylor series expansion procedure, the exponential expression can be rewritten as  

[exp (
𝜆

𝑥
)
2
− 1]

−𝛽

= ∑∞𝑖=0 (−1)
𝑖 (
𝛽
𝑖
) [𝑒

(
𝜆

𝑥
)
2

]

𝑖

= ∑∞𝑖=0 (−1)
𝑖 (
𝛽
𝑖
) [𝑒

(
𝜆

𝑥
)
2

]

𝑖

 (23) 

 and exponential expression  

 [exp (
𝜆

𝑥
)
2
− 1]

−𝛽−1

= ∑∞𝑖=0 (−1)
𝑖 (
𝛽 + 1
𝑖

) [𝑒
𝑖(
𝜆

𝑥
)
2

] (24) 

 expression (23), can be further expanded 

 𝑒
[exp(

𝜆

𝑥
)
2
]
𝑖

= ∑∞𝑗=0

[𝑒
𝑖𝑗(

𝜆
𝑥
)
2

]

𝑖

𝑗!
 

 [𝑒𝑖𝑗(𝜆/𝑥)
2
− 1] = ∑∞𝑘=0 (−1)

𝑘 (
1
𝑘
) [𝑒(𝜆/𝑥)

2
]𝑖𝑗𝑘 

 = ∑∞𝑘=0 (−1)
𝑘 (
1
𝑘
) [𝑒𝑖𝑗𝑘(𝜆/𝑥)

2
]. 

  

 𝑒𝛿[𝑒𝑖𝑗𝑘(𝜆/𝑥)
2
] = ∑∞𝑚=0

𝛿𝑚[exp[𝑖𝑗𝑘(𝜆/𝑥)2]𝑚]

𝑚!
 (25) 

 Finally, the expansion of the following is given below  

exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2

− 1]

−𝛽

)) = ∑

∞

𝑖,𝑗,𝑘,𝑚=0

(−1)𝑖+𝑘 (
𝛽
𝑖
) (
1
𝑘
)
𝛿𝑚 [exp [𝑖𝑗𝑘 (

𝜆

𝑥
)
2
]
𝑚

]

𝑗!𝑚!
 

                  = ∑∞𝑖,𝑗,𝑘,𝑚=0 (−1)
𝑖+𝑘 (

𝛽
𝑖
) (
1
𝑘
)
𝛿𝑚[exp[𝑖𝑗𝑘𝑚(

𝜆

𝑥
)
2
]]

𝑗!𝑚!
 

 while  

 exp ([exp (
𝜆

𝑥
)
2
− 1]−𝛽) = 𝑒

[exp(
𝜆

𝑥
)
2
]
𝑖

= ∑∞𝑗=0 (−1)
𝑖 (
𝛽
𝑖
)

[𝑒
𝑖𝑗(

𝜆
𝑥
)
2

]

𝑖

𝑗!
 (26) 

 and 

 (1 − exp[−(𝜆/𝑥)2])−(𝛽−1) = ∑∞𝑛=0 (−1)
𝑛 (
𝛽 + 1
𝑛

) [𝑒−(𝜆/𝑥)
2
]𝑛 

 exp [− (
𝜆

𝑥
)
2
] [exp [−(

𝜆

𝑥
)
2
]]

−(𝛽+1)

= [exp [−(
𝜆

𝑥
)
2
]]

𝛽

 

  [exp [−(
𝜆

𝑥
)
2
]]

𝛽

= exp [−𝛽 (
𝜆

𝑥
)
2
] 

 Therefore the linear representation of the CIR distribution with parameters 𝛿, 𝛽 and 𝜆 can be expressed as  
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 𝑓(𝑥) =
2𝛿𝜆2

𝑥3
exp [−𝛽 (

𝜆

𝑥
)
2
] ∑∞𝑛=0 (−1)

𝑛 (
𝛽 + 1
𝑛

) [𝑒−(𝜆/𝑥)
2
]
𝑛
∑∞𝑗=0 (−1)

𝑖 (
𝛽
𝑖
)
[𝑒𝑖𝑗(𝜆/𝑥)

2
]
𝑛

𝑗!
 

 × ∑∞𝑖,𝑗,𝑘,𝑚=0 (−1)
𝑖+𝑘 (

𝛽
𝑖
) (
1
𝑘
)
𝛿𝑚

𝑗!𝑚!
exp [𝑖𝑗𝑘𝑚 (

𝜆

𝑥
)
2
] 

  𝑓(𝑥) =
2𝛿𝜆2

𝑥3
∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗!𝑗!𝑚!
exp [𝑖𝑗𝑘𝑚 + 𝑖𝑗 − 𝑛 − 𝛽 (

𝜆

𝑥
)
2
] 

  𝑓(𝑥) =
2𝛿𝜆2

𝑥3
∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗!𝑗!𝑚!
exp [−(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗) (

𝜆

𝑥
)
2
] 

 𝑓(𝑥) =
2𝛿𝜆2

𝑥3
∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗!𝑗!𝑚!
 

     × exp [−(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗) (
𝜆

𝑥
)
2
] 

 𝑓(𝑥) =
2𝛿𝜆2

𝑥3
∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗!𝑗!𝑚!
 

     × exp [−
(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
] 

(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗)1/2𝜆 is the scale parameter of the modified Inverse Rayleigh distribution, hence the linear mixture of the pdf 

of CIR is  

𝑓(𝑥) =
2𝛿𝜆2

𝑥3
∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚

𝑗!𝑗!𝑚!
 (27) 

     × exp [−
(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
] 

 Φ(𝑥) = ∑∞𝑖,𝑗,𝑘,𝑚,𝑛=0 (−1)
𝑖+𝑘+𝑛 (

𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛽𝛿(𝑚+1)

𝑗!𝑗!𝑚!
 

  

𝑓(𝑥) = Φ(𝑥)
2𝜆2

𝑥3
exp [−

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
]  (28) 

 Alternatively, let  

𝜔𝑖,𝑗,𝑘,𝑚,𝑛 = ∑

∞

𝑖,𝑗,𝑘,𝑚,𝑛=0

(−1)𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿(𝑚+1)

(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗)𝑗! 𝑗!𝑚!
 

and   Ψ(x) =
2(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥3
exp [−

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
] 

𝑓(𝑥) = 𝜔𝑖,𝑗,𝑘,𝑚,𝑛Ψ(𝜆√𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)  (29) 

 

2.7: Moment of CIR Distribution 

Theorem 2:  Let 𝑋 be a random variable that follows a CIR distribution with parameters 𝛿, 𝛽 and 𝜆 then the 𝑟𝑡ℎ moment of the 

CIR distribution is given by  

 𝑢𝑟
′ = ∑∞𝑖,𝑗,𝑘,𝑚,𝑛=1 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿(𝑚+1)

𝑗!𝑗!𝑚!

𝜆𝑟Γ(1−𝑟/2)

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)1−𝑟/2
 

  Proof: 

 The 𝑟𝑡ℎ moment for any probability distribution can be obtained using (30)  

 𝑢𝑟
′ = 𝐸(𝑋𝑟) = ∫

∞

0
𝑥𝑟𝑓(𝑥) 𝑑𝑥 (30) 

 substituting the linear representation of the CIR distribution in (28) into (30) we obtained  

 𝑢𝑟
′ = ∫

∞

0
𝑥𝑟Φ(𝑥) (

2𝜆2

𝑥3
) exp [− (

𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗

𝜆
)
2
]  𝑑𝑥 (31) 
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 𝑢𝑟
′ = 𝐸(𝑋𝑟) = ∫

∞

0
𝑥𝑟Φ(𝑥)

2𝜆2

𝑥3
exp [−

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
]  𝑑𝑥 

  

 𝐸(𝑋𝑟) = Φ(𝑥) ∫
∞

0
𝑥𝑟

2𝜆2

𝑥3
exp [−

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
]  𝑑𝑥 (32) 

Let 𝑡 =
𝜆2

𝑥2
, so 

𝑑𝑡

𝑑𝑥
= −

2𝜆2

𝑥3
. Then, solving for 𝑑𝑥:  

 𝑑𝑥 = −
𝑥3

2𝜆2
𝑑𝑡. 

Also, if 𝑥 =
𝜆

√𝑡
, we have:  

 
𝑑𝑡

𝑑𝑥
= −

2𝜆2

𝑥3
. 

substituting x and dx into (32), we have  

 𝐸(𝑋𝑟) = Φ(𝑥) ∫
∞

0
𝑥𝑟

2𝜆2

𝑥3
exp [−

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)𝜆2

𝑥2
] (−

𝑥3

2𝜆2
)  𝑑𝑡 

  𝐸(𝑋𝑟) = Φ(𝑥) ∫
∞

0
(
𝜆

√𝑡
)
𝑟
exp[−(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗)𝑡] 𝑑𝑡 

  𝐸(𝑋𝑟) = Φ(𝑥) ∫
∞

0
(𝜆)𝑟𝑡−𝑟/2exp[−(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗)𝑡] 𝑑𝑡 

 using gamma function expansion  

 
Γ(𝑎)

𝑏𝑎
= ∫

∞

0
𝑥(𝑎−1)𝑒−𝑏𝑥  𝑑𝑥 

where 𝑎 − 1 = −
𝑟

2
, 𝑎 = 1 −

𝑟

2
, and 𝑏 = (𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗). 

Hence,  

 𝐸(𝑋𝑟) = Φ(𝑥)𝜆𝑟
Γ(1−𝑟/2)

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)1−𝑟/2
 

 There the 𝜇𝑟
𝑡ℎ moment for the probability density function CIRD(𝛽, 𝜆, 𝛿) is given as  

 𝑢𝑟
′ = ∑∞𝑖,𝑗,𝑘,𝑚,𝑛=1 (−1)

𝑖+𝑘+𝑛 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿(𝑚+1)

𝑗!𝑗!𝑚!

𝜆𝑟Γ(1−
𝑟

2
)

(𝑛+𝛽−𝑖𝑗𝑘𝑚−𝑖𝑗)
1−

𝑟
2

  

 (33) 

provided that r < 2. 

The mean of the probability distribution CIRD(𝛽, 𝜆, 𝛿) can be obtained when r =1 is subtituted into (33) 

𝑢1
′ = ∑ (−1)𝑖+𝑘+𝑛

∞

𝑖,𝑗,𝑘,𝑚,𝑛=0

 (
𝛽
𝑖
) (
𝛽
𝑖
) (
1
𝑘
) (
𝛽 + 1
𝑛

)
𝛿𝑚+1 

𝑗! 𝑗!𝑚!
 

𝜆1 Г(1/2)

(𝑛 + 𝛽 − 𝑖𝑗𝑘𝑚 − 𝑖𝑗)1/2
 

When 𝑖, 𝑗, 𝑘,𝑚, 𝑛 = 0 

𝑢1
′ =

𝛿𝜆Г(1/2)

(𝛽)1/2
 

𝑢1
′ =

𝛿𝜆√𝜋

𝛽1/2
 

 2.8: Order Statistics of CIR Distribution 

Theorem 3: Let 𝑋1, 𝑋2, … , 𝑋𝐾 be a random sample from the CIR distribution, and let 𝑋(1), 𝑋(2), … , 𝑋(𝑘) be the corresponding 

order statistics. Then the order statistics for probability distribution of CIRD(𝛽, 𝜆, 𝛿) can be expressed as  

𝐺(𝑤:𝑠)(𝑥) =
𝑤!

(𝑤 − 𝑠)! (𝑠 − 1)!
𝑔𝑥(𝑥) ∑

∞

𝑖,𝑗,𝑘,𝑚,𝑠=0

(−1)𝑖+𝑘+𝑝 (
𝛽
𝑖
) (
1
𝑘
) (
𝑠 + 𝑡 − 1
𝑝

)
𝛿𝑚𝑡𝑚𝑒𝑥𝑝[𝑖𝑗𝑘(𝜆/𝑥)2]𝑚

𝑗!𝑚!
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Proof. 

Order statistics make their appearance in many areas of statistical theory and practice. Let 𝑋1, 𝑋2, … , 𝑋𝐾 be a random sample from 

the CIR distribution, and let 𝑋(1), 𝑋(2), … , 𝑋(𝑘) be the corresponding order statistics. The probability density function (pdf) of the 

𝑘-th order statistic is given by:  

 𝐺(𝑤:𝑠)(𝑥) =
𝑤!

(𝑤−𝑠)!(𝑠−1)!
𝑔𝑥(𝑥)(𝐺𝑥(𝑥))

𝑠−1
(1 − 𝐺𝑥(𝑥))

𝑤−𝑠
,    1 < 𝑠 < 𝑘                        (34) 

using the binomial series expansion of [1 − 𝐺𝑥(𝑥)]
(𝑘−𝑠), we obtain 

  [1 − 𝐺𝑥(𝑥)]
(𝑤−𝑠) = ∑(𝑤−1)𝑠=0 (−1)𝑠 (

(𝑤 − 𝑠)
𝑡

) (𝐺𝑥(𝑥))
𝑡 (35) 

subtituting   (35) into (34) 

 𝐺(𝑤:𝑠)(𝑥) =
𝑤!

(𝑘−𝑠)!(𝑠−1)!
∑(𝑤−1)𝑠=0 (−1)𝑠 (

(𝑤 − 𝑠)
𝑡

) 𝑔𝑥(𝑥)(𝐺𝑥(𝑥))
(𝑠+𝑡−1) 

 (36) 

 the exponential form  

 (𝐺𝑥(𝑥))
(𝑠+𝑡−1) = [1 − exp(𝛿 (1 − exp [

exp(−(
𝜆

𝑥
)
2
)

1−exp(−(
𝜆

𝑥
)
2
)
])

𝛽

)]

(𝑠+𝑡−1)

 

 = ∑𝑤−1𝑠=0 (−1)𝑝 (
𝑠 + 𝑡 − 1
𝑝

) exp(𝛿𝑡 (1 − exp [exp ((
𝜆

𝑥
)
2
− 1)]

−𝛽

)) 

 Note, 

exp(𝛿𝑡exp(𝛿𝑡 (1 − exp [exp((
𝜆

𝑥
)
2

− 1)]

−𝛽

)) = ∑

∞

𝑖,𝑗,𝑘,𝑚=0

(−1)𝑖+𝑘 (
𝛽
𝑖
) (
1
𝑘
)
𝛿𝑚𝑡𝑚exp[𝑖𝑗𝑘(𝜆/𝑥)2]𝑚

𝑗!𝑚!
 

so therefore  

(𝐺𝑥(𝑥))
(𝑠+𝑡−1) = ∑

𝑤−1

𝑠=0

(−1)𝑝 (
𝑠 + 𝑡 − 1
𝑝

) ∑

∞

𝑖,𝑗,𝑘,𝑚=0

(−1)𝑖+𝑘 (
𝛽
𝑖
) (
1
𝑘
)
𝛿𝑚𝑡𝑚exp[𝑖𝑗𝑘(𝜆/𝑥)2]𝑚

𝑗!𝑚!
 

  (37) 

substituting (37) into (36)  

𝐺(𝑤:𝑠)(𝑥) =
𝑤!

(𝑤−𝑠)!(𝑠−1)!
𝑔𝑥(𝑥)∑

𝑤−1
𝑠=0 (−1)𝑝 (

𝑠 + 𝑡 − 1
𝑝

)∑∞𝑖,𝑗,𝑘,𝑚=0 (−1)
𝑖+𝑘 (

𝛽
𝑖
) (
1
𝑘
)              ×

𝛿𝑚𝑡𝑚exp [𝑖𝑗𝑘(𝜆/𝑥)2]𝑚

𝑗!𝑚!
 

The order statistics for the proposed probability distribution CIRD(β, λ, δ) can be expressed as 

𝐺(𝑤:𝑠)(𝑥) =
𝑤!

(𝑤−𝑠)!(𝑠−1)!
𝑔𝑥(𝑥)∑

∞
𝑖,𝑗,𝑘,𝑚,𝑠=0 (−1)

𝑖+𝑘+𝑝 (
𝛽
𝑖
) (
1
𝑘
) (
𝑠 + 𝑡 − 1
𝑝

)
𝛿𝑚𝑡𝑚exp[𝑖𝑗𝑘(𝜆/𝑥)2]𝑚

𝑗!𝑚!
 (38) 

2.9: Maximum Likelihood Estimation of CIRD 

The Maximum Likelihood Estimation (MLE) approach is commonly used to estimate unknown parameter(s) because it meets the 

criteria for a good estimator, such as consistency, asymptotic efficiency, and invariance property. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random 

sample of size 𝑛 selected from the CIRD(𝛽, 𝜆, 𝛿) probability distribution. The likelihood of the PDF in Equa. (1) can be expressed 

as; 

𝐿(𝛽, 𝜆, 𝛿; 𝑥) =
(2𝛿𝛽𝜆2)𝑛

∑𝑛𝑖=1 (𝑥
3)
∏

𝑛

𝑖=1

[exp [−(
𝜆

𝑥
)
2

]]

𝛽

∏

𝑛

𝑖=1

[1 − exp [− (
𝜆

𝑥
)
2

]]

−𝛽−1

 

×∏

𝑛

𝑖=1

exp [exp (
𝜆

𝑥
)
2

− 1]

−𝛽

∏

𝑛

𝑖=1

exp(𝛿 (1 − exp [exp (
𝜆

𝑥
)
2

− 1]

−𝛽

)) 
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  (39) 

 and the log-likelihood of the likelihood function (39) can be expressed as  

l = log𝐿(𝛽, 𝜆, 𝛿; 𝑥) = 𝑛ln(2) + 𝑛ln(𝛿) + 𝑛ln(𝛽) + 2𝑛ln(𝜆) − 3∑𝑛𝑖=1 ln(𝑥) − 𝛽∑𝑛𝑖=1 (
𝜆

𝑥
)
2
− (𝛽 + 1)∑𝑛𝑖=1 ln (1 − exp [−(

𝜆

𝑥
)
2
]) −

𝛽 ∑𝑛𝑖=1 (exp [(
𝜆

𝑥
)
2
] − 1) + ∑𝑛𝑖=1 (𝛿 (1 − exp [exp (

𝜆

𝑥
)
2
− 1]

−𝛽

)) 

  (40) 

 To obtain the maximum likelihood estimate of 𝜃 = (�̂�, �̂�, �̂�), we differentiate (40) with respect to 𝛽, 𝜆 and 𝛿, equate the 

expressions to zero and solve simultaneously.  

∂l

∂𝛽
=
𝑛

𝛽
−∑

𝑛

𝑖=1

[(
𝜆

𝑥
)
2

] −∑

𝑛

𝑖=1

ln(1 − exp(− (
𝜆

𝑥
)
2

)) −∑

𝑛

𝑖=1

(exp((
𝜆

𝑥
)
2

) − 1) 

+∑

𝑛

𝑖=1

[𝛿 (exp ((
𝜆

𝑥
)
2

) − 1)

−𝛽

ln (exp ((
𝜆

𝑥
)
2

) − 1)exp((exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

)] 

  (41) 

∂l

∂𝜆
=
2𝑛

𝜆
− 2𝜆𝛽∑

𝑛

𝑖=1

[
1

𝑥2
] − 2𝜆(𝛽 + 1)∑

𝑛

𝑖=1

[
 
 
 
 exp (− (

𝜆

𝑥
)
2
)

𝑥2 (1 − exp (− (
𝜆

𝑥
)
2
))
]
 
 
 
 

− 2𝜆𝛽∑

𝑛

𝑖=1

[
exp ((

𝜆

𝑥
)
2
)

𝑥2
] 

+2𝜆𝛽𝛿∑

𝑛

𝑖=1

[
 
 
 
 exp ((

𝜆

𝑥
)
2
) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

)(exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

]
 
 
 
 

 

  (42) 

∂l

∂𝛿
=
𝑛

𝛿
+∑

𝑛

𝑖=1

[1 − exp(exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

] 

 (43) 

 Analytically solving expressions (41) to (43) is difficult. We will use numerical approaches, notably the Newton-Raphson method, 

to maximize the log-likelihood function in (40). The asymptotic distribution of the elements of the 3 × 3 observed information 

matrix of the CIRD(𝛽, 𝜆, 𝛿) distribution can be expressed as: 

√𝑛(𝜃 − 𝜃)~𝑁3(0, Σ
−1)  

where Σ is the expected information matrix. Thus, the expected information matrix is expressed as: 

Σ−1 = −𝐸

[
 
 
 
 
 
 
∂2𝑙

∂𝛽2
∂2𝑙

∂𝛽 ∂𝜆

∂2𝑙

∂𝛽 ∂𝛿

∂2𝑙

∂𝛽 ∂𝜆

∂2𝑙

∂𝜆2
∂2𝑙

∂𝛿 ∂𝜆

∂2𝑙

∂𝛽 ∂𝛿

∂2𝑙

∂𝛿 ∂𝜆

∂2𝑙

∂𝛿2 ]
 
 
 
 
 
 

 

 where  

∂2𝑙

∂𝛽2
= −

𝑛

𝛽2
+ 𝛿∑

𝑛

𝑖=1

[−(exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

ln (exp ((
𝜆

𝑥
)
2

) − 1)

2

exp((exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

) 
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    −((exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

)

2

ln (exp ((
𝜆

𝑥
)
2

) − 1)

2

exp((exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

)] 

∂2

∂𝛿2
= −

𝑛

𝛿2
 

∂2𝑙

∂𝛿2
= −2

𝑛

𝜆2
− 𝛽∑

𝑛

𝑖=1

2

𝑥2
− (𝛽 + 1)∑

𝑛

𝑖=1

(

 
 2exp(− (

𝜆

𝑥
)
2
)

𝑥2 (1 − exp (− (
𝜆

𝑥
)
2
))

−
4𝜆2exp (−(

𝜆

𝑥
)
2
)

𝑥4 (1 − exp (−(
𝜆

𝑥
)
2
))

 

    −
4𝜆2exp (− (

𝜆

𝑥
)
2
)
2

𝑥4 (1 − exp (− (
𝜆

𝑥
)
2
))

2

)

 
 
− 𝛽∑

𝑛

𝑖=1

(
2exp((

𝜆

𝑥
)
2
)

𝑥2
+
4𝜆2exp ((

𝜆

𝑥
)
2
)

𝑥4
) 

∂2𝑙

∂𝛿2
= −2

𝑛

𝜆2
− 𝛽∑

𝑛

𝑖=1

2

𝑥2
− (𝛽 + 1)∑

𝑛

𝑖=1

(

 
 2exp(− (

𝜆

𝑥
)
2
)

𝑥2 (1 − exp (− (
𝜆

𝑥
)
2
))

−
4𝜆2exp (−(

𝜆

𝑥
)
2
)

𝑥4 (1 − exp (−(
𝜆

𝑥
)
2
))

 

    −
4𝜆2exp (− (

𝜆

𝑥
)
2
)
2

𝑥4 (1 − exp (− (
𝜆

𝑥
)
2
))

2

)

 
 
− 𝛽∑

𝑛

𝑖=1

(
2exp((

𝜆

𝑥
)
2
)

𝑥2
+
4𝜆2exp ((

𝜆

𝑥
)
2
)

𝑥4
) 

+𝛿∑

𝑛

𝑖=1

(−4

(exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝛽2𝜆2exp ((
𝜆

𝑥
)
2
)
2

exp ((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

)

𝑥4 (exp ((
𝜆

𝑥
)
2
) − 1)

2  

+

2((exp ((
𝜆

𝑥
)
2
))

−𝛽

𝛽exp ((
𝜆

𝑥
)
2
) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

))

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

 

+

4((exp ((
𝜆

𝑥
)
2
))

−𝛽

𝛽𝜆2exp ((
𝜆

𝑥
)
2
) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

))

𝑥4 (exp ((
𝜆

𝑥
)
2
) − 1)

 

−

4((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

)

2

𝛽2𝜆2 (exp ((
𝜆

𝑥
)
2
))

2

exp ((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

)

𝑥4 (exp ((
𝜆

𝑥
)
2
) − 1)

2  

−

4(exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝛽𝜆2 (exp ((
𝜆

𝑥
)
2
))

2

exp ((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

)

𝑥4 (exp ((
𝜆

𝑥
)
2
) − 1)

2 ) 

∂2𝑙

∂𝛽 ∂𝜆
=

∂2𝑙

∂𝜆 ∂𝛽
= −∑

𝑛

𝑖=1

2𝜆

𝑥2
−∑

𝑛

𝑖=1

2𝜆exp(− (
𝜆

𝑥
)
2
)

𝑥2 (1 − exp (−(
𝜆

𝑥
)
2
))

−∑

𝑛

𝑖=1

2𝜆exp((
𝜆

𝑥
)
2
)

𝑥2
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+𝛿∑

𝑛

𝑖=1

(−2

(exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝛽𝜆exp ((
𝜆

𝑥
)
2
) ln (exp ((

𝜆

𝑥
)
2
) − 1) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

)

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

 

+2

((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝜆exp ((
𝜆

𝑥
)
2
) (exp ((

𝜆

𝑥
)
2
) − 1)

(exp((
𝜆

𝑥
)
2
)−1)

−𝛽

)

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

 

−2

(((exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

)

2

ln (exp ((
𝜆

𝑥
)
2
) − 1)𝛽𝜆exp ((

𝜆

𝑥
)
2
) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

))

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

) 

∂2

∂𝛽 ∂𝛿
=

∂2

∂𝛿 ∂𝛽
=∑

𝑛

𝑖=1

((exp((
𝜆

𝑥
)
2

) − 1)

−𝛽

ln (exp ((
𝜆

𝑥
)
2

) − 1)exp((exp ((
𝜆

𝑥
)
2

) − 1)

−𝛽

)) 

  

∂2𝑙

∂𝜆 ∂𝛿
=

∂2𝑙

∂𝛿 ∂𝜆
=∑

𝑛

𝑖=1

(

 
 
2

(exp ((
𝜆

𝑥
)
2
) − 1)

−𝛽

𝛽𝜆exp ((
𝜆

𝑥
)
2
) exp ((exp ((

𝜆

𝑥
)
2
) − 1)

−𝛽

)

𝑥2 (exp ((
𝜆

𝑥
)
2
) − 1)

)

 
 

 

  

Solving the above equations yields the asymptotic variance and covariances of the parameters. �̂�, �̂� and �̂�. Using Equ. (1), the 

approximate 100(1 − 𝛼)% confidence intervals for 𝛽, 𝜆 and 𝛿 can be expressed as  

�̂� ± 𝑍𝛼
2

√Σ̂11,�̂� ± 𝑍𝛼
2

√Σ̂22, �̂� ± 𝑍𝛼
2

√Σ̂33. Where 𝑍𝛼
2

 is the upper 𝛼𝑡ℎ percentile of the standard normal distribution. 

3. Results 

3.1: Median, Skewness, Kurtosis for different parameter values of CIRD (β,λ,δ)  

Table 1, shows the median, skewness and kurtosis for the probability distribution CIRD (β, λ, δ). The findings demonstrate mild to 

moderate right-skewedness, whereas the majority of the data reveals mild to moderate left-skewness. Based on the results of 

kurtosis in Table 1, we concluded that the recommended distribution is appropriate for modeling datasets with consistently high 

kurtosis values, which reflect leptokurtic features. This means that distributions with larger tails and a proclivity for more severe 

outcomes than a normal distribution can be properly approximated using this distribution. Notably, the bulk of kurtosis values 

are within a limited range, showing a consistent amount of tailedness throughout the sample. 

 

Table 1: Median, Skewness, Kurtosis for different parameter values of CIRD (𝛽, 𝜆, 𝛿) 

𝜆, 𝛿, 𝛽  Median Skewness Kurtosis 𝜆, 𝛿, 𝛽 Median Skewness Kurtosis 

(0.5, 0.1, 0.5) 1.092 -0.050 1.165 (3, 4.5, 1) 2.082 0.038 1.199 

(1, 0.1, 0.5) 2.184 -0.050 1.165 (3.5, 4.5, 1) 2.429 0.038 1.199 

(1.5, 0.1, 0.5) 3.276 -0.050 1.165 (4, 4.5, 1) 2.776 0.038 1.199 

(2, 0.1, 0.5) 4.369 -0.050 1.165 (4.5, 4.5, 1) 3.123 0.038 1.199 

(0.5, 0.2, 0.5) 0.823 0.000 1.128 (5, 4.5, 1) 3.469 0.038 1.199 

(1, 0.2, 0.5) 1.646 0.000 1.128 (0.5, 0.1, 1.5) 0.722 -0.168 1.303 

(1.5, 0.2, 0.5) 2.469 0.000 1.128 (1, 0.1, 1.5) 1.444 -0.168 1.303 

(2, 0.2, 0.5) 3.292 0.000 1.128 (1.5, 0.1, 1.5) 2.166 -0.168 1.303 
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(2.5, 0.2, 0.5) 4.115 0.000 1.128 (2, 0.1, 1.5) 2.888 -0.168 1.303 

(3, 0.2, 0.5) 4.937 0.000 1.128 (2.5, 0.1, 1.5) 3.610 -0.168 1.303 

(4, 0.5, 0.5) 4.358 0.089 1.133 (3, 0.1, 1.5) 4.332 -0.168 1.303 

(4.5, 0.5, 0.5) 4.903 0.089 1.133 (3.5, 0.1, 1.5) 5.054 -0.168 1.303 

(5, 0.5, 0.5) 5.448 0.089 1.133 (4, 0.1, 1.5) 5.776 -0.168 1.303 

(0.5, 0.7, 0.5) 0.469 0.117 1.156 (3, 0.5, 1.5) 3.486 -0.110 1.211 

(1, 0.7, 0.5) 0.939 0.117 1.156 (3.5, 0.5, 1.5) 4.067 -0.110 1.211 

(1.5, 0.7, 0.5) 1.408 0.117 1.156 (4, 0.5, 1.5) 4.648 -0.110 1.211 

(2, 0.7, 0.5) 1.877 0.117 1.156 (4.5, 0.5, 1.5) 5.229 -0.110 1.211 

(2.5, 0.7, 0.5) 2.347 0.117 1.156 (5, 0.5, 1.5) 5.809 -0.110 1.211 

(3, 0.7, 0.5) 2.816 0.117 1.156 (0.5, 0.7, 1.5) 0.550 -0.091 1.198 

(3.5, 0.7, 0.5) 3.285 0.117 1.156 (1, 0.7, 1.5) 1.101 -0.091 1.198 

(4, 0.7, 0.5) 3.755 0.117 1.156 (1.5, 0.7, 1.5) 1.651 -0.091 1.198 

(4.5, 0.7, 0.5) 4.224 0.117 1.156 (2, 0.7, 1.5) 2.201 -0.091 1.198 

(5, 0.7, 0.5) 4.693 0.117 1.156 (3, 0.4, 2) 3.607 -0.146 1.251 

(3.5, 0.2, 1) 4.893 -0.113 1.217 (3.5, 0.4, 2) 4.208 -0.146 1.251 

(4, 0.2, 1) 5.591 -0.113 1.217 (4, 0.4, 2) 4.809 -0.146 1.251 

(4.5, 0.2, 1) 6.290 -0.113 1.217 (4.5, 0.4, 2) 5.410 -0.146 1.251 

(5, 0.2, 1) 6.989 -0.113 1.217 (5, 0.4, 2) 6.011 -0.146 1.251 

(0.5, 0.3, 1) 0.642 -0.092 1.193 (0.5, 0.5, 2) 0.586 -0.136 1.238 

(1, 0.3, 1) 1.283 -0.092 1.193 (1, 0.5, 2) 1.172 -0.136 1.238 

(1.5, 0.3, 1) 1.925 -0.092 1.193 (1.5, 0.5, 2) 1.757 -0.136 1.238 

(2, 0.3, 1) 2.567 -0.092 1.193 (2, 0.5, 2) 2.343 -0.136 1.238 

(2.5, 0.3, 1) 3.208 -0.092 1.193 (2.5, 0.5, 2) 2.929 -0.136 1.238 

(3, 0.3, 1) 3.850 -0.092 1.193 (3, 0.5, 2) 3.515 -0.136 1.238 

(3.5, 0.3, 1) 4.492 -0.092 1.193 (3.5, 0.4, 4) 4.206 -0.182 1.300 

(4, 0.3, 1) 5.133 -0.092 1.193 (4, 0.4, 4) 4.807 -0.182 1.300 

(4, 4.5, 1.5) 3.226 -0.011 1.196 (4.5, 0.4, 4) 5.408 -0.182 1.300 

(4.5, 4.5, 1.5) 3.629 -0.011 1.196 (5, 0.4, 4) 6.009 -0.182 1.300 

(5, 4.5, 1.5) 4.033 -0.011 1.196 (0.5, 0.5, 4) 0.593 -0.173 1.287 

(0.5, 0.1, 2) 0.688 -0.184 1.329 (1, 0.5, 4) 1.186 -0.173 1.287 

(1, 0.1, 2) 1.377 -0.184 1.329 (1.5, 0.5, 4) 1.779 -0.173 1.287 

(1.5, 0.1, 2) 2.065 -0.184 1.329 (2, 0.5, 4) 2.372 -0.173 1.287 

(2, 0.1, 2) 2.753 -0.184 1.329 (2.5, 0.5, 4) 2.965 -0.173 1.287 
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(2.5, 0.1, 2) 3.442 -0.184 1.329 (3.5, 2, 4) 3.783 -0.115 1.238 

(3, 0.1, 2) 4.130 -0.184 1.329 (4, 2, 4) 4.323 -0.115 1.238 

(4, 4.5, 1.5) 3.226 -0.011 1.196 (4.5, 2, 4) 4.864 -0.115 1.238 

(4.5, 4.5, 1.5) 3.629 -0.011 1.196 (5, 2, 4) 5.404 -0.115 1.238 

(5, 4.5, 1.5) 4.033 -0.011 1.196 (0.5, 2.5, 4) 0.532 -0.108 1.235 

(0.5, 0.1, 2) 0.688 -0.184 1.329 (1, 2.5, 4) 1.063 -0.108 1.235 

(1, 0.1, 2) 1.377 -0.184 1.329 (1.5, 2.5, 4) 1.595 -0.108 1.235 

(1.5, 0.1, 2) 2.065 -0.184 1.329 (2, 2.5, 4) 2.127 -0.108 1.235 

(2, 0.1, 2) 2.753 -0.184 1.329 (2.5, 2.5, 4) 2.658 -0.108 1.235 

(2.5, 0.1, 2) 3.442 -0.184 1.329 (4.5, 4.5, 5) 4.727 -0.101 1.241 

(3, 0.1, 2) 4.130 -0.184 1.329 (5, 4.5, 5) 5.252 -0.101 1.241 

(2, 1.5, 5) 2.244 -0.136 1.253 (3, 4.5, 4.5) 3.107 -0.096 1.237 

(2.5, 1.5, 5) 2.805 -0.136 1.253 (3.5, 4.5, 4.5) 3.625 -0.096 1.237 

(3, 1.5, 5) 3.365 -0.136 1.253 (4, 4.5, 4.5) 4.143 -0.096 1.237 

(3.5, 1.5, 5) 3.926 -0.136 1.253 (4.5, 4.5, 4.5) 4.661 -0.096 1.237 

(4, 1.5, 5) 4.487 -0.136 1.253 (5, 4.5, 4.5) 5.179 -0.096 1.237 

(4.5, 1.5, 5) 5.048 -0.136 1.253 (0.5, 0.1, 5) 0.634 -0.212 1.380 

 

. 

 

Figure 5: Histogram Plot for CIRD (𝛽 = 2, 𝜆 = 3, 𝛿 = 4) when n = (50, 100, 200, 500, 1000, 2000) 
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Figure 6: Histogram Plot for CIRD (𝛽 = 0.5, 𝜆 = 0.5, 𝛿 = 0.1) when n = (50, 100, 200, 500, 1000, 2000) 

 

 

Figure 7: Histogram Plot for CIRD (𝛽 = 1, 𝜆 = 2, 𝛿 = 0.1) when n = (50, 100, 200, 500, 1000, 2000) 

 

Figure 8: Histogram Plot for CIRD (𝛽 = 0.5, 𝜆 = 3, 𝛿 = 0.5) when n = (50, 100, 200, 500, 1000, 2000) 
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Figure 9: Histogram Plot for CIRD (𝛽 = 1.5, 𝜆 = 3, 𝛿 = 0.2) when n = (50, 100, 200, 500, 1000, 2000) 

 

Figure 10: Histogram Plot for CIRD (𝛽 = 1.5, 𝜆 = 3, 𝛿 = 0.1) when n = (50, 100, 200, 500, 1000, 2000) 

 

Figure 11: Histogram Plot for CIRD (𝛽 = 1.5, 𝜆 = 3, 𝛿 = 1.5) when n = (50, 100, 200, 500, 1000, 2000) 



JMSS 6(3): 15-39 

 

Page | 33  

 

Figure 12: Histogram Plot for CIRD (𝛽 = 1, 𝜆 = 3, 𝛿 = 0.3) when n = (50, 100, 200, 500, 1000, 2000) 

Figures 5-12 shows the histogram plot for the proposed probability distribution CIRD (𝛽, 𝜆, 𝛿) with different parameter values of 

𝛽, 𝜆 and 𝛿 with different sample sizes 50, 100, 200, 500, 1000 and 2000 respectively. The plot shows that the probability 

distribution CIRD (𝛽, 𝜆, 𝛿) can be used to model negatively skewed datasets since the tail on the left side of the probability 

density function is longer than the right side. In other words, the majority of the data points are clustered on the right side of the 

distribution, with a tiny number of extreme values extending to the left. Characteristically, the mean of a negatively skewed 

distribution is usually less than the median, because the tail on the left side pulls the mean in that direction. The mode, or the 

most commonly occurring value, is usually greater than the median. Also in some cases, we observed that this distribution 

confirm the law of  central limiting theorem (CLT) that as the sample sizes increases the distribution tends to exhibit a bell shape 

pattern that is it tends to exhibit a normal distribution and this can be found in Figures 3.5 and 3.6 with parameters CIRD (β =

2, λ = 3, δ = 4) and CIRD (β = 0.5, λ = 0.5, δ = 0.1). Figure 3.8 with probability distribution paramter CIRD (𝛽 = 0.5, 𝜆 = 3, 𝛿 =

0.5) shows that the proposed distribution exhibit a right skewed dataset as the sample sizes increases. 

3.2: Maximum Likelihood Estimate of CIRD 

The quantile function, an inverse transformation tool for simulation, was used to simulate data sets with sample size n = 10, 100, 

200 and 500, that follow the CIR distribution, with different values for the three parameters δ, β and λ. At the specified sample 

sizes, the following values were assigned to the parameters (δ, β, λ) = ((0.5, 0.5, 0.5), (1, 1,1), (1.5, 1.5, 1.5), (2, 2, 2), (2.5,2.5,2.5), 

(3,3,3), (3.5,3.5,3.5), (4, 4, 4), (5, 5, 5)). The average results for both ML estimation technique are presented in this section with the 

fixed actual values and estimated values of the parameters along with their standard errors, AIC and convergences. 

 

Table 2:  Parameter Estimates, Standard Error and Model Fit at Different Initials for n =10 

Initial 

delta 

Initial 

beta 

Initial 

lambda 

Estimated 

delta 

Std. 

Error 

delta 

Estimated 

beta 

Std. 

Error 

beta 

Estimated 

lambda 

Std. Error 

lambda 

Log-

likelihood 
AIC Converged 

0.5 0.5 0.5 0.7801 0.1352 1.0184 0.1845 2.4623 0.4036 -9.2448 24.49 Yes 

1 1 1 0.9756 0.2123 1.2005 0.2938 2.9113 0.5861 -8.5119 22.02 Yes 

1.5 1.5 1.5 1.5048 0.2548 1.8246 0.3547 3.1854 0.6417 -8.7123 23.42 Yes 

2 2 2 2.0113 0.2976 2.2216 0.4061 3.5004 0.7356 -8.9224 23.84 Yes 

2.5 2.5 2.5 2.4987 0.3185 2.7653 0.4327 3.7569 0.7853 -8.9987 24 Yes 

3 3 3 3.0012 0.3364 2.9721 0.4462 4.0124 0.8245 -9.1567 24.31 Yes 

3.5 3.5 3.5 3.4123 0.3517 3.2856 0.4617 4.3156 0.8596 -9.2783 24.56 Yes 

4 4 4 3.8765 0.3724 3.5645 0.4822 4.5897 0.9032 -9.4128 24.83 Yes 

4.5 4.5 4.5 4.2896 0.3931 3.8913 0.5041 4.8612 0.9451 -9.5217 25.04 Yes 

5 5 5 4.8967 0.4217 4.2134 0.5328 5.1423 0.9817 -9.6123 25.22 Yes 
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Table 3:  Parameter Estimates, Standard Error and Model Fit at Different Initials for n =100 

Table 4:  Parameter Estimates, Standard Error and Model Fit at Different Initials for n =200 

 

 

 

 

 

 

Initial 

delta 

Initial 

beta 

Initial 

lambda 

Estimated 

delta 

Std. 

Error 

delta 

Estimated 

beta 

Std. 

Error 

beta 

Estimated 

lambda 

Std. Error 

lambda 

Log-

likelihood 
AIC Converged 

0.5 0.5 0.5 0.6751 0.0452 1.1984 0.0653 2.1623 0.1236 -85.2448 176.49 Yes 

1 1 1 1.0256 0.0734 1.5056 0.0897 2.8113 0.1461 -83.1119 172.22 Yes 

1.5 1.5 1.5 1.7248 0.0843 1.8946 0.0945 3.2854 0.1547 -83.3123 174.62 Yes 

2 2 2 2.2113 0.0987 2.3116 0.1038 3.8004 0.1656 -83.4224 175.84 Yes 

2.5 2.5 2.5 2.6987 0.1025 2.7653 0.1121 3.9569 0.1743 -83.4987 176 Yes 

3 3 3 3.3012 0.1074 3.1721 0.1153 4.2124 0.1815 -83.6567 176.31 Yes 

3.5 3.5 3.5 3.5123 0.1147 3.5056 0.1206 4.5156 0.1897 -83.8783 176.56 Yes 

4 4 4 3.9765 0.1213 3.8245 0.1278 4.7897 0.1982 -84.0128 176.83 Yes 

4.5 4.5 4.5 4.4896 0.1326 4.1913 0.1351 5.0612 0.2091 -84.1217 177.04 Yes 

5 5 5 5.0123 0.1431 4.5534 0.1428 5.3123 0.2183 -84.3123 177.22 Yes 

Initial 

delta 

Initial 

beta 

Initial 

lambda 

Estimated 

delta 

Std. 

Error 

delta 

Estimated 

beta 

Std. 

Error 

beta 

Estimated 

lambda 

Std. 

Error 

lambda 

Log-

likelihood 
AIC Converged 

0.5 0.5 0.5 0.6751 0.0452 1.1984 0.0653 2.1623 0.1236 -85.2448 176.49 Yes 

1 1 1 1.0256 0.0734 1.5056 0.0897 2.8113 0.1461 -83.1119 172.22 Yes 

1.5 1.5 1.5 1.7248 0.0843 1.8946 0.0945 3.2854 0.1547 -83.3123 174.62 Yes 

2 2 2 2.2113 0.0987 2.3116 0.1038 3.8004 0.1656 -83.4224 175.84 Yes 

2.5 2.5 2.5 2.6987 0.1025 2.7653 0.1121 3.9569 0.1743 -83.4987 176 Yes 

3 3 3 3.3012 0.1074 3.1721 0.1153 4.2124 0.1815 -83.6567 176.31 Yes 

3.5 3.5 3.5 3.5123 0.1147 3.5056 0.1206 4.5156 0.1897 -83.8783 176.56 Yes 

4 4 4 3.9765 0.1213 3.8245 0.1278 4.7897 0.1982 -84.0128 176.83 Yes 

4.5 4.5 4.5 4.4896 0.1326 4.1913 0.1351 5.0612 0.2091 -84.1217 177.04 Yes 

5 5 5 5.0123 0.1431 4.5534 0.1428 5.3123 0.2183 -84.3123 177.22 Yes 
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Table 5:  Parameter Estimates, Standard Error and Model Fit at Different Initials for n =500 

Initial 

delta 

Initial 

beta 

Initial 

lambda 

Estimated 

delta 

Std. 

Error 

delta 

Estimat

ed beta 

Std. 

Error 

beta 

Estimate

d 

lambda 

Std. Error 

lambda 

Log-

likelihood 
AIC 

Converge

d 

0.5 0.5 0.5 0.6732 0.0123 1.2014 0.0187 2.1487 0.0264 -431.231 868.46 Yes 

1 1 1 1.0315 0.0167 1.4987 0.0234 2.7989 0.0317 -429.346 864.69 Yes 

1.5 1.5 1.5 1.7254 0.0194 1.8948 0.0243 3.2771 0.0336 -429.655 865.31 Yes 

2 2 2 2.2138 0.0206 2.3128 0.0256 3.7983 0.0347 -429.821 865.64 Yes 

2.5 2.5 2.5 2.6992 0.0211 2.7656 0.0273 3.9512 0.0359 -429.979 865.96 Yes 

3 3 3 3.3041 0.0228 3.1745 0.0291 4.2178 0.0374 -430.111 866.22 Yes 

3.5 3.5 3.5 3.5126 0.0243 3.5032 0.0317 4.5146 0.0389 -430.332 866.67 Yes 

4 4 4 3.9778 0.0257 3.8249 0.0331 4.7811 0.0398 -430.457 866.91 Yes 

4.5 4.5 4.5 4.4921 0.0273 4.1948 0.0345 5.0567 0.0416 -430.673 867.34 Yes 

5 5 5 5.0136 0.0291 4.5564 0.0363 5.3115 0.0432 -430.879 867.76 Yes 

 

 

    
Figure 13: Standard Error and Bias plot for n = 10 

 

Figure 14: 

Standard Error and Bias plot for n = 100 
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Figure 15: Standard Error and Bias plot for n = 500 

 

Table 2 – 5, provides a detailed overview of the CIR model parameter estimates, its associated standard errors, model fit 

indicators for different initial values and sample sizes 10, 100, 200 and 500. These results demonstrate the impact of sample size 

on parameter estimates, their standard errors, model fit (log-likelihood), and AIC values, highlighting key trends as the dataset 

size increases. As the sample size grows, the precision of parameter estimates improves significantly. This improvement is 

evident from the decreasing standard errors across the parameters δ, β, and λ. When n =10, the standard error of δ ranges from 

0.1352 to 0.4217, whereas for n = 500, it reduces dramatically to a range of 0.0123 to 0.0291. Similar trends are observed for β 

and λ, reflecting that larger dataset provide more reliable and precise estimates. Despite the varying sample sizes, the estimated 

parameter values consistently align with their initial values, showcasing the robustness of the CIR model in capturing the 

underlying dynamics. The log-likelihood values decrease in magnitude as the sample size increases, which is expected due to the 

inclusion of more data points. For n =10 log-likelihood values range from -9.2448 to -9.6123, compared to -83.1119 to -85.2448 

for N=100, and -429.346 to -431.231 for N=500. While the log-likelihood values stabilize, the AIC values increase with sample 

size, reflecting the greater complexity introduced by larger datasets. However, within each sample size, AIC values remain stable 

across initial parameter values, indicating consistent model performance. The model converges successfully for all initial 

parameter settings across all sample sizes, further affirming the robustness of the MLE optimization process. The consistency in 

convergence, even for smaller datasets, highlights the CIR model’s reliability and adaptability to different data conditions. 

 

Finally, from the results provide in Tables 2 – 5, larger sample sizes significantly enhance the accuracy and precision of parameter 

estimates while maintaining consistent model performance. The decreasing standard errors is as a result of increase in the 

sample sizes. These results underscore the reliability of the CIR model and MLE technique for parameter estimation across 

varying sample conditions. Also, Figures 13 – 15 displayed the standard error and bias error for different sample sizes n = 10, 

100, 200 and 500 with different parameter values of δ, β, and λ. 

 

4. Application of Cir  

The dataset below comprises survival times (in days) for patients diagnosed with head and neck cancer. The values range from as 

short as 12.20 days to as long as 1776 days, demonstrating a wide variability in patient survival outcomes. The data captures 

individual patient survival times, providing a basis for statistical analysis and modeling of survival patterns in this cohort. 

 

Table 6: Dataset of Head and Neck Cancer Patients Data 

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 

133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776 
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Figure 17: Diagnostic plots of Head and Neck Cancer Patients Data 

Table 6: MLE estimates of Head and Neck Cancer Patients Data 

Models Parameter Estimates  

CIR 

3.125  

(0.0019) 

0.568  

(0.0561) 

1.076 

(0.298) 

0.0169  

(0.047) 

CBHE 

1.787 

(1.1368) 

1.4365 

(0.2984) 

0.0023 

(0.013) 

 

CE 

1.8047 

(0.8345) 

1.2291 

(0.2293) 

0.0033 

(0.0012) 

 

E 

0.0045 

(0.0007) 

   

BHE 

0.0027 

(0.0005) 

   

W 

0.9234 

(0.1051) 

0.0071 

(0.0045) 

  

WBXII 

1.4435 

(0.5713) 

0.1044 

(0.0422) 

0.4876 

(0.5226) 

3.463 

(0.473) 

 

Table 7: Performance of CIR distribution compared with others. 

Distribution AIC BIC 
CVM AD KS 

Statistic p-value Statistic p-value Statistic p-value 

CIR 543.2341 545.3456 0.0321 0.96122 0.31334 0.91761 0.04768 0.9845 

CBHE 564.3278 569.6804 0.0363 0.9531 0.3544 0.8919 0.0673 0.9805 

CE 566.0809 571.4334 0.0926 0.6248 0.5616 0.6841 0.1066 0.6599 

E 566.0224 567.8065 0.1677 0.3409 0.9324 0.3942 0.142 0.3073 

BHE 563.9277 565.7119 0.1094 0.5427 0.7253 0.5372 0.1125 0.5941 

W 567.7156 571.284 0.1354 0.4388 0.8665 0.4348 0.1242 0.4684 

WBXII 566.3276 573.4644 0.084 0.6715 0.4765 0.7699 0.1121 0.598 
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The results in Table 6 present the maximum likelihood estimates (MLEs) of parameters for various statistical models fitted to 

head and neck cancer patient data. Each parameter estimate is accompanied by its standard error (SE) in parentheses, which 

indicates the precision of the estimate. For the CIR model, the parameters 3.1253.125, 0.5680.568, 1.0761.076, 

and 0.01690.0169 exhibit varying levels of precision, with smaller SEs (0.00190.0019) suggesting high confidence in some 

estimates.  Table 7 evaluates the models' performance using various statistical metrics, including Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and goodness-of-fit tests such as Cramér-von Mises (CVM), Anderson-Darling (AD), 

and Kolmogorov-Smirnov (KS). The CIR model demonstrates the best fit, with the lowest AIC and BIC values among all models.  

Additionally, the CIR model achieves high p-values in goodness-of-fit tests indicating excellent agreement between the model 

and the observed data. 

 

In comparison, other models such as CBHE and CE show higher AIC and BIC values and lower p-values, indicating inferior 

performance. Models like E and W, while simpler, exhibit poor goodness-of-fit, with higher CVM and AD statistics and lower p-

values, making them unsuitable for this dataset. The WBXII model, despite its complexity, fails to outperform the CIR model in 

terms of AIC, BIC, or goodness-of-fit tests. In conclusion, the CIR model is the best-fitting model for the head and neck cancer 

patient data. Its low AIC and BIC values, coupled with high p-values in goodness-of-fit tests, suggest that it captures the data's 

underlying structure more effectively than the other models. While some simpler models like E and BHE provide highly precise 

parameter estimates, they lack the flexibility to adequately describe the data, making the CIR model the most appropriate choice. 

 

5. Conclusion 

In selecting an appropriate statistical distribution for modeling lifetime data is crucial. Many statistical results in these domains 

heavily depend on specific distributional assumptions. However, traditional distributions often fail to adequately capture the 

complexities of certain datasets. To address this limitation, this study developed the Chen Inverse Raleigh (CIR) distribution 

within the context of the Chen-G family, with the intension to establish the statistical properties and compare the distribution 

with that of existing models to ensure a better and more reliable fits for diverse datasets. 

 

The cumulative distribution function (CDF) and probability density function (PDF) derivations of the proposed distributions are 

provided. The statistical properties of these distributions like the survival function, hazard function, cumulative hazard function, 

reverse hazard function, quartile function, skewness, kurtosis, moments, and linear representation and parameters of the 

distributions for estimation, that is, the maximum likelihood estimation (MLE) was also provided in the study. Result showed that 

the CIR distribution was suitable for symmetric and left-skewed data but showed mild right-skewedness. Our Proposed 

distribution modeled leptokurtic data (heavy-tailed distributions), with kurtosis values indicating effectiveness and consistent tail 

behavior. Simulations using quantile functions with sample sizes n=10, 100, 200 and 500 demonstrated that larger samples 

improve precision (e.g., standard errors for δ dropped from 0.42 to 0.03 as n increased from 10 to 500). 

 

Log-likelihood values decreased with larger datasets, while AIC values rose, reflecting increased complexity. The model 

consistently converged across all sample sizes. Result from the application using Head and Neck Cancer data, showed that the 

CIR model outperformed competitors (CBHE, CE, WBXII, etc.) with the lowest AIC/BIC and highest goodness-of-fit p-values (CVM, 

AD, KS), indicating superior fit. 
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