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A new stochastic diffusion process based on Generalized Brody curve is proposed. 
Such a process can be considered as an extension of the nonhomogeneous lognormal 
diffusion process. From the corresponding Itô’s stochastic differential equation (SDE), 
firstly we establish the probabilistic characteristics of the studied process, such as the 
solution to the SDE, the probability transition density function and their distribution, 
the moments function, in particular the conditional and non-conditional trend 
functions. Secondly, we treat the parameters estimation problem by using the 
maximum likelihood method in basis of the discrete sampling, thus we obtain 
nonlinear equations that can be solved by metaheuristic optimization algorithms such 
as simulated annealing and variable search neighborhood. Finally, we perform a 
simulation studies and we apply the model to the data of life expectancy at birth in 
Morocco. 
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1. Introduction 1 
Life expectancy at birth, commonly used as a measure of overall development of a country, has risen over the last ten years in 
most of the countries of the world. This has a special significance for the developing world since they are seeking for achieving 
socio-economic progress through investing extensively on social sectors like health, education, sanitation, environmental 
management and sustainability, and social safety nets. Per capita income of the developing countries has increased and 
converted into increased level of expenditure on medical treatment and composite commodities. Enhancements in poverty 
rate, nutrition, adult literacy, access to safe drinking water, chronic diseases, and sanitation have also been impressive over the 
years that would have a positive impact on life expectancy. Nevertheless, in serval countries of the developing world, Sub-
Saharan Africa in particular, life expectancy has been decreasing. In some of the countries although income and health 
expenditure is increasing, life expectancy is decreasing, see Kabir (2008). 
 
The first paper associated to this theory on stochastic modeling of the health state of an individual was published by Janssen & 
Skiadas (1995). An application on the Belgium and France data was presented by the authors in the Royal Association of Belgian 
Actuaries in a meeting in 1995 celebrating the 100 years of the Association. The modeling approach was based on finding the 
distribution of the first exit time of a diffusion process expressing the health state of a person from a barrier. The related theory 
can be found in Janssen & Skiadas (1995), Skiadas & Skiadas (2007), Skiadas & Skiadas  (2010), Skiadas & Skiadas  (2011) lately 
in the International Encyclopedia of Statistical Science, Lovric (2011) and Skiadas (2011). The publications mentionned before 
are focused on  designing and implementing of a first exit time model for mortality including the infant mortality. 
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The proposed model is the stochastic process of diffusion based on generalized brody curve (Brody & Lardy (1946),  Brown & 
Butts (1972))  given by :  
 𝑦(𝑡) = 𝑏0(1 − 𝑎𝑒

−𝑏𝑡)𝑝 (1) 

 

This model is an extension of a non-homogeneous lognormal diffusion process, see (Gutiérrez et al. (1999), Nafidi et al. (2019), 
Nafidi et al. (2020)) and can be defined from the perspective of Kolmogrov partial differential equations and stochastic 
differential equation SDE. 
 
The mean function of the process is a curve, whose bound may depend on the initial value of the variable under analysis. The 
predictive potential is one of the strong points of these dynamic models. In order to accurately apply this model, we need 
reliable estimates of the parameters addressed. In our situation, we use maximum likelihood to tackle the problem of 
estimation. Thus, a complex system of equations arises, whose solution can not be ensured by classical numerical methods. To 
overcome this problem, we propose the use of of metaheuristic optimization algorithms such as simulated annealing (SA) and 
variable neighborhood search (VNS). 
 
In this article, we explore the possibilities of using a new stochatic diffusion process based on Generalized Brody curve to model 
Life expectancy at birth, total (years) – Morocco. In the second section, we define this process as a solution of Itô’s stochastic 
differential equation (SDE) and then, using Itô’s formula, the analytical expression of this process is found, after which the trend 
and conditional trend functions are determined. In Section 3, the parameter estimators of the proposed process are calculated 
by optimization methods as a hybrid combination, firstly, the simulated annealing used as local search for the variable 
neighborhood search to estimate the parameters from the log-likelihood equation. Therefore, a simulation study is performed 
to illustrate the model. In the last section, the model is applied to time-serie data of Life expectancy at birth, total (years) in 
Morocco and provides sufficiently good results in term of forcasting accuaracy. 
 
2. The proposed model and probabilistic characteristics  
2.1 Model and assumptions  
The proposed model is a one dimensional diffusion process with values in (0,∞) and is defined by the process  
{𝑥(𝑡): 𝑡 ∈ [𝑡0, 𝑇]} solution of the following non linear stochastic differential equation (SDE):  
 
 

 
𝑑𝑥(𝑡) =

𝑝𝑎𝑏

𝑒𝑏𝑡 − 𝑎
𝑥(𝑡)𝑑𝑡 + 𝜎𝑥(𝑡)𝑑𝑤(𝑡), 𝑥(𝑡0) = 𝑥𝑡0  

 

(2) 

 

Where 𝑎, 𝑏, 𝑝, 𝜎 > 0 are real parameters and 𝑤(𝑡) is a one-dimensional standard Wiener process and 𝑥𝑡0 > 0 is almost surely 

a constant. 
by assuming the following conditions: 

• 𝑙𝑖𝑚
ℎ→0

1

ℎ
∫ 𝑃(𝑑𝑦, 𝑡 + ℎ ∣ 𝑥, 𝑡) = 0
|𝑦−𝑥|>𝜖

 

• 𝑙𝑖𝑚
ℎ→0

1

ℎ
∫ (𝑦 − 𝑥)𝑃( 𝑑𝑦, 𝑡 + ℎ ∣∣ 𝑥, 𝑡 )
|𝑦−𝑥|≤𝜖

= 𝐴1(𝑡, 𝑥) =
𝑝𝑎𝑏

𝑒𝑏𝑡−𝑎
𝑥 

• 𝑙𝑖𝑚
ℎ→0

1

ℎ
∫ (𝑦 − 𝑥)2𝑃(𝑑𝑦, 𝑡 + ℎ ∣ 𝑥, 𝑡)
|𝑦−𝑥|≤𝜖

= 𝐴2(𝑡, 𝑥) = 𝜎
2𝑥2 > 0 

• the higher-order infinitesimal moments are null ; 
Alternatively the proposed model can be defined by kolmogrov backward and forward, equations given by : 
 

∂𝑓

∂𝑠
+

𝑝𝑎𝑏

𝑒𝑏𝑡 − 𝑎
𝑥
∂𝑓

∂𝑥
+
𝜎2

2
𝑥2
∂2𝑓2

∂𝑥2
= 0 

−
∂𝑓

∂𝑡
−

𝑝𝑎𝑏

𝑒𝑏𝑡 − 𝑎

∂(𝑦𝑓)

∂𝑦
+
𝜎2

2

∂2(𝑦2𝑓)

∂𝑦2
= 0 

 
 



JMSS 2(1):01-11 

 

3 

2.2 Analytical expression of the proposed model 
We describe the main characteristics of the process, especially for forecasting purposes. These characteristics are the mean 
function (which by the structure of the model is a Generalized Brody curve, and thus particularly suitable for fitting and 
predicting). 
From the SDE Eq.(2) we proceed the transformation 𝑦(𝑡) = 𝑙𝑜𝑔(𝑥(𝑡)) and  apply the Itô formula, then we have the analytical 
expression : 

𝑦(𝑡) = 𝑦0 + 𝑝log (
1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
) −

𝜎2

2
(𝑡 − 𝑡0) + 𝜎(𝑤(𝑡) − 𝑤(𝑡0)) 

 
By substituting, we have the following expression: 
 

 
𝑥(𝑡) = 𝑥0 (

1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
)

𝑝

exp(𝜎(𝑤(𝑡) − 𝑤(𝑡0)) −
𝜎2

2
(𝑡 − 𝑡0)), 𝑡 ≥ 0 

(3) 

 

2.3 Distribution of the process 
Since for  s < t, the variable y(t) ∣ y(s) = ys ∼ 𝒩[g(s, t, xs), σ

2(t − s)], consiquently, x(t) ∣ x(s) = xs ∼ Λ[g(s, t, xs), σ
2(t −

s)]  with  g(s, t, xs) = log(xs) + plog (
1−ae−bt

1−ae−bs
) −

σ2

2
(t − s).  Then, the transition probability density function (TPDF) of the 

process is :  
 

 

𝑓(𝑥, 𝑡 ∣ 𝑦, 𝑠) =
1

𝑥√2𝜋𝜎2(𝑡 − 𝑠)
exp

(

 
 
−
[log (

𝑥
𝑦
) − 𝑝log (

1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑠
) +

𝜎2

2
(𝑡 − 𝑠)]

2

2𝜎2(𝑡 − 𝑠)

)

 
 

 

 

(4) 

 

which corresponds to a lognormal distribution, that is : 
 

𝑥(𝑡) ∣ 𝑥(𝑠) = 𝑦 ∼∧ [log(𝑦) + 𝑝log (
1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑠
) −

𝜎2

2
(𝑡 − 𝑠), 𝜎2(𝑡 − 𝑠)] 

 
2.4 Moments of the process  
By using the propreties of the lognormal distribution, that the r-th conditional moment of the process is expressed by : 

𝔼[𝑥𝑟(𝑡)|𝑥(𝑠) = 𝑥𝑠] = exp(𝑟𝑔(𝑠, 𝑡, 𝑥𝑠) +
𝑟2𝜎2

2
(𝑡 − 𝑠))

= 𝑥𝑠
𝑟 (
1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑠
)

𝑝𝑟

𝑒−
𝑟
2
(1−𝑟)𝜎2(𝑡−𝑠).

 

 
In short, by considering the case 𝑟 = 1, the conditional trend function (CTF) of the process is given by: 
 

 
𝔼[𝑥(𝑡) ∣ 𝑥(𝑠) = 𝑥𝑠] = 𝑥𝑠 (

1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
)

𝑃

, 𝑡 > 𝑠 

 

(5) 

 

In addition, taking into account the initial condition𝑃[𝑥(𝑡0) = 𝑥0] = 1, the trend function (TF) of the process is given by: 
 

 
𝔼[𝑥(𝑡)] = 𝑥0 (

1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
)

𝑃

, 𝑡 > 𝑡0 
(6) 
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- In absence of white noise (i.e.  𝜎 = 0) , by a simple integration, the solution of the ODE associated to the SDE Eq.(2) is 

𝑥(𝑡) = 𝑘(1 − 𝑎𝑒−𝑏𝑡)𝑝 , which is proportional to generalized Brody curve curve Eq.(1) . 
- Otherwise, the TF given in Eq.(6) is proportional to generalized Goel-Okumoto curve curve. 

In addition we can obtain the quantile function where 𝑧𝛼 is the 𝛼 -quantile of a standard normal. 
 

 
𝑃𝛼(𝑡) = 𝑥0 (

1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
)

𝑃

exp{−
𝜎2

2
(𝑡 − 𝑡0) + 𝑧𝛼𝜎√𝑡 − 𝑡0} 

(7) 

 

. Estimation of parameters 
Since we have the explicit expression of the tpdf, we can estimate the parameters 𝑝, 𝑏, 𝑎 and 𝜎2 by employing the maximum 
likelihood method. Let us consider a discrete sampling of the process 𝑥𝑡1 , 𝑥𝑡2 , … , 𝑥𝑡𝑛   at the instants 𝑡1, 𝑡2, … , 𝑡𝑛. In addition, we 

assume that 𝑡𝑖 − 𝑡𝑖−1 = ℎ, for 𝑖 = 2, … , 𝑛  with ℎ a constant. We use the abbreviation 𝑥𝑡𝑖 = 𝑥𝑖  Then, by assuming the initial 

condition ℙ[𝑥(𝑡1) = 𝑥1] = 1, the associated likelihood function is obtained, from Eq.(4), as follow:  

𝕃(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑎, 𝑏, 𝑝, 𝜎
2) =∏𝑓(𝑥𝑖 , 𝑡𝑖 ∣ 𝑥𝑖−1, 𝑡𝑖−1)

𝑛

𝑖=2

. 

𝕃(𝑎, 𝑏, 𝑝, 𝜎2) =∏𝑓( 𝑥𝑖 , 𝑡𝑖 ∣∣ 𝑥𝑖 − 1, 𝑡𝑖 − 1 )

𝑛

𝑖=2

=
1

𝑥𝑗√2𝜋𝜎
2(𝑡𝑖 − 𝑡𝑖−1)

× exp

(

 
 
−
1

2

[log (
𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑖−1
) +

𝜎2

2
(𝑡𝑖 − 𝑡𝑖−1)]

2

(𝑡𝑖 − 𝑡𝑖−1)𝜎
2

)

 
 

 

To simplify the computational aspect of the above function, we use the log-likelihood function:  
 

 
log 𝕃(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑎, 𝑏, 𝑝, 𝜎

2) = −
𝑛 − 1

2
log(2𝜋ℎ) −

𝑛 − 1

2
log 𝜎2 −∑log 𝑥𝑖

𝑛

𝑖=2

−
1

2ℎ𝜎2
∑[log (

𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
) +

𝜎2

2
ℎ]

2
𝑛

𝑖=2

 

 

(8) 

 

 

By differentiating the log-likelihood function with respect to 𝑝, 𝑏, 𝑎 and 𝜎2  with 𝑡𝑖 − 𝑡𝑖−1  and applying the maximum likelihood 
principe, we have : 
 

 

∂log(𝕃(𝑎, 𝑏, 𝑝, 𝜎2))

∂𝑝
=∑

log (
𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
) +

𝜎2

2
ℎ

ℎ

𝑛

𝑖=2

× log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
) = 0

 

 

(9) 
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∂log(𝕃(𝑎, 𝑏, 𝑝, 𝜎2))

∂𝑏
=∑

log (
𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
) +

𝜎2

2
ℎ

ℎ

𝑛

𝑖=2

×
𝑡𝑖−1𝑒

−𝑏𝑡𝑖−1−1(1 − 𝑎𝑒−𝑏𝑡𝑖) − 𝑡𝑖𝑒
−𝑏𝑡𝑖−1(1 − 𝑎𝑒−𝑏𝑡𝑖−1)

(1 − 𝑎𝑒−𝑏𝑡𝑖)(1 − 𝑎𝑒−𝑏𝑡𝑖−1)
= 0

 

 

(10) 

 

 

∂log(𝕃(𝑎, 𝑏, 𝑝, 𝜎2))

∂𝑎
=∑

log (
𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
) +

𝜎2

2
ℎ

ℎ

𝑛

𝑖=2

×
𝑒−𝑏𝑡𝑖−1−1(𝑒−𝑏𝑡𝑖)

(1 − 𝑎𝑒−𝑏𝑡𝑖)(1 − 𝑎𝑒−𝑏𝑡𝑖−1)
= 0

 

 

(11) 

 

 
∂log(𝕃(𝑎, 𝑏, 𝑝, 𝜎2))

∂𝜎2
= 𝜎4ℎ2(𝑛 − 1) + 4𝜎2ℎ(𝑛 − 1) − 4∑log2 (

𝑥𝑖
𝑥𝑖−1

)

𝑛

𝑖=2

−4𝑝2∑(log(
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
))

2
𝑛

𝑖=2

+ 8𝑝∑log (
1 − 𝑎𝑒−𝑏𝑡𝑖

1 − 𝑎𝑒−𝑏𝑡𝑖−1
)

𝑛

𝑖=2

log (
𝑥𝑖
𝑥𝑖−1

) = 0

 

 

(12) 

 

The estimation of the parameters requires the solution to a nonlinear equations, which can be difficult to achieve in this case, 
inthe other hand the likelihood equations obtained do not have an explicit solution. 
 
To overcome this problem, we suggest two methods : 
Simulated annealing (SA) method, and also Variable neighborhood search (VNS), which is increasingly being adopted. 
 
In Our case we will estimate the parameters from the log-likelihood equation  defined bellow  by the VNS method : 

 

𝑆(𝑎, 𝑏, 𝑝, 𝜎2) = −
𝑛 − 1

2
log 𝜎2 −

1

2ℎ𝜎2
∑[log (

𝑥𝑖
𝑥𝑖−1

) − 𝑝log (
1 − 𝑎𝑒−𝑏𝑡

1 − 𝑎𝑒−𝑏𝑡0
) +

𝜎2

2
ℎ]

2
𝑛

𝑖=2

. 

3.2 Aspects on optimization methods 
As previously mentioned, an alternative to solving these systems of equations would be the use of stochastic optimization 
procedures, such as Simulated Annealing (SA) or Variable Neighborhood Search (VNS). These algorithms are built to solve 
problems of the type min 𝑓(𝑤), with 𝑤 ∈ Ω, and in most cases are strongly recommended than classical numerical methods, 
since they impose less restrictions on the solution space and on the analytical properties of the objective function, In the context 
of maximum likelihood estimation for distributions, it has been used in works like those of Vera & Díaz-García (2008) and 
Román-Román & Torres-Ruiz (2015).  
 
3.2.1 Simulated Annealing (SA) Algorithm 
It is a metaheuristic local search algorithm introduced by Kirkpatrick et al. (1983)., inspired by  the annealing metallurgical 
process studied in mechanical statistics. 
In general the algorithm follows this procedure: 
Given a solution 𝜃 for an iteration and 𝑓(𝜃) the value of the target function, in the next iteration we select a new value 𝜃′ in 
an environment 𝑁𝜃 of 𝜃, and we evaluate the increase of the objective function Δ = 𝑓(𝜃′) − 𝑓(𝜃). if Δ ≤ 0, then 𝜃′ is selected 
as the new solution. Otherwise it could probably be accepted 𝑝 = exp(−Δ/T) with 𝑇called temperature. Thus, an internal 
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loop generates a Markov chain that will be as long as the number of loop iterations. At the end of the loop, the temperature 
gradually drops and a new Markov chain is generated. At first, the cooling process enables you to select solutions that worsen 
the objective function (at high temperatures), but as the temperature decreases this type of solutions are no longer tolerated. 
Consequently, the general application of the algorithm requires: 
- Selection of initial algorithm parameters (initial solution𝜃0, initial temperature 𝑇0, final temperature, number of iterations of 
the algorithm (length of the Markov chain, L) and cooling procedure), and a stopping condition. 
-  Application of the selection procedure for a new solution 𝐿times. 
-  Verification of the stop condition. If not verified, decrease the temperature and return to the previous step. 
 
3.2.2 Variable Neighborhood Search Algorithm (VNS) 
The basic concept of this algorithm, introduced by Mladenovi, & Hansen (1997)., is to explore multiple environments in the 
solution space when a local optimum is found through a local search method. The algorithm is applied in two distinct steps: 
The first is to determine a structure of environments in the solution space, 𝑁𝑘 , 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 and choose an initial solution 𝜃0 
 
The second phase we use a local search method to determine a new solution𝜃∗ in 𝑁𝑘(𝜃0).if 𝜃

∗ causes an improvement in the 
objective function, then 𝜃0 = 𝜃

∗ and the search is resumed from 𝑁1(𝜃0).In any other case the search continues with the 
following solution space 𝑁𝑘+1(𝜃0). 
The described procedure changes the solution spaces each time an improvement is carried out in the objective function. Thus 
there are variations of this algorithm, to adapt to the different ways in which the structure of environments can change when 
a local optimum has been attained, as well as various local search methods. In most applications of the Thesis we will use VND 
(Basic Variable Neighborhood Descent) and its application must take into account the structure of the environment and the 
local search method. 
 
3.2 Estimated TF and Estimated CTF  
From Zenha’s theorem in Zehna (1966), by replacing the parameters by their estimators in Eq.(5) and Eq.(6), the estimated 
conditional trend (ECTF) function can be obtained from: 
 

 

𝐸
^

[𝑥(𝑡)|𝑥(𝑠) = 𝑥𝑠] = 𝑥𝑠 (
1 − 𝑎

^
𝑒−𝑏

^
𝑡

1 − 𝑎
^
𝑒−𝑏

^
𝑠

)

𝑝
^

 

(13) 

 

 
and the estimated trend function (ETF) is given by: 
 

 

𝐸
^

[𝑥(𝑡)] = 𝑥𝑡0 (
1 − 𝑎

^
𝑒−𝑏

^
𝑡

1 − 𝑎
^
𝑒−𝑏

^
𝑡0

)

𝑝
^

 

 

(14) 

 

Furthermore, the estimated quantile is obtained by replacing the parameters by their estimators in Eq.(7). 
 

 

𝑃
^

𝛼(𝑡) = 𝑥0 (
1 − 𝑎

^
𝑒−𝑏

^
𝑡

1 − 𝑎
^
𝑒−𝑏

^
𝑡0

)

𝑝
^

exp{−
𝜎
^ 2

2
(𝑡 − 𝑡0) + 𝑧𝛼𝜎

^
√𝑡 − 𝑡0} 

 

(15) 

 

 
 
4. Simulation  
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We use the algorithm derived from the numerical solution of the (SDE) associated with the process, see Kloeden & Platen 
(2013), we simulate 20 trajectories of the process Eq.(3), where we consider 100 observations for every trajectory and from 

the following discretizing time interval  [𝑡1, 𝑇]: 𝑡𝑖 = 𝑡1 + (𝑖 − 1)ℎ, for  𝑖 = 2,… , 𝑁  where 𝑁  is an integer and ℎ =
𝑇−𝑡1

𝑁
> 0 is 

the discretization step. Figure 1 shows the process with the initial values : 𝑥0 = 5 , 𝑡0 = 0, 𝑎 = 0.6, 𝑏 = 0.2,  𝑝 = 2  and for 
each 𝜎 . 

 
Figure 1: Simulated sample path of Generalized Brody process and TF 

 
5. Application To real data  
The proposed model is applied to Life expectancy at birth, total (years) - Morocco from 1999 to 2018. 
 
Life expectancy at birth represents the number of years a newborn child would live if existing patterns of mortality at the time 
of its birth were to remainthe same throughout its life. 
Mortality rates for different age groups (infants, children, and adults) and overall mortality indicators (life expectancy at birth 
or survival to a given age) are important indicators of health status in a country. Because data on the occurence and prevalence 
of diseases are frequently unavailable, mortality rates are often used to classify vulnerable populations. And they are among 
the indicators most widely used to measure socioeconomic development across countries, see Bilas et al. (2014). 
 
Life expectancy at birth is calculated in a life span table which gives a snapshot of a population's mortality rate at a given time. 
It does not consequently represent the mortality pattern that a person actually encounters during his / her life, which can be 
measured in a cohort life table. High mortality in young age groups greatly decrease the life expectancy at birth. But if a person 
survives his/her childhood of high mortality, he/she may live much longer. For example, in a population with a life expectancy 
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at birth of 50, there may be few people dying at age 50. Due to high childhood mortality, life expectancy at birth may be low so 
that if a person survives his / her childhood, he / she may live longer than 50 years, see, Toson & Baker (2003). 
 
The data (see Table 1) were provided in World Bank’s database2. The method employed is composed of two phases: 
 

• Data from 1999–2016 are used to estimate the process parameters by Variable neighborhood search method and by 

using the R program, the following estimator values are obtained: 𝑎
^
= 0.88, 𝑏

^

= 0.219 , 𝑝
^
= 0.09 and 𝜎

^ 2 = 0.025 
 

• Data from 2017–2018 are explored to forecast the expected values of the process. The results in Table 1 resume the 
behaviour of the conditional and the non-conditional trend functions. 
The performance of the process for the short-term forcast with is represented in Figure 2 and Figure 3. 

 

Years 

 

x(t) 

 

                ETF 

 

          ECTF 

 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

          Forecast 

2017 

2018 

 

68.245 

68.684 

69.193 

69.769 

70.399 

71.067 

71.746 

72.403 

73.009 

73.546 

74.003 

74.382 

74.696 

74.97 

75.227 

75.477 

75.726 

75.974 

 

76.218 

76.453 

 

68.245 

69.15657 

69.94431 

70.63684 

71.25379 

71.80923 

72.31357 

72.7748 

73.19912 

73.59148 

73.95591 

74.29568 

74.61355 

74.91182 

75.19245 

75.45712 

75.70728 

75.94419 

 

76.16895 

76.38254 

 

68.245 

69.15657 

69.46636 

69.87809 

70.37837 

70.94777 

71.56614 

72.2036 

72.82515 

73.40035 

73.9102 

74.34299 

74.70024 

74.9946 

75.25085 

75.49179 

75.72722 

75.96297 

 

76.19885 

76.41252 

 

 
2 https://data.worldbank.org. World bank.life expectancy at birth, total (years) - morocco. 2019. 
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Table 1 : Life expectancy at birth, ETF and ECTF 

 
Figure 2 : Observed Data and Estimated TF with forcast (2017-2018) 

 
Figure 3 : Observed Data and Estimated CTF with forcast (2017-2018) 
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The values fitted with forcasts in accordance with the ETF are slightly better than ECTF, and to illustrate the performance of the 
model, the mean absolute percentage error (MAPE) and Symmetric mean absolute percentage error (SMAPE) are given by :  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑥(𝑡𝑖) − 𝑥
^
(𝑡𝑖)|

𝑥(𝑡𝑖)
∗ 100

𝑁

𝑖=1

 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑥(𝑡𝑖) − 𝑥
^
(𝑡𝑖)|

(|𝑥(𝑡𝑖)| + |𝑥
^
(𝑡𝑖)|)/2

∗ 100

𝑁

𝑖=1

 

 
The accuracy of the forecast can be judged from the MAPE and SMAPE results respectively 0.3% and 0.3%, which is less than 
10%, and so the forecast is highly accurate, see Goodwin & Lawton (1999). 
 
5. Conclusion  
In this study of the new Stochastic diffusion process based on Genaralized Brody curve, From a theoretical point of view, we 
conclude that this process which is of a non-homogeneous nature, is such that we can explicitly establish its probability 
transition density function in terms of a log-normal distribution in section 2.3 together with its moment functions, and in 
particular its trend functions in section 2.4. We can also establish parameter estimation results using the maximum likelihood 
method and optimization methods namely simulated annealing and variable neighborhood search, on the basis of discrete 
sampling. therefore, the diffusion process based on Genaralized Brody curve we described is followed by a set of statistical 
results that enable it to be applied to real data. 
 
The proposed model was applied to analyse the Life expectancy at birth in Morocco . This obtained an improved description 
of the time series considered  (1999-2016) and improved short-term forecasts (2017- 2018). From the results obtained (see 
Table 1,  Figure 2 and Figure 3), we conclude that when the real case considered is modeled by the diffusion process based on 
Generalized Brody curve  according to the estimation methodology described in Section 3, the fit and prediction achieved, 
based on ETF and ECTF, present a high degree of accuracy  following the the mean absolute percentage error (MAPE) and 
Symmetric mean absolute percentage error (SMAPE) measures. 
 
For further research and to enhance the capacity of the model, it would be interesting to define a stochastic Generalized brody 
diffusion process with exogenous factors into the drift, as has been done in the case of the Gompertz process with exogenous 
factors. In this respect, see Gutiérrez et al. (2006) This would enable us to study the factors affecting the evolution of the life 
expectancy of Morocco for example: GDP growth, human capital index and labor force. 
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