
Journal of Mathematics and Statistics Studies (JMSS) 
ISSN: 2709-4200 
Journal hompage: www. al-kindipublisher.com/index.php/jmss 

 
 

15 

Bayesian Test of Efficiency in a Two-arm Meta-analysis by the Savage-Dickey Density Ratio 
Hamimes Ahmed1* & Benamirouche Rachid 2   

1Phd student, National Higher School of statistics and applied economics, Tipaza,Algeria, Assistant Professor at the Faculty 
of Medicine, University of Constantine3, Algeria 
2Professor, National Higher School of statistics and applied economics, Tipaza, Algeria 
Corresponding Author: ABDU, Bello Magaji (PhD), E-mail: ahmedhamimes@yahoo.com 
 
ARTICLE INFORMATION        ABSTRACT 
 
Received: October 15, 2020 
Accepted: December 01, 2020 
Volume: 1 
Issue: 2 
 

 
Meta-analysis offers a rational and useful way of dealing with a number of practices 
with difficulties; affects anyone trying to make sense of the search for efficiency. 
The relationship with the bayes factor constitutes an important tool in the 
detection of efficacy, through this factor we find a decision scale related to the 
importance of the treatment. In this contribution, the Savage-Dickey density ratio 
(Dickey, 1971, Dickey & Lientz, 1970) is used in the two-armed meta-analysis. The 
advantage of this method is the possibility of implementing the test with Monte 
Carlo sampling by Markov Chains. 
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1. Introduction 1 
In making a decision, the doctor (practitioner or researcher) is often confronted with a multiplicity of information. When 
choosing a therapy for a disease, he often has the results of many contradictory therapeutic trials. Before putting this 
information into practice, he must sort and synthesize it. The meta-analysis technique makes it possible to agglomerate, 
under certain conditions and hypotheses, different test data relating to identical treatments to answer a question asked. The 
aim of systematic reviews is to present a balanced and unbiased synthesis of current research, allowing decisions on efficacy 
to be based on all relevant studies of adequate quality. Meta-analysis This is a systematic technique, as it involves as 
exhaustive a search as possible of all published and unpublished trials. It is quantified because it is based on statistical 
calculations allowing a precise estimate of the size of a common effect. Meta-analysis is a systematic approach summarizing 
the findings of a collection of independently conducted studies on a specific research problem. In Meta-analysis, statistical 
analyzes are performed on the published results of empirical studies on a specific research question, in many medical 
specialties it is common to find that several trials have attempted to answer similar questions on the clinical efficacy; for 
example: Does the new treatment confer significant advantages over conventional treatment? Often many of the individual 
tests will fail to show a difference; statistically significant between the two treatments. However, when the results of studies 
are aggregated using appropriate techniques (meta-analysis), significant treatment benefits can be shown. A good example of 
this is a retrospective review of the evidence for the effectiveness of "thombolytic" therapy for the prevention of myocardial 
infarction. The study showed that the meta-analysis was performed at an early stage, it would have demonstrated the 
benefits of thombolytic therapy. Meta-analyzes are now a hallmark of evidence-based medicine.    In meta-analysis 
methodologies, so-called fixed-effect (or common-effect model) methods allow data from several studies to be "pooled" by 
assuming a common fixed effect for all studies. This method does not assume the existence of variability in the effect studied 
between studies. In contrast, random-effects meta-analysis techniques take into account heterogeneity between studies on 
the same parameter. 
 
In a term, the p-value is ubiquitous. But just because a metric is ubiquitous doesn't automatically mean it's the best metric. 
Alternative statistical methods have long been discussed (e.g., Edwards, Lindman and Savage, 1963), and there has recently 
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been a growing trend towards alternative analyzes that overcome some shortcomings of null hypothesis significance tests 
(NHST) and p- values (Dienes, 2011; Gallistel, 2009; Johnson, 2013; Nuzzo, 2014). Bayesian methods in particular, and Bayes 
variables, have been proposed as an excellent alternative (see Wagenmakers, 2007 for a detailed review of this alternative), 
in the same vein as Masson (2011). Bayesian statistics have undergone significant progress over the past thirty years, with the 
development of computational methods and iterative algorithms with Markovian properties that make it possible to 
overcome complexity obstacles.The Bayesian method makes it possible to use all the information available (both past and 
present) for a given technology. In addition, the Bayesian approach is particularly interesting in situations where the number 
of subjects is low. Finally, by using informative a priori information, it can reduce the number of staff and thus reduce the 
time and resources required for a clinical trial. The concept of Bayes differs from the classical concept whose meaning where 
the parameter is a random variable whose behavior is assumed to be known, by associating it with a probability distribution 
on the space 𝛩 called a priori distribution and noted 𝜋 (𝜃) describes this that we know and what we do not know before 
observing 𝑋, through this design the statistical analysis makes it possible to consider all the qualitative and quantitative 
information on the uncertainty in the model. Then, if we use Bayes' rule which allows to reverse the probabilities, we can 
deduce the a posteriori distribution 𝜋 (𝜃 ⁄ 𝑥) which allows us to construct inferential procedures in the most natural way 
possible, which also explains the persistence of this paradigm, against all odds for 250 years. 
 
From a statistical point of view, the objective is to make the best use of the data available in the meta-analysis. There are 
analytical instruments and statistical tests available to determine the effect of bias and methods to assess the sensitivity of 
bias effects (Rothstein, Sutton et al. 2005). A number of statistical methods have been proposed to detect bias in a meta-
analysis (Sterne, Sutton et al. 2011). Most of them consistently measure the degree of skewness in the funnel diagram as an 
indication of the impact of small studies, i.e. the propensity of small studies to give larger estimates of the effect. treatment, 
regardless of the reasons for this effect (Begg and Mazumdar 1994; Egger, Davey Smith et al. 1997; Macaskill, Walter et al. 
2001; Schwarzer, Antes et al. 2002; Harbord, Egger et al. 2006; Peters, Sutton et al. 2006). In addition, several approaches 
have been developed to assess the sensitivity of results to bias (Sutton, Song et al., 2000). There is a distinction between 
selection models, the so-called “cut and substitute” approach (in English, trim and fill), and approaches based on meta-
regression. Briefly, weighting functions are used in selection models to model the selection process for the trial (Iyengar and 
Greenhouse 1988; Hedges 1992; Vevea and Hedges 1995; Givens, Smith et al. 1997; Silliman 1997; Vevea and Woods 2005; 
Rufibach 2011). 
 
In this article the relationship with bayes factor is used in the detection of the efficacy of treatments in clinical trials 
performed with a two-arm (two-treatment) meta-analysis. 
 
From this factor it is possible to directly and accurately measure the relationship between two treatments in terms of efficacy 
and according to a decision scale and to overcome the problems of comparison based on classical methods. In this 
contribution we use the Savage-Dickey density ratio (Dickey, 1971, Dickey & Lientz, 1970). The advantage of this method is 
the possibility of implementing the test with Monte Carlo sampling by Markov Chains. 
 
2. The Bayesian approach in statistics 
Bayesian statistical analysis makes it possible to combine several sources of information on uncertainty in the model, also it 
provides results of interpretation that are more direct (less complicated) and richer than those of classical statistics, this 
approach respects the principle likelihood which means that all the information from a data set is contained in the likelihood 
function. 
      A posteriori distribution is defined by  

                   𝜋(𝜃 𝑥⁄ ) =
𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)

∫ 𝑓(𝑥 𝜃⁄ )
𝛩

× 𝜋(𝜃)𝑑𝜃
=     

𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)

𝑚(𝑥)
         (1) 

This a posteriori distribution is the combination of: 

• 𝑓(𝑥 𝜃⁄ )the density function of x knowing the value of the random variable 𝜃. 

• 𝜋(𝜃)models the density function a priori on 𝜃. 

• 𝑚(𝑥) the marginal distribution of 𝑥. 

•  
Expression (1) represents what is known about the parameter considering the observed data; it is also the update of 
𝜋 (𝜃) after observing our sample. 
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Once we have the data, the quantity 𝑚 (𝑥) is a normalization constant which guarantees that π (θ⁄x) is indeed a probability 
distribution. We can write : 

                                    𝜋(𝜃 𝑥⁄ ) ∝ 𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)                                          (2) 
Expression (2) shows that Bayesian inference satisfies the likelihood principle: a posteriori, the information from the data 
comes exclusively from the likelihood 𝑓 (𝑥 ⁄ 𝜃) (see Begin, J .F. (2010)) .Un estimateur 𝛿∗(𝑥)est un estimateur de Bayes sous 
le coût 𝐿(𝜃, 𝛿) s’il minimise le risque bayésien c’est-à-dire : 
 

           𝛿∗ = 𝑎𝑟𝑔 min
𝛿

∫ ∫ 𝐿

𝜒

(𝜃, 𝛿(𝑥)) 𝑓(𝑥 𝜃⁄ )𝜋(𝜃)𝑑𝑥 𝑑𝜃                         (3)

𝛩

 

For the cost 𝐿2 (the quadratic loss) defined by 𝐿(𝜃, 𝛿) = (𝜃 − 𝛿)2, the expectation of the posterior distribution is a Bayes 
estimator: 
 

     �̂� = 𝐸(𝜃 𝑋⁄ ) = ∫ 𝜃 𝜋(𝜃 𝑥⁄ )

𝛩

𝑑𝜃 =
∫ 𝜃𝑓(𝑥 𝜃⁄ )

𝛩
× 𝜋(𝜃)𝑑𝜃

∫ 𝑓(𝑥 𝜃⁄ )
𝛩

× 𝜋(𝜃)𝑑𝜃
                 (4) 

If no specific loss function is available, estimator (4) is often used as a default estimator, although alternative solutions are 
also available. For example, The posterior maximum estimator (the posterior mode) defined by: 
 

                       �̂� = 𝑎𝑟𝑔 max
𝜃

𝜋(𝜃 𝑥⁄ ) = 𝑎𝑟𝑔 max
𝜃

𝑓(𝑥 𝜃⁄ )𝜋(𝜃)                (5) 

We can calculate the posterior distribution directly in the simple case or we do the calculation by MCMC simulation in the 
case where the calculation of the integral is very complex. 
 
In this article we use this approach in the framework of multiprocessing meta-analysis, we mainly rely on Gibbs sampling as a 
tool for solving complex posterior equations. The important role of the integration of published trial synthesis tools via multi-
treatment meta-analysis is investigated in three treatments plus placebo for people with bipolar disorder. The Bayesian 
approach was first described and is the most frequently used in meta-analysis methods (Higgins and Whitehead 1996; 
Whitehead 2002; Lu and Ades 2004). This approach and within this framework is based on the calculation of the posterior 
distributions of all the parameters on the stochastic algorithm MCMC (Gibbs sampling algorithm). 
 
3. The Bayesian approach to meta-analysis 
The Bayesian random effects model of Smith et al. (1995) developed for binary data, on trials comparing two types of 
treatment: 𝑇 (treatment) and 𝐶 (control). The principle is to model the number of successes in the test (noted 𝑟𝑖) by a 
binomial distribution of parameters (𝑛𝑖  ;  𝑝𝑖) (respectively number of patients and probability of success in test 𝑖; with by 
exponent 𝑇 or 𝐶 according to whether it is the experimental or control arm):   

𝑟𝑖
𝑇~𝑏𝑖𝑛(𝑝𝑖

𝑇 , 𝑛𝑖
𝑇) 

𝑟𝑖
𝑐~𝑏𝑖𝑛(𝑝𝑖

𝑐 , 𝑛𝑖
𝑐) 

We then ask: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖
𝑇) = 𝜇𝑖 + 𝛿𝑖 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖
𝑐) = 𝜇𝑖 

𝛿𝑖~𝒩(𝛿; 𝜏2) 
Or 
𝜇𝑖  : the mean of the event rate of trial i in the logit scale. 
and 

𝛿𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖
𝑇) − 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖

𝐶) = 𝑙𝑜𝑔𝑂𝑅𝑖
𝑇𝐶  

LogORs approximately follow a normal distribution. We can therefore write that these 𝛿𝑖 follow a normal distribution 
centered on the true difference 𝛿 of the effect of the 𝑇 and 𝐶 treatments in the logit scale. 
 
With the advent of MCMC techniques for analyzing the posterior distribution of complex hierarchical models, the a priori 
information is presented in a more complex way, since there are several levels of parameters. One such example is taken 
from volume 1 of the support part of WinBUGS version 1.4 and is based on a review by Carlin (1992), who considered a 
Bayesian approach to meta-analysis, and provides the following example of 22 trials of beta-blockers to prevent death from 
myocardial infarction (Table 1). Here are the program statements (See A1 in the appendices): 
Openbugs code (1)      
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For each trial, a different probability of success is given for the control and treatment classes, and the probabilities are 
converted to the logit scale, then the logit parameters are given standard, non-informative priors. Thus, the 𝑚 (𝑖) receive 
independent normal distributions with a mean of 0.0 and a precision of 0.00001. The 𝑑 (𝑖) has a normal distribution (delta, 
tau) and the delta has a normal distribution (0.0, .000001). In this example, three parameter rates are involved. The 
performance probabilities, the logit parameters, namely the 𝑚 (𝑖) and 𝑑 (𝑖), and finally the usual distribution (0.0, .000001) 
for delta at the third point, which is the average of the parameters of the second level d. 
 
Another third level parameter is the tau precision of the delta parameters, which receives an uninformative gamma 
distribution (0.001, 0.001). The parameter tau is the variance vice versa. The most interesting parameter is the delta, because 
there is no difference in mortality between the control and treated groups if it is negative. In the discussion of Gibbs 
sampling, we'll come back to this example. 
 
4. Bayesian test of effectiveness of a two-armed meta-analysis                
     We pose the following hypothesis test 

𝐻0: 𝜃 ∈ 𝛩0       , 𝐻0: 𝜃 ∈ 𝛩0 
 
If 𝛩0 and 𝛩1 are the same dimension, the most popular method in Bayesian statistics is to use the odds ratio a posteriori. This 
method poses some problems, when the prior distribution 𝜋(𝛩𝑖)  is improper the a posteriori distributions are undefined, so 
in the proper case it is possible that these distributions are chosen incorrectly. Moreover, the automatic choice of weights  𝑎0 
and 𝑎1 which is not based on utility considerations can be a drawback in Bayesian decision procedures. This last point is at the 
origin of the Bayes factor and which in their objective is to limit the importance of the a priori choice of the parameters a_0 
and a_1. Consequently, the Bayes factor is the posterior odds ratio on the a priori odds ratio, defined by: 
 
 

𝐵𝐹01 =  
𝑃(𝜃 ∈ 𝛩0 𝑥⁄ )

𝑃(𝜃 ∈ 𝛩1 𝑥⁄ )

𝜋(𝜃 ∈ 𝛩0)

𝜋(𝜃 ∈ 𝛩1)
⁄  (6) 

     In the discrete case 

𝐵01 =
 𝑜𝑑𝑑𝑠 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

 𝑜𝑑𝑑𝑠 𝑎 𝑝𝑟𝑖𝑜𝑟
=

𝛼0 𝛼1⁄

𝜋0 𝜋1⁄
=

𝑓(𝑥 𝜃0⁄ )

𝑓(𝑥 𝜃1⁄ )
, 

     In the continuous case, the Bayes factor of 𝐻0 relating to 𝐻1is defined by 
 

𝐵𝐹01 =
∫ 𝑓(𝑥/𝜃)𝜋0(𝜃)𝑑𝜃

𝛩0

∫ 𝑓(𝑥/𝜃)𝜋1(𝜃)𝑑𝜃
𝛩1

 (7) 

 
Jeffreys developed an "absolute" scale to assess the degree of certainty in favor or against 𝐻0 provided by the data, in the 
absence of a real decision framework. According to Raftery (1995), the Bayes factor can be interpreted as follows: 
 
 

model 
{ 
for( i in 1 : N ) { 
rc[i] ~ dbin(pc[i], nc[i]) 
rt[i] ~ dbin(pt[i], nt[i]) 
logit(pc[i]) <- m[i] 
logit(pt[i]) <- m[i] + d[i]  
m[i] ~ dnorm(0.0,1.0E-5) 
d[i] ~ dnorm(delta, tau) 
} 
delta ~ dnorm(0.0,1.0E-6) 
tau ~ dgamma(0.001,0.001) 
delta.new ~ dnorm(d, tau) 
sigma <- 1 / sqrt(tau) 
} 
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  Table 1: the scale of interpretation of the bayes factor. 
 

Interpretation 𝑩𝑨𝑩 𝒍𝒐𝒈(𝑩𝑨𝑩) 𝑷(𝓜𝑨 𝑫⁄ ) 

ℳ𝐵 decisively acceptable. < 0.0067 < −5 < −0.1 

ℳ𝐵 is highly acceptable. 0.0067 𝑡𝑜 0.05 −5 𝑡𝑜 − 3 
 

0.01 𝑡𝑜 0.05 

ℳ𝐵 is substantially acceptable. 0.05 𝑡𝑜 0.33 −3 𝑡𝑜 − 1 0.025 𝑡𝑜 0.25 

ℳ𝐵 is weakly acceptable. 0.33 𝑡𝑜 1 −1 𝑡𝑜 0 0.25 𝑡𝑜  0.5 

No model is accepted 1 0 0.5 

ℳ𝐴 is weakly acceptable. 1 𝑡𝑜 3 0 𝑡𝑜 1 0.5 𝑡𝑜 0.75 

ℳ𝐴 is substantially acceptable. 3 𝑡𝑜 20 1 𝑡𝑜 3 0.75 𝑡𝑜 0.95 

ℳ𝐴 is highly acceptable. 20 𝑡𝑜 150 3 𝑡𝑜 5 0.95 𝑡𝑜 0.99 

ℳ𝐴 decisively acceptable. > 150 > 5 > 0.99 

 
The Savage - Dickey density ratio (Dickey and Lientz, 1970) provides a conceptually simple approach to calculate the Bayes 
factor. The idea of the Savage-Dickey ratio (Dickey, 1971) is to use only the posterior distribution under the alternative 
hypothesis. According to this method the Bayes factor can be obtained by dividing the height of the posterior distribution of 
𝜃 by the height of the a priori distribution of 𝜃, at the point of interest. We set 𝑥 the observed data and θ the parameter of 
interest. Also we set two models ℳ0, ℳ1 denote respectively the restrictions 𝜃 =  𝜃0  and 𝜃 =  𝜃1, where 𝜃0 and 𝜃1 are 
each points. If the marginal probability of the data under 𝐻0can be expressed as a restriction of the model ℳ1 as follows 

𝑓( 𝑥 𝜃 =   𝜃0, ℳ1⁄ ), 
we can use the Savage-Dickey method and we write 
 

𝐵01 =
𝑓(𝑥 ℳ0⁄ )

𝑓(𝑥 ℳ1⁄ )
=

𝑓( 𝑥 𝜃 =   𝜃0, ℳ1⁄ )

𝑓(𝑥 ℳ1⁄ )
 (8) 

we divide the two ratios on the function 𝑓(ℳ1), we find that 
 

𝐵01 =
𝑓( 𝑥 𝜃 =  𝜃0⁄ )

𝑓(𝑥)
 (9) 

from the bayes rule we know that 
 

𝑓( 𝑥 𝜃 =   𝜃0⁄ ) =
𝑓( 𝜃 =  𝜃0 𝑥⁄ )𝑓(𝑥)

𝑓(𝜃 =   𝜃0)
 (10) 

we replace (9) in (10) and we find 
 

𝐵01 =
𝑓( 𝑥 𝜃 =   𝜃0⁄ )

𝑓(𝑥)
=

𝑓( 𝜃 =   𝜃0 𝑥⁄ )

𝑓(𝜃 =   𝜃0)
 (11) 

In this part we use the random effects model for the set of two equations: 

𝑟𝑖
𝑇~𝑏𝑖𝑛(𝑝𝑖

𝑇 , 𝑛𝑖
𝑇) 

𝑟𝑖
𝑐~𝑏𝑖𝑛(𝑝𝑖

𝑐 , 𝑛𝑖
𝑐) 

we use the probit transformation represents the quantile function associated with the standard normal distribution. 
Mathematically the probit transformation is the inverse cumulative distribution function of the standard normal distribution. 
We use the probit scale as Figure (1) goes up, to determine the probabilities 𝜑1 and 𝜑2 for the means of 𝑝1 et 𝑝2, respectively 
and as follows 
 𝛷−1(𝜑𝑖

𝑐) = 𝑝𝑖
𝑐  

(12) 

and 
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   𝛷−1(𝜑𝑖
𝑇) = 𝑝𝑖

𝑇 
(13) 

 
Figure 1: The probit transformation. 

therefore: 

𝜑𝑖
𝑇 = 𝜑𝑖

𝑐 + 𝛼𝑖  
Log odds ratio of this study is 𝛼𝑖 . 
and  

𝛼𝑖~𝒩(𝜇𝛼 , 1 𝜎𝛼
2⁄ ) 

𝜇𝛼 and the true effects of the treatment in a random effects model. For programming reasons, only one distribution is used 

for the parameters  𝜑𝑖
𝑇 , 𝜑𝑖

𝑐.  
and 

𝜑𝑖
𝑐~𝒩(𝜇, 1 𝜎2⁄ ) 

we pose  
𝜇~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1)𝐼(0,∞) 

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) 
      For the Dicky-Savage test and in a similar way to the frequentist test, it is possible to parameterize by 𝛿𝑡𝑒𝑠𝑡 =  𝜇𝛼/ 𝜎𝛼

2. In 
order to generalize the test, we assume a prior distribution for δ represents the standardized effect size. Rouder et al. (2009) 
used Cauchy's distribution (0.1) for the parameter 𝛿. The Cauchy distribution (see figure 2) used is a student distribution with 
1 degree of freedom. The size of the effect is a quantity without proportions, which makes it reasonably straightforward to 
describe an earlier theory. The Cauchy distribution (i.e. a student distribution with one degree of freedom) and the regular 
normal distribution (e.g. Gönen, Johnson, Lu, & Westfall, 2005; Rouder et al., 2009) are the appropriate default choices for 
effect size priors. As it contains as much information as a single observation (Kass & Wasserman, 1995), the latter a priori is 
known under the name of "unit information prior". The normative normal distribution is the prior distribution of impact size 
that we will use in this article. We pose 

𝜇𝛼 = 𝛿𝑡𝑒𝑠𝑡 ∗ 𝜎𝛼
2 

and 
𝛿𝑡𝑒𝑠𝑡~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1)𝐼(0,∞) 

𝜎𝛼
2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) 

we define 𝛿𝑡𝑒𝑠𝑡, as the measure or scale of difference between the parameters of binomial distributions, respectively. We 
write the test this way 

𝐻0 ∶  𝛿𝑡𝑒𝑠𝑡 =  0, 
𝐻1 ∶   𝛿𝑡𝑒𝑠𝑡  ≠  0, 

Mathematically, the Savage-Dickey density ratio is written as 
 

𝐵𝐹01 =
𝑓(𝛿𝑡𝑒𝑠𝑡 = 0 𝒟, ℋ1⁄ )

𝑓(𝛿𝑡𝑒𝑠𝑡 = 0 ℋ1⁄ )
 (14) 

The general model is written this way: 

𝑟𝑖
𝑇~𝑏𝑖𝑛(𝑝𝑖

𝑇 , 𝑛𝑖
𝑇) 
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𝑟𝑖
𝑐~𝑏𝑖𝑛(𝑝𝑖

𝑐 , 𝑛𝑖
𝑐) 

𝛷−1(𝜑𝑖
𝑐) = 𝑝𝑖

𝑐  
   𝛷−1(𝜑𝑖

𝑇) = 𝑝𝑖
𝑇 

𝜑𝑖
𝑇 = 𝜑𝑖

𝑐 + 𝛼𝑖  
𝛼𝑖~𝒩(𝜇𝛼 , 1 𝜎𝛼

2⁄ ) 
𝜑𝑖

𝑐~𝒩(𝜇, 1 𝜎2⁄ ) 
𝜇~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1)𝐼(0,∞) 

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) 
𝜇𝛼 = 𝛿𝑡𝑒𝑠𝑡 ∗ 𝜎𝛼

2 
and 

𝛿𝑡𝑒𝑠𝑡~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1)𝐼(0,∞) 

𝜎𝛼
2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) 

4. Application 
The example of 22 beta-blocker trials is used to prevent mortality after myocardial infarction, see the following table: 
Table 2 : Results of  22 clinical  trials of  beta-blockers for reducing  mortality after myocardial infarction,  from  Yusuf  et  
al.(1985). 
  

Basic data (deaths/total) 

study number Treated Control 

1 3/38 3/39 

2 7/114 14/116 

3 5/69 11/93 

4 102/1533 127/1520 

5 28/355 27/365 

6 4/59 6/52 

7 98/945 152/939 

8 60/632 48/471 

9 25/278 37/282 

10 138/1916 188/1921 

11 64/873 52/583 

12 45/363 47/266 

13 9/291 16/293 

14 57/858 45/883 

15 25/154 31/213 

16 33/207 38/213 

17 28/251 12/122 

18 8/151 6/154 

19 6/174 3/134 

20 32/209 40/218 

21 27/391 43/364 

22 22/680 39/674 

 
Analyzes are run with 50,000 generated values of the posterior distribution of delta and sigma. The parameter delta is the 
mean of the parameters of 𝑑 (𝑖) as much as sigma is the standard deviation, and both parameters were given from the 
uninformative prior distributions. The characteristics of the a posteriori distribution of delta and tau are given in the following 
table (according to the OpenBUGS code (A.2)): 
 
Table 3 : the estimation of the delta and sigma parameters. 

 mean SD MC_error val2.5pc median val97.5pc 

delta -0.2502 0.06183 8.045E-4 -0.3694 -0.2508 -0.1268 

sigma 0.1147 0.06713 8.257E-4 0.02677 0.102 0.2743 
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The analyzes also generate the graph of the posterior density, for the graph of the posterior distribution of delta: Are there 
any effect treatments? The mass of the posterior distribution is to the left of zero where the lower point is -0.36, and the 
upper point is -0.1268 (see Figure (3)), so the posterior evidence suggests that delta is different to zero on scale, and B-
blockers a lower the mortality of a heart attack. 
 

 
Figure2 : The Kernel kernel estimator for the marginal delta density. 

 
Figure 3 : The trace of the posterior distribution for the parameters delta and sigma. 

In Figure 4, each color denotes an MCMC chain. The chains mix well: convergence is achieved. 
 
This time we estimate the model in code (A3) written in the form probit. Table (3) shows that the interval of the effect size 
parameter does not contain the value "0", so it is clear that β-blockers a lower heart attack mortality. 
 
Table 3: the estimate of the parameters delta.test (the size of the effect) and sigma. 
 

 mean sd MC_error val2.5pc median val97.5pc 

delta.test 1.161 0.509 0.006087 0.307 1.11 2.302 

sigma 1.587 0.2719 8.348E-4 1.159 1.552 2.218 

 

 
Figure 4 : The trace of the posterior distribution for the delta parameters. test and sigma. 
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In Figure 5, each color denotes an MCMC chain. The chains mix well: convergence is achieved. 
 
The Bayesian test of efficiency in a two-armed meta-analysis by the Savage-Dickey density ratio reinforces the results found 
previously. Sometimes we are not able to determine the test graphically or by the interval, so we need to know the exact 
relationship in the form of a scale to quantify the relationship. 
In equation (14), the Savage-Dickey density ratio is written as: 
 
 

𝐵𝐹01 =
𝑓(𝛿𝑡𝑒𝑠𝑡 = 0 𝒟, ℋ1⁄ )

𝑓(𝛿𝑡𝑒𝑠𝑡 = 0 ℋ1⁄ )
 (15) 

 
Figure 5: The distribution of 𝛿𝑡𝑒𝑠𝑡 and 𝛿𝑝𝑟𝑖𝑜𝑟 for calculate the ratio of Dickey – Savage. 

From equation (15), the Savage - Dickey density ratio (Dickey and Lientz, 1970) provides a conceptually simple approach to 
calculate the Bayes factor. The idea of the Savage-Dickey ratio (Dickey, 1971) is to use only the posterior distribution under 
the alternative hypothesis. According to this method, the Bayes factor can be obtained by dividing the height of the a 
posteriori distribution of the parameter of interest δ_test by the height of the a priori distribution of ^ prior at point "0". 
The Bayes factor and Dickey-Savage ratio is BF≃ (0.0068 / 1) = 0.0068, which means that the hypothesis that beta-blockers a 
lower the mortality of a heart attack is highly acceptable 
 
5. Conclusion 
In this article on the use of the bayes factor relationship in the identification of the effectiveness of clinical trial treatments 
conducted with a two-bras meta-analysis (two treatments). From this factor, the relationship between two treatments can be 
calculated explicitly and objectively in terms of efficacy and a decision-making scale and resolve comparative problems based 
on traditional methods. 
 
A Bayesian approach to test efficiency in a two-arm meta-analysis based on the Dickey method - Savage offers practical, 
simple and relatively easy solutions for the direct use of the results of Monte Carlo sampling by Markov chains the limit of 
this method is the number of arms used and the latter represents the future work. 
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Appendices 
A1. BUGS project definition 
BUGS is a software package for performing Bayesian inference using Gibbs Sampling. The project started in Cambridge in 
1989. BUGS made Bayesian analysis accessible to everyone using a laptop. Bayesian analysis could only be applied in the pre-
BUGS era in situations where solutions could be obtained in closed form in so-called conjugate analyzes, or by an ingenious 
but limited application of numerical integration methods. Therefore, BUGS has helped to educate academic and business 
communities about Bayesian modeling. 
 
A2. The OpenBUGS code 
model 
{ 

http://dx.doi.org/10.1177/1745691611406920
http://dx.doi.org/10.1037/h0044139
http://dx.doi.org/10.1073/pnas.1313476110
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for( i in 1 : N ) { 
rc[i] ~ dbin(pc[i], nc[i]) 
rt[i] ~ dbin(pt[i], nt[i]) 
logit(pc[i]) <- m[i] 
logit(pt[i]) <- m[i] + d[i]  
m[i] ~ dnorm(0.0,1.0E-5) 
d[i] ~ dnorm(delta, tau) 
} 
delta ~ dnorm(0.0,1.0E-6) 
tau ~ dgamma(0.001,0.001) 
sigma <- 1 / sqrt(tau) 
} 
 
list(rt = c(3,  7,  5,  102,  28, 4,  98,  60, 25, 138, 64, 45,  9, 57, 25, 33, 28, 8, 6, 32, 27, 22 ), 
nt = c(38, 114, 69, 1533, 355, 59, 945, 632, 278,1916, 873, 263, 291, 858, 154, 207, 251, 151, 174, 209, 391, 680),rc = c(3, 14, 
11, 127, 27, 6, 152, 48, 37, 188, 52, 47, 16, 45, 31, 38, 12, 6, 3, 40, 43, 39),nc = c(39, 116, 93, 1520, 365, 52, 939, 471, 282, 
1921, 583, 266, 293, 883, 147, 213, 122, 154, 134, 218, 364, 674), N = 22) 
list(delta = 0, tau=1, m = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
d = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))  
list(delta = 2, tau=0.1, m = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2),d = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2))  
A3. The OpenBUGS code 
model{ 
for (i in 1:N){ 
# Data 
rc[i] ~ dbin(pc[i], nc[i]) 
rt[i] ~ dbin(pt[i], nt[i]) 
# Probit Transformation 
pc[i] <- phi(phib[i]) 
pt[i] <- phi(phin[i]) 
phin[i] ~ dnorm(mu,lambda) 
alpha[i] ~ dnorm(mualpha,lambdaalpha) 
phib[i] <- phin[i]+alpha[i] 
} 
# Priors 
mu ~ dnorm(0,1)I(0,) 
sigma ~ dunif(0,10) 
lambda <- pow(sigma,-2) 
# Priming Effect 
sigmaalpha ~ dunif(0,10) 
lambdaalpha <- pow(sigmaalpha,-2) 
delta.test ~ dnorm(0,1)I(0,) 
mualpha <- delta.test*sigmaalpha 
# Sampling from Prior Distribution for Delta 
deltaprior ~ dnorm(0,1)I(0,) 
} 
list(rt = c(3,  7,  5,  102,  28, 4,  98,  60, 25, 138, 64, 45,  9, 57, 25, 33, 28, 8, 6, 32, 27, 22 ), 
nt = c(38, 114, 69, 1533, 355, 59, 945, 632, 278,1916, 873, 263, 291, 858, 154, 207, 251, 151, 174, 209, 391, 680),rc = c(3, 14, 
11, 127, 27, 6, 152, 48, 37, 188, 52, 47, 16, 45, 31, 38, 12, 6, 3, 40, 43, 39),nc = c(39, 116, 93, 1520, 365, 52, 939, 471, 282, 
1921, 583, 266, 293, 883, 147, 213, 122, 154, 134, 218, 364, 674), N = 22) 
list(delta.test = 0, deltaprior = 0, mu=2, sigma=3) 
list(delta.test = 0.5, deltaprior = 0.5, mu=1, sigma=1)  
 
 


