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| ABSTRACT 

This article presents a delayed non-autonomous eco-epidemiological prey-predator model with predator infection. The author 

considered incubation delay of infection in predator over-crowding among healthy species. The article contains the system 

solution’s existence, boundedness, and uniform persistence under certain conditions. The numerical simulation confirms 

analytical findings. The analysis of autonomous and non-autonomous models for the same incubation delays shows that the 

autonomous system leads stability to bifurcation while crossing the threshold value to incubation delay. However, the non-

autonomous model leads from stability to chaos while crossing threshold values. Finally, simulating the effect of healthy predator 

crowding shows that increasing healthy predator crowding helps to remove infection from the environment. 

| KEYWORDS 

Incubation delay, Periodic solutions, Chaos, Crowding  

| ARTICLE INFORMATION 

ACCEPTED: 01 January 2025                  PUBLISHED: 20 January 2025                      DOI: 10.32996/jmss.2025.6.1.1 

 

1. Introduction 

Eco-epidemiology is a rapidly evolving field that examines the interplay between ecological dynamics and infectious diseases, 

particularly through the lens of predator-prey interactions [16]. Understanding how infectious agents spread within these 

communities is essential for predicting and managing disease dynamics. The transmission of pathogens often occurs via prey 

species, which can significantly impact predator health and alter overall population dynamics [21]. This complexity necessitates 

sophisticated modeling approaches that accurately reflect these interactions [1]. Delayed differential equations have emerged as 

a powerful tool, enabling researchers to incorporate critical aspects such as incubation periods and seasonal variations into their 

models [2]. Yuan and Mohamad [23, 15] analyze population dynamics through delay differential equations, emphasizing their 

utility in understanding ecological interactions. Moreover, Kumar et al. [14] investigate the transmission dynamics of tooth cavities 

in humans, illustrating how mathematical models can address health-related issues across various contexts. 

In recent years, the role of incubation delays(the time between infection and the onset of 

infectiousness) has gained prominence in eco-epidemiological research [3]. Greenhalgh et.al. [8] emphasize the significance of 

these delays in determining infection persistence within populations. Their findings indicate that the timing of disease transmission 

relative to reproductive and ecological parameters can critically influence the stability and health of predator-prey systems. Such 

delays can impact oscillatory behavior and population stability [7], suggesting that the timing of infections may induce cyclical 

dynamics that either stabilize or destabilize populations. To enhance the realism of these models, researchers have increasingly 

incorporated time-varying parameters that reflect seasonal environmental shifts, such as periodic prey growth and fluctuating 

predation rates. For instance, [24] utilize delay models to examine the effects of Wolbachia on dengue spread in mosquitoes, 

highlighting the role of environmental factors in shaping disease dynamics. 
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Recent reviews have identified key principles that underlie successful eco-epidemiological models. [6, 19, 4, 22] provide a 

comprehensive overview of these principles, such as the utilization of logistic prey growth, bilinear incidence rates for disease 

transmission, and predator functional responses consistent with empirical observations. Furthermore, the understanding of stability 

within predator-prey dynamics has been enriched by studies such as those by [13] and [5]. These works investigate the implications 

of disease presence in predator populations, shedding light on how these dynamics influence overall ecosystem health. 

The proposed study aims to present a three-compartment non-autonomous eco- epidemiological model that incorporates 

incubation delay of disease transmission in predators and crowding among healthy species. The research reveals that for the same 

value of incubation delay; the non-autonomous model exhibits chaos instead of bifurcation. 

Also, the healthy predator overcrowding helps to remove infection from the environment. 

The flow of the research paper is as follows: The section 2 presents a non-autonomous eco- epidemic model, including initial 

conditions and parameter descriptions. Section 3 is the preliminaries section with two subsections. The subsection 3.1 tells about 

the existence and 

uniqueness of the system’s solution (1) whereas the subsection 3.2 shows the permanence and uniform persistence of the system 

(1). In section 4, we have investigated the non-autonomous system (1) and the corresponding autonomous model numerically to 

verify our analysis. Section 5 talks about the analytical and numerical results and their real-world understanding. 

2. Formation of mathematical model: The present section contains a delayed non-autonomous prey-predator model 

incorporating healthy prey, diseased prey, and an infected predator with population densities 𝑺(𝒕), 𝑷(𝒕), and 𝑰(𝒕), respectively. All 

three populations lie within the considered region for time 𝒕 > 𝟎. The parameter description of the proposed model is: 𝒓 is the 

logistic growth rate of the prey species, and 𝝀 is the disease contact rate among predators. Here, we consider that the spread of 

disease follows the linear functional response 𝝀𝑺(𝒕)𝑷(𝒕). The fatality rate of prey 𝜼𝟏 and the mortality rates of healthy and infected 

predators are 𝜼𝟐 and 𝜼𝟑 respectively. The healthy and infected predator hunts prey at the rate of 𝜶𝟏 and 𝜶𝟐, respectively. The 

conversion rate of prey to the healthy predator and infected predator is 𝜸𝟏 and 𝜸𝟐, respectively. Finally, 𝒅𝟏 and 𝒅𝟐 are crowding 

coefficients of prey and healthy predator. Here, we didn’t consider the crowding of an infected predator as it is incapable move 

another location in search of food. All the earlier assumptions lead to the underlying non-autonomous model. 

 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑏(𝑡)𝑆(𝑡) − 𝛼1(𝑡)𝑃(𝑡)𝑆(𝑡) − 𝛼2(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝜂1(𝑡)𝑆(𝑡) − 𝑑1𝑆

2(𝑡),

𝑑𝑃(𝑡)

𝑑𝑡
= 𝛾1(𝑡)𝑆(𝑡)𝑃(𝑡) − 𝜆(𝑡)𝑃(𝑡)𝐼(𝑡) − 𝑑2(𝑡)𝑃

2(𝑡) − 𝜂2(𝑡)𝑃(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜆(𝑡)𝑃(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) + 𝛾2(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝜂3(𝑡)𝐼(𝑡).

}
 
 

 
 

 (1) 

The author considered all system parameters positive, real, bounded, and continuous. All the 

model parameters are time-dependent because these parameters are affected by seasonal factors like air pressure, rain, 

temperature, etc. The author shows seasonality in the model by taking all model parameters as sinusoidal functional response 

presented in 12. 

Further, since an infected individual takes time to become infectious, there is a time lag between infection and the beginning of 

infectiousness called incubation delay. the author incorporate time 𝜏 (1). Where 𝜏 is the discrete-time delay. Consider 𝚥: [−𝜏, 0] →

ℝ3 as a Banach space of continuous functions, denoted by ℂ, equipped with the norm defined as: 

∥ 𝚥 ∥= sup−𝜏≤𝜑≤0{|𝚥1(𝜑)|, |𝚥2(𝜑)|, |𝚥3(𝜑)|}, 

Where 𝚥 = (𝚥1, 𝚥2, 𝚥3) and the initial conditions of system (1) are given as 𝑆(𝜑) = 𝚥1(𝜑), 𝑃(𝜑) = 𝚥2(𝜑), 𝐼(𝜑) = 𝚥3(𝜑) , 𝜑 ∈ [−𝜏, 0]. 

Consider 𝚥 = (𝚥1, 𝚥2, 𝚥3) ∈ ℂ([−𝜏, 0],ℝ
3) as the initial function of continuous functions mapping the interval [−𝜏, 0] into ℝ3. For 

biological premises, the initial functions are considered to be: 

𝚥𝑖(𝜑) ≥ 0,𝜑 ∈ [−𝜏, 0], 𝑖 = 1,2,3. (2) 

 

3. Preliminaries:The following subsections demonstrate fundamental results such as the permanence, existence, and uniqueness 

of the solution to model (𝟏). 

3.1 Existence and uniqueness: The system (𝟏) possesses a unique solution over the interval [−𝝉,∞) for the initial conditions (𝟐). 
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Proof. We know that the right hand side of the system (1) is locally Lipschitzian and completely continuous over ℂ, has a unique 

solution (S(t), P(t), I(t)) of model (1) satisfying initial conditions (2) on [0, α) where 0 < α ≤ +∞. 

Now, referring to the first equation of model (1), we can observe that: 

𝑆(𝑡) = 𝑆(0)   exp∫
𝑡

0

[𝑏(𝜐) − 𝛼1(𝜐)𝑃(𝜐) − 𝛼2(𝜐)𝐼(𝜐) − 𝜂1(𝜐) − 𝑑1𝑆(𝜐)]𝑑𝜐 > 0   ∀   𝑡 ≥ 0. 

Also, using model (1)’s second equation, we have 

 

𝑃(𝑡) = 𝑃(0) exp∫
𝑡

0

[𝛾1(𝜐)𝑆(𝜐) − 𝜆(𝜐)𝐼(𝜐) − 𝑑2(𝜐)𝑃(𝜐) − 𝜂2(𝜐)]𝑑𝜐 > 0   ∀    𝑡 ≥ 0. 

 

Next, we need to show that 𝐼(𝑡) > 0    ∀ 𝑡 ≥ 0. Suppose that 𝐼(𝑡) ≤ 0    ∀    𝑡 ≥ 0, then ∃ a 𝑡1 > 0 such that 𝐼(𝑡1) = 0 and 𝐼(𝑡) ≥

0    ∀𝑡 ∈ [−𝜏, 𝑡1]. Moreover, 

 

𝑑𝐼(𝑡)

𝑑𝑡
≥ 𝛾2(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝜂3(𝑡)𝐼(𝑡)          ∀𝑡 ∈ [0, 𝑡1]. (3) 

𝐼(𝑡) ≥ 𝐼(0)    exp∫
𝑡

0

[𝛾2(𝜐)𝑆(𝜐) − 𝜂3(𝜐)]𝑑𝜐 > 0            ∀𝑡 ∈ [0, 𝑡1]. 

 

This contradicts our initial supposition. Thus, 𝐼(𝑡) > 0,    ∀      𝑡 ≥ 0. 

 

3.2 Permanence: This subsection explores the enduring nature of the system (𝟏), using the initial conditions (𝟐). We shall 

demonstrate how the system will exhibit uniform persistence under specific conditions. Moreover, all integrants of system (𝟏) will 

survive over a long time under certain conditions. For a bounded and continuous function, 𝒈(𝒕) is specified on the interval. [𝟎, +∞), 

let 𝒈𝒍 = 𝒊𝒏𝒇𝒕≤𝟎𝒈(𝒕) and 𝒈𝒖 = 𝒔𝒖𝒑𝒕≥𝟎𝒈(𝒕). 

Definition 2.1 If 𝑝𝑖 and 𝑞𝑖 , 𝑖 = 1,2,3, are positive constants that ensure: 

𝑝1 ≤ lim𝑡→∞inf𝑆(𝑡) ≤ lim𝑡→∞sup𝑆(𝑡) ≤ 𝑞1, 

𝑝2 ≤ lim𝑡→∞inf𝑃(𝑡) ≤ lim𝑡→∞sup𝑃(𝑡) ≤ 𝑞2, 

𝑝3 ≤ lim𝑡→∞inf𝐼(𝑡) ≤ lim𝑡→∞sup𝐼(𝑡) ≤ 𝑞3, 

holds for each solution (𝑆(𝑡), 𝑃(𝑡), 𝐼(𝑡)) of model (1) satisfying initial conditions (2), then model described by (1) is considered 

uniformly persistent. Let’s consider the system [20], 

 

�̇� = 𝜇𝑦(𝑡 − 𝜏) − 𝛽𝑦(𝑡) − 𝜎𝑦2(𝑡), 

 

where 𝜇, 𝛽, 𝜎, 𝜏 > 0; 𝑦(𝑡) > 0 for −𝜏 ≤ 𝑡 ≤ 0. Then, we have 

 

lim
𝑡→∞

𝑦(𝑡) = {

𝜇 − 𝛽

𝜎
𝜇 > 𝛽

0 𝜇 < 𝛽.
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Assume that 𝑋(𝑡) = (𝑆(𝑡), 𝑃(𝑡), 𝐼(𝑡)) represent solution of the model (1) satisfying initial conditions (2). Consider that model (1) 

adheres to the following conditions: 

𝜂2
𝑙

(𝛾1−𝜆)
𝑢
< 𝐾∗ = 𝑚𝑎𝑥 {(

𝑏𝑢

𝑑1
𝑙 ) , (

𝑏𝑢

𝑑1
𝑙 ) (

𝛾2
𝑢

𝜂3
𝑙 )}                                     (4) 

 

then ∃ a Υ3 > 0 so that 

𝑆(𝑡), 𝑃(𝑡) < 𝐾3, 𝐼(𝑡) ≤ 𝐾4   ∀𝑡 ≥ Υ3,                                                  (5) 

 

where 𝐾3 > 𝐾
∗ and 𝐾4 >

(𝛾1−𝜆)
𝑢𝐾∗−𝜂2

𝑙

𝑑2
𝑙 . 

Proof. Let 𝐾1 > (
𝑏𝑢

𝑑1
𝑙 ). Considering the system’s first equation (1), we have �̇�(𝑡) ≤ 𝑆(𝑡)[𝑏(𝑡) − 𝑑1(𝑡)𝑆(𝑡)] ≤ 𝑆(𝑡)[𝑏

𝑢 − 𝑑1
𝑙 𝑆(𝑡)]. Thus, 

if 𝑆(0) ≤ 𝐾1, then 𝑆(𝑡) ≤ 𝐾1,    ∀𝑡 ≥ 0. If 𝑆(0) > 𝐾1 and let −𝛽1 = 𝐾1(𝑏
𝑢 − 𝑑1

𝑙𝐾1), 𝛽1 > 0, then ∃ an ∈> 0, such that if 𝑡 ∈ [0, ∈), 𝑆(𝑡) >

𝐾1 and we have �̇�(𝑡) < −𝛽1 < 0. Therefore, ∃ a Υ1 > 0 and Υ3 > 0 such that 𝑆(𝑡) ≤ 𝐾1 and 𝑃(𝑡) ≤ 𝐾4   ∀𝑡 ≥ Υ1, Υ3. 

Using system (1)’s third equation, we get 

 

𝐼(̇𝑡) ≤ 𝛾2
𝑢(𝑡)𝐾1𝐼(𝑡) − 𝜂3

𝑙 𝐼(𝑡),    𝑡 ≥ Υ1 + 𝜏. (6) 

 

We deduce from Lemma (3.2) that ∃ a Υ2 ≥ Υ1 + 𝜏 so that 𝐼(𝑡) ≤ 𝐾2,    ∀𝑡 ≥ Υ2, where 𝐾2 >
𝛾2
𝑢𝐾1

𝜂3
 . 

It is feasible to select 𝐾1 sufficiently in proximity to (
𝑏𝑢

𝑑1
𝑙 ). Hence, 𝑆(𝑡), 𝐼(𝑡) ≤ 𝐾3, where 

 

𝐾3 > 𝐾
∗ = 𝑚𝑎𝑥 {(

𝑏𝑢

𝑑1
𝑙
) , (

𝑏𝑢

𝑑1
𝑙
)(
𝛾2
𝑢

𝜂3
𝑙
)},    ∀𝑡 ≥ Υ2. 

Using system (1)’s second equation, we obtain 

 

�̇�(𝑡) ≤ 𝑃(𝑡)[(𝛾1 − 𝜆)
𝑢𝐾3 − 𝜂2

𝑙 − 𝑑2
𝑙𝑃(𝑡)]    ∀𝑡 ≥ Υ3. 

 

Therefore, ∃ a Υ3 > 0 so that 𝑃(𝑡) ≤ 𝐾4    ∀𝑡 ≥ Υ3, where 𝐾4 >
(𝛾1−𝜆)

𝑢𝐾∗−𝜂2
𝑙

𝑑2
𝑙 , since 𝐾3 can be chosen sufficiently close to 𝐾∗. 

The system (1), considering initial condition (2), exhibits uniform persistence when the subsequent condition is satisfied: 

 

𝜂2
𝑙

(𝛾1 − 𝜆)
2
< 𝐾∗ = max {(

𝑏𝑢

𝑑1
𝑙
) , (

𝑏𝑢

𝑑1
𝑙
)(
𝛾2
𝑢

𝜂3
𝑙
)} 

< min {
𝑑2
𝑙𝑏𝑙+𝛼1

𝑢𝜂2
𝑙−

(𝛼2+𝜂1)
𝑢𝜂2

𝑢𝑑2
𝑢

(𝛾1−𝜆)
𝑙

(𝜂1−𝜆)
𝑢𝑑2

𝑙+𝛼1
𝑢(𝛾1−𝜆)

𝑢 ,
𝜆𝑙(𝑑2

𝑙𝑏𝑙+𝛼1
𝑢𝜂2

𝑙 )+𝛾2
𝑢𝜂2

𝑙 (𝛼2+𝜂1)
𝑢

𝜆{(𝛼2+𝜂1)
𝑢𝑑2

𝑙+𝛼1
𝑢(𝛾1−𝜆)

𝑢}+(𝛾1−𝜆)
𝑢𝛾2

𝑢(𝛼2+𝜂1)
𝑢} (7) 

 

Proof. Assume that 𝑋(𝑡) = (𝑆(𝑡), 𝑃(𝑡), 𝐼(𝑡)) is a solution of the model (1) satisfying initial conditions (2), with the help of Theorem 

3.2, we have 
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�̇�(𝑡) ≥ 𝑆(𝑡)[(𝑏𝑙 − (𝛼2 − 𝜂1)
𝑢𝐾3 + 𝛼1

𝑢𝐾4) − 𝑑1
𝑢],    ∀𝑡 ≥ Υ3. 

If (𝑏𝑙 − (𝛼2 − 𝜂1)
𝑢𝐾3 + 𝛼1

𝑢𝐾4) > 0, then we can chose 𝑚1 such that 

 

0 < 𝑚1 <
[𝑏𝑙 − (𝛼2 − 𝜂1)

𝑢𝐾3 + 𝛼1
𝑢𝐾4]

𝑑1
𝑢 ⇒ (𝑏𝑙 − (𝛼2 − 𝜂1)

𝑢𝐾3 + 𝛼1
𝑢𝐾4) − 𝑑1

𝑢𝑚1 > 0. 

 

If 𝑆(Υ3) ≥ 𝑚1, then 𝑆(𝑡) ≥ 𝑚1    ∀𝑡 ≥ Υ3. If 𝑆(Υ3) < 𝑚1, and let 𝜇1 = 𝑆(Υ3)[𝑏
𝑙 − 𝜆𝑢𝐾3 − 𝛼1

𝑢𝐾4 − 𝜂1] − 𝜂1
𝑢𝑚1 > 0, then ∃ an ∈> 0, such 

that 𝑆(𝑡) < 𝑚1, and �̇� > 𝜇1 > 0,    ∀𝑡 ∈ [Υ3, Υ3+∈). Therefore, ∃ a Υ4 > Υ3 > 0, such that 𝑆(𝑡) ≥ 𝑚1    ∀𝑡 ≥ Υ4. 

Using system (1)’s third equation, we obtain 

𝐼(̇𝑡) ≥ 𝜆𝑙𝐾3𝑃(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) + 𝛾2
𝑢𝑚1𝐼(𝑡) − 𝜂3

𝑢𝐼(𝑡). (8) 

≥ 𝜆𝑙𝐾3𝑃(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) −∈2 𝐼
2(𝑡) + 𝛾2

𝑢𝑚1𝐼(𝑡) − 𝜂3
𝑢𝐼(𝑡)    ∀𝑡 ≥ Υ4 + 𝜏, (9) 

where ∈2 represents any non-negative real number. Suppose that 𝜆𝑙𝑚1 > 𝛼2
𝑢𝐾3 + 𝜂

𝑢 , then by using Theorem (3.2) we may deduce 

that ∃ a Υ5 ≥ Υ4 + 𝜏 so that 𝑃(𝑡) ≥ 𝑚2,    ∀𝑡 ≥ Υ5, where 𝑚2 <
𝜆𝑙𝑀3+𝛼2

𝑢𝑚1+𝜂3
𝑢

∈2
. Hence, 

𝑆(𝑡), 𝑃(𝑡) ≥ 𝑚3,    ∀𝑡 ≥ Υ5, 

where 𝑚3 < 𝑚
∗ = 𝑚𝑖𝑛{𝑚1,𝑚2}. 

Using system (1)’s second equation, we obtain 

�̇�(𝑡) ≥ 𝑃(𝑡)[(𝛾1 − 𝜆)
𝑙𝑚3 − 𝜂2

𝑢 − 𝑑2
𝑢𝑃(𝑡)]. 

If (𝛾1 − 𝜆)
𝑙𝑚3 > 𝜂2

𝑢, then we can select 𝑚4 so that 0 < 𝑚4 <
(𝛾1−𝜆)

𝑙𝑚3−𝜂2
𝑢

𝑑2
𝑢 . If 𝑃(Υ5) ≥ 𝑚4, then 𝑃(𝑡) ≥ 𝑚4,    0.25𝑒𝑚∀𝑡 ≥ Υ5. If 𝑃(Υ5) <

𝑚4 and suppose 𝜇2 = 𝑃(Υ5)[(𝛾1 − 𝜆)
𝑙𝑚3 − 𝜂2

𝑢 −𝑚4𝑑2
𝑢] > 0, then ∃ an ∈3> 0 such that 𝑃(𝑡) < 𝑚4 and �̇�(𝑡) > 𝜇2 > 0,    0.25𝑒𝑚∀𝑡 ∈

[Υ5, Υ5 +∈3). Thus, ∃ a Υ6 > Υ5 > 0 such that Υ(𝑡) ≥ 𝑚4    ∀𝑡 > Υ6. After considering the above analysis, we establish that ∃ a Υ6 > 0, 

ensuring that each solution of system (1) satisfying initial conditions (2) eventually enters and remains in the area. 

Ω = {(𝑆(𝑡), 𝑃(𝑡), 𝐼(𝑡))|𝑚 ≤ 𝑆(𝑡) ≤ 𝐾,𝑚 ≤ 𝑃(𝑡) ≤ 𝐾,𝑚 ≤ 𝐼(𝑡) ≤ 𝐾},    ∀𝑡 > Υ6, 

where 𝑚 = 𝑚𝑖𝑛{𝑚3, 𝑚4} and 𝐾 = 𝑚𝑎𝑥{𝐾3, 𝐾4}. 

4. Numerical Simulation 

The present section performs numerical simulation of the non-autonomous (1). Here, we numerically simulate the different 

properties of the proposed system (1). These properties are stability, bifurcation, periodic oscillation, chaos, and the effect of 

predator overcrowding in a periodic environment. In the present model, we consider parameters to be time-dependent. The reason 

behind this consideration is the temperature fluctuation throughout the year due to seasonal changes. Since the behavior of this 

temperature fluctuation is periodic, we consider all the time-dependent parameters as a sinusoidal function. The parameter 

description is as follows: 

𝑟(𝑡) = 𝑟 (1 + 𝜎1sin (
2𝜋𝑡

365
)) , 𝜆(𝑡) = 𝜆 (1 + 𝜎2sin (

2𝜋𝑡

365
)), 

𝜂1(𝑡) = 𝜂1 (1 + 𝜎3sin (
2𝜋𝑡

365
)), 𝜂2(𝑡) = 𝜂2 (1 + 𝜎4sin (

2𝜋𝑡

365
)), 

𝜂3(𝑡) = 𝜂3 (1 + 𝜎5sin (
2𝜋𝑡

365
)) , 𝛼2(𝑡) = 𝛼2 (1 + 𝜎7sin (

2𝜋𝑡

365
)), 

𝛾1(𝑡) = 𝛾1 (1 + 𝜎8sin (
2𝜋𝑡

365
)) , 𝛾1(𝑡) = 𝛾2 (1 + 𝜎9sin (

2𝜋𝑡

365
)), 

𝑑1(𝑡) = 𝑑1 (1 + 𝜎10sin (
2𝜋𝑡

365
)) , 𝑑2(𝑡) = 𝑑2 (1 + 𝜎11sin (

2𝜋𝑡

365
)). (10) 

We first study the autonomous version of the system (1) with the following biological realist parameters set: 

𝑟 = 6.5, 𝜆 = 0.2, 𝛼1 = 0.55, 𝜂1 = 0.1, 𝛼2 = 0.4, 𝜂2 = 0.21, 𝛾1 = 0.45, 𝛾2 = 0.08, 
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             𝜂3 = 0.51, 𝑑1 = 1.29, 𝑑2 = 0.05 (11) 

The simulation results reveal that the interior equilibrium of the autonomous version of the model is stable for the incubation 

delay 𝜏 =1.3411155 for the variable set (11) Fig. 1. For the same variable set, the interior equilibrium becomes unstable while 

crossing the threshold value of incubation delay 𝜏 =3.1411155 and undergoes hopf bifurcation for 𝜏 =3.1511155  Fig. 2. 

Additionally, we explore the behavior of the non-autonomous model. We plot the solution trajectories of the model (1) for the 

variable set (11) along with (12). 

𝜎1 = 0.1, 𝜎2 = 0.4, 𝜎3 = 0.052,𝜎4 = 0.052, 𝜎5 = 0.66,𝜎6 = 0.1, 𝜎7 = 0.1, 𝜎8 = 0.1, 

           𝜎9 = 0.1, 𝜎10 = 0.1, 𝜎11 = 0.1. (12) 

The non-autonomous model (1) exhibits periodic oscillation for incubation delay 𝜏 = 1.3411155. However, the system shows 

chaotic behavior for incubation delays  𝜏 =3.1511155. Finally, we check the effect of increasing predator crowding. We plot solution 

trajectories for the variable set (11) and (12) except predator crowding coefficient 𝑑2 = 2.5 and see that the infected predator starts 

disappearing from the system while increasing predator crowding coefficient Fig (5). 

 

(a) 

 

(b) 
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(c) 

Figure 1: Solution trajectories of the model (1) showing stability for 𝜏 = 1.3411155in the absence of seasonality for the 

parameter set (11) (a) Prey (b) Healthy Predator (c) Infected Predator. 

 

(a) 

 

(b) 
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(c) 

Figure 2: Solution trajectories of the model (1) showing bifurcation for 𝜏 =3.1511155in the absence of seasonality for the 

parameter set (11) (a) Prey (b) Healthy Predator (c) Infected Predator. 

 

 

 

(a) 

 

(b) 
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(c) 

Figure3: Periodic oscillation of population of the non-autonomous model (1) for incubation delay 𝜏 =1.3411155  for the 

parameter set (11) and (12) (a) Prey (b) Healthy Predator (c) Infected Predator. 

 

(a) 

 

(b) 
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(c) 

Figure 4: Chaotic behavior of population of the non-autonomous model (1) for incubation delay 𝜏 =3.1511155 for the 

parameter set (11) and (12)(a) Prey (b) Healthy Predator (c) Infected Predator. 

 

(a) 

 

(b) 
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(c) 

Figure 5: Effect of healthy predator crowding on the non-autonomous model (1) for the parameter set (11) and (12) except 𝑑2 =

2.5 (a) Prey (b) Healthy Predator (c) Infected Predator. 

5. Results: Research shows that many biological processes embodying various delays like latent delay, gestation delay, and 

incubation delay show more complicated dynamics than non-delayed systems [18, 12, 10]. Various seasonal factors like air 

pressure, moisture, sunlight, and rainfall also affect system variables. Thus, we also need to study the effect of these parameters 

on the system. The author includes those mentioned earlier in the proposed system using the sine wave function. Hence, an 

autonomous system becomes non-autonomous[17, 9, 11]. 

 

The present model offers a three-compartment delayed non-autonomous system with infected predator incorporating disease 

transmission among predators is not an instantaneous process. When a healthy predator comes in contact with an infected 

predator, it will take an incubation lag to become infectious. 

The author mathematically established the system’s existence, uniqueness, and permanence and numerically explored all these 

properties. The author concludes that the delayed autonomous system shows stable behavior for incubation delay 𝜏 =1.3411155. 

Nevertheless, it reveals bifurcation while passing through the critical value of incubation delay 𝜏 =3.1511155. Biologically, the 

system offers stability for any disease having a small incubation period. Additionally, the author simulates the non-autonomous 

model for the incubation delay mentioned earlier and reveals that the autonomous model (1) becomes periodic. Further, it shows 

chaotic behavior while increasing the incubation period. Thus, the delayed non-autonomous system offers periodic oscillation 

instead of stability and chaos instead of bifurcation. Hence, the delayed non-autonomous system gives a more realistic situation 

than the delayed autonomous one. Finally, we analyze the effect of healthy predator crowding on the system. Increasing predator 

over-crowding controls the infected predator population and hence controls the spread of disease in the environment. When 

healthy predators are over-crowded in a particular habitat, they consume the resources as they are more accessible to the resources 

due to their fitness, while infected predators are not. Thus, the infected predator population starts decreasing and exits from the 

environment after some time. 
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