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| ABSTRACT 

One of the most well-known and well-studied issues in graph theory is graph decomposition. Graph decomposition has been 

studied in great detail by extensive research. There are two main types of decomposition problems such as edge decompositions 

and vertex decompositions. It entails meeting certain requirements in order to divide an input graph into smaller segments 

(subgraphs). In this paper, an investigation into decomposition in hypercube graphs using diametral routes is studied. 

Additionally, we study the finding of the diametral path decomposition number, index, and hypercube graph's cycle 

decomposition. 
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1. Introduction  

Graphs are used in many applications that we encounter every day. In several scientific disciplines, including sociology, chemistry, 

physics, game theory, and many more, graphs are regarded as extremely effective modeling tools [7]. Graph theory is often used 

to describe challenges in the fields of distributed systems and computer networking. A strong framework for comprehending and 

resolving issues present in these systems is provided by graph theoretic techniques [4]. In many branches of mathematics, breaking 

down a complex item into smaller parts with a specific structure is a highly common activity. In reality, a lot of graph theory 

problems may be formulated as decomposition problems [11]. Numerous authors use for graph decomposition results include 

fault tolerance in network architecture, structure analysis, graph decomposition into particular patterns, graph compression and 

summarization, graph similarity and subgraph matching, property analysis in large graphs, and more [5]. Network theory, coding 

theory, geometry, and other significant fields are closely related to the study of graph decomposition [9].  

This encouraged researchers to delve deeply into this field. Following Galecki’s discovery of a Hamiltonian decomposition of a full 

network possessing an odd quantity of vertices, other unresolved issues have surfaced [5]. Since at least 1960, researchers have 

been actively studying graph decomposition and graph partitioning difficulties. Sethuraman and Murugan have put out a new 

conjecture to break down a whole graph into copies of two arbitrary trees [6]. Yamamoto et al. investigated the challenge of 

breaking down a complete graph into a union of line disjoint claws or stars [15]. Abueida and Daven looked at variations on the 

covering, factorization problems, and subgraph packing to determine an efficient method to decompose a big complete graph 

into generally well-behaved subgraphs [1]. Barát and Thomassen examined graph decompositions into trees [8]. Regarding the 

hypercube decomposition problems, they date back to Ringel, who demonstrated that when 2𝑛 and 𝑛 > 2, the hypercube graph 

𝑄𝑛 has a decomposition into Hamiltonian cycles. A Hamiltonian decomposition is the breakdown of a graph into Hamiltonian 
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cycles. It was demonstrated by Stout, Horak, and other shown that 𝑄𝑛 can be decomposed into specific trees [13]. Fink, and others 

shown that 𝑄𝑛 can be decomposed into cycles of specific durations when 𝑛 is even [14]. According to the findings of Aubert, 

Ringel, Axenovich, Tompkins, Schneider, and Offner, 𝑄𝑛 can be decomposed into comparatively lengthy cycles with lengths of a 

power of two [10]. It is demonstrated by Tapadia, Waphare, and Borse that 𝑄𝑛 can be broken down into very brief cycles with a 

power of two length [14]. 

Therefore, the need to divide networks into subsets with particular characteristics such as being acyclic or having a predetermined 

number of nodes or cycles of a given size motivates the graph decomposition problem. [5]. Studying peripheral vertices and 

diametral path is essential for network analysis and design because it provides important insights into a graph's structure and aids 

in the resolution of many problems. The idea of a diametral path is therefore very important to study the ideas of pathways, 

diameter, diametral paths, and their applications [5]. In a graph, the diameter provides important information about the distance 

between vertices, and the diametral path shows the critical path between these vertices [16]. 

In this paper, we examine the decomposition process that includes diametral paths and find the diametral path decomposition 

number of the hypercube graph. Also, the diametral path decomposition index of the hypercube graph. 

2. Definitions and notation 

 

A graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺))  is a simple, connected, undirected, and finite graph. The degree of a vertex, denoted by 𝑑𝑒𝑔(𝑣) where 

𝑣 ∈ 𝑉(𝐺), refers to the number of edges incident to 𝑣. A path in a graph 𝐺 is denoted by 𝑃 , 𝑃 =  (𝑣1, 𝑣2, . . . , 𝑣𝑛), 𝑣1, 𝑣2, , . . . , 𝑣𝑛 ∈ 𝑉 . 

If a path starts and ends at the same vertex, we say that cycle in a graph 𝐺 is denoted by 𝐶, 𝐶 = (𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑣1) [12]. The number 

of edges in 𝑃 refers to the length of path 𝑃. The length of the shortest path between any two vertices in a graph refers to the 

distance between these vertices, and denoted by 𝑑(𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑉(𝐺). The diameter of a graph 𝐺 is the maximum distance 

in 𝐺 and denoted by  𝑑𝑖𝑎𝑚(𝐺),  𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥{𝑑(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝑉} [3]. A few typical outcomes for specific graph classes are shown 

below [2] [16]. 

i- 𝑑𝑖𝑎𝑚(𝐾𝑛) = 1 , 𝐾𝑛 refers to complete graph with 𝑛 ≥ 2. 

ii- 𝑑𝑖𝑎𝑚(𝑊𝑛) = 2 , 𝑊𝑛 refers to wheel graph with 𝑛 ≥ 5. 

iii- 𝑑𝑖𝑎𝑚(𝐾1,𝑛) = 2, 𝐾1,𝑛 refers to star graph with 𝑛 ≥ 2. 

iv- 𝑑𝑖𝑎𝑚(𝐾𝑟,𝑠) = 2  , 𝐾𝑚,𝑛 refers to complete bipartite graph with 𝑚 ≥ 2 𝑎𝑛𝑑 𝑛 ≥ 2. 

v- 𝑑𝑖𝑎𝑚(𝑃𝑛) = 𝑛 − 1, 𝑃𝑛 refers to path graph with 𝑛 ≥ 2. 

vi- 𝑑𝑖𝑎𝑚(𝐶𝑛) = ⌊
𝑛

2
⌋, 𝐶𝑛 refers to cycle graph with 𝑛 ≥ 3. 

vii- 𝑑𝑖𝑎𝑚(𝑄𝑛) = 𝑛, 𝑄𝑛 refers to hypercube graph with 𝑛 ≥ 2. 

In a graph 𝐺, the diametral path is the shortest path that connects two vertices so that its length is equal to the graph's diameter 

[16]. 

3. Decomposition of graphs 

In graph theory, one of the most well-known problems is the decomposition of graphs. It entails dividing an input graph into 

subgraphs that meet certain requirements. These problems can be broadly divided into two categories: The first decomposes the 

input graph into identically typed edge-disjoint subgraphs, which are known as simple decompositions. The second method 

decomposes the input graph into at least two different kinds of edge-disjoint subgraphs. Which is known as multiple 

decomposition [5].  

Diametral path decomposition is a set of graph's edge-disjoint diametral paths so that for each graph edge to appear in precisely 

one diametral path. This collection's cardinality is called the diametral path decomposition number and denoted by 𝑑𝑒𝑐(𝐺). The 

number of such decompositions is called the diametral path decomposition number and denoted by 𝑑𝑒𝑐(𝐺). The number of such 

decompositions is called the diametral path decomposition index and denoted by 𝐷𝑒𝑐 (𝐺) [16]. A few typical outcomes to 𝑑𝑒𝑐(𝐺) 

and 𝐷𝑒𝑐(𝐺) for certain classes of graphs are shown below: 

Lemma (1)  

i- 𝑑𝑒𝑐(𝐾𝑛) = 𝑛 and 𝐷𝑒𝑐(𝐾𝑛) = 1 where 𝑛 ≥ 2. 

ii- 𝑑𝑒𝑐(𝑊𝑛) = 𝑛 − 1 where 𝑛 ≥ 5. 

iii- 𝑑𝑒𝑐(𝐾1,𝑛) =
𝑛

2
  and 𝐷𝑒𝑐(𝐾1,𝑛) = (𝑛 − 1)(𝑛 − 3)(𝑛 − 5) … .1, where 𝑛 ≥ 2. 

iv- 𝑑𝑒𝑐(𝐾𝑚,𝑛) =
𝑚𝑛

2
   where (𝑚 ≥ 2 𝑎𝑛𝑑 𝑛 ≥ 2) 𝑚 or 𝑛 is even. 

v- 𝑑𝑒𝑐(𝑃𝑛) = 1 = 𝐷𝑒𝑐(𝑃𝑛) where 𝑛 ≥ 2. 

vi- 𝑑𝑒𝑐(𝐶𝑛) = 2 and 𝐷𝑒𝑐(𝐶𝑛) =  
𝑛

2
 where 𝑛 is even. 
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4. Decomposition of hypercube graph  

The hypercube graph 𝑄𝑛 stands for the 𝑛 −dimensional hypercube graph, which is the graph with 2𝑛 vertices labeled 𝑉(𝑄𝑛) =

{0,1}𝑛, and 𝑛2𝑛−1 edges labeled 𝐸(𝑄𝑛) = {𝑢𝑣: 𝑢, 𝑣 ∈ 𝑉(𝑄𝑛)}, where 𝑢 and 𝑢 vary in a single coordinate [2]. The significant property 

of the hypercube 𝑄𝑛 is that it can be generated as the iterated cartesian product of 𝐾2 from lower-dimensional cubes i.e.   

𝑄𝑛 =  {
𝐾2                    𝑛 = 1
𝑄𝑛−1 ×  𝐾2    𝑛 ≥ 2 .

  

Theorem.1 

For every 𝑛 ≥  2 , the hypercube graph 𝑄𝑛 has a diametral path decomposition with 𝑑𝑒(𝑄𝑛) = 𝑛 and  𝐷𝑒(𝑄𝑛) =
2𝑛

2
. 

Proof. Suppose 𝑄𝑛 be a hypercube graph such that 𝑄2 denotes the hypercube graph with 4 vertices and 4 edges. Then we get 𝑄2 

isomorphic to 𝐶4. 

From Lemma (1) 𝑑𝑒(𝐶4) = 2 and 𝐷𝑒(𝐶4) = 2.  Hence, 

𝑑𝑒(𝑄2) = 2 and 𝐷𝑒(𝑄2) = 2.                                      (1) 

Since, 𝑑𝑒𝑔(𝑢𝑖) = 𝑛 , 𝑢𝑖 ∈ 𝑄𝑛 with 1 ≤ 𝑖 ≤ 2𝑛. Therefore, we can find 𝑛 diametral path in 𝑄𝑛.  Hence, 

𝑑𝑒(𝑄𝑛) = 𝑛.                                                              (2) 

Now, by the structure of 𝑄𝑛, we can find 𝐷𝑒(𝑄𝑛), with 𝑛 ≥ 2 by the following cases: 

If  𝒏 = 𝟐 : from (1), we get 𝐷𝑒(𝑄2) = 2 which can be expressed as follows:  

𝐷𝑒(𝑄2) =
22

2
.                                                            (3) 

• If 𝒏 = 𝟑: There can be four decompositions as they shown in Figure (1b): 

{(𝑎1, 𝑎2, 𝑏2, 𝑏3), (𝑎1, 𝑏1, 𝑏4, 𝑏3), (𝑎1, 𝑎4, 𝑎3, 𝑏3)}, {(𝑎2, 𝑎1, 𝑎4, 𝑏4), (𝑎2, 𝑏2, 𝑏1, 𝑏4), (𝑎2, 𝑎3, 𝑏3, 𝑏4)}, 

{(𝑎3, 𝑎4, 𝑎1, 𝑏1), (𝑎3, 𝑏3, 𝑏4, 𝑏1), (𝑎3, 𝑎2, 𝑏2, 𝑏1)}, and {(𝑎4, 𝑎1, 𝑎2, 𝑏2), (𝑎4, 𝑏4, 𝑏1, 𝑏2), (𝑎4, 𝑎3, 𝑏3, 𝑏2)}. 

So 𝐷𝑒(𝑄3) = 4, which can be expressed as follows:  

𝐷𝑒(𝑄3) =
23

2
 .                                                          (4) 

• If 𝒏 = 𝟒: There can be eight decompositions as shown in Figure (1c):  

{(𝑎1, 𝑎2, 𝑐2, 𝑑2, 𝑑3), (𝑎1, 𝑐1, 𝑑1, 𝑑4, 𝑑3), (𝑎1, 𝑎4, 𝑐4, 𝑐3, 𝑑3), (𝑎1, 𝑏1, 𝑏4, 𝑏3, 𝑑3)}, 

{(𝑎2, 𝑎1, 𝑐1, 𝑐4, 𝑑4), (𝑎2, 𝑏2, 𝑑2, 𝑑3, 𝑑4), (𝑎2, 𝑐2, 𝑐1, 𝑏1, 𝑑4), (𝑎2, 𝑎3, 𝑏3, 𝑏4, 𝑑4)}, 

{(𝑎3, 𝑐3, 𝑑3, 𝑑4, 𝑑1), (𝑎3, 𝑎4, 𝑐4, 𝑐1, 𝑑1), (𝑎3, 𝑏3, 𝑏2, 𝑏1, 𝑑1), (𝑎3, 𝑎2, 𝑐2, 𝑑2, 𝑑1)}, 

{(𝑎4, 𝑐4, 𝑐3, 𝑐2, 𝑑2), (𝑎4, 𝑎1, 𝑐1, 𝑑1, 𝑑2), (𝑎4, 𝑎3, 𝑐3, 𝑑3, 𝑑2), (𝑎4, 𝑏4, 𝑏1, 𝑏2, 𝑑2)}, 

{(𝑏1, 𝑏4, 𝑑4, 𝑑3, 𝑐3), (𝑏1, 𝑑1, 𝑑2, 𝑐2, 𝑐3), (𝑏1, 𝑏2, 𝑏3, 𝑎3, 𝑐3), (𝑏1, 𝑎1, 𝑐1, 𝑐4, 𝑐3)},  

{(𝑏2, 𝑏1, 𝑏4, 𝑎4, 𝑐4), (𝑏2, 𝑑2, 𝑑1, 𝑑4, 𝑐4), (𝑏2, 𝑏3, 𝑎3, 𝑑3, 𝑐4), (𝑏2, 𝑎2, 𝑐2, 𝑐1, 𝑐4)}, 

{(𝑏3, 𝑎3, 𝑎4, 𝑐4, 𝑐1), (𝑏3, 𝑏4, 𝑑4, 𝑑1, 𝑐1), (𝑏3, 𝑏2, 𝑎2, 𝑎1, 𝑐1), (𝑏3, 𝑑3, 𝑑2, 𝑐2, 𝑐1)}, 

 {(𝑏4, 𝑏1, 𝑎1, 𝑐1, 𝑐2), (𝑏4, 𝑏3, 𝑏2, 𝑑2, 𝑐2), (𝑏4, 𝑎4, 𝑎1, 𝑎2, 𝑐2), (𝑏4, 𝑑4, 𝑐4, 𝑐3, 𝑐2)} .  

So 𝐷𝑒(𝑄4) = 8, which can be expressed as follows: 

𝐷𝑒(𝑄4) =
24

2
 .                                                                  (5) 

• If 𝒏 = 𝟓: There can be sixteen decompositions as they shown in Figure (1c) in the same way when 𝑛 = 3 and 𝑛 = 4. So 

𝐷𝑒(𝑄5) = 16, which can be expressed as follows: 

𝐷𝑒(𝑄5) =
25

2
 .                                                                                     (6) 
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Continuing in the same way in 3, 4, 5, and 6, we can get the general formula to  𝐷𝑒(𝑄𝑛) , 𝑛 ≥ 2 . Hence,  𝐷𝑒(𝑄𝑛) =
2𝑛

2
. 

 

Figure 1: Hypercube graph with 𝒏 = {𝟐, 𝟑, 𝟒, 𝟓}. 

 

Theorem. 2  

For every 𝑛 ≥  2 , the hypercube graph 𝑄𝑛 has a cycle decomposition  𝐶𝐷(𝑄𝑛 ) = 2 𝐶𝐷(𝑄𝑛−1 ) 

Proof. Since, the significant property of the hypercube 𝑄𝑛 is that it can be generated as the iterated cartesian product of 𝐾2 from 

lower-dimensional cubes. 

By the structure of 𝑄𝑛, we can find cycle decomposition by the following cases: 

• If 𝒏 = 𝟓: 𝑄2 contains one-cycle decomposition denoted by 𝐶𝐷(𝑄2), which has four vertices (𝑎1, 𝑎2, 𝑎3, 𝑎4) and four edges, 

see figure (1a). Hence, 

𝐶𝐷(𝑄2 ) = 1                                               (7) 

• If 𝒏 = 𝟑: 𝑄3 contains two-cycle decomposition 𝐶1𝐷(𝑄3 ) and 𝐶2𝐷(𝑄3 ), every cycle has four vertices 𝐶1𝐷(𝑄3 ) = (𝑎1, 𝑎2, 𝑎3, 𝑎4) 

and 𝐶2𝐷(𝑄3 ) = (𝑏1, 𝑏2, 𝑏3, 𝑏4), such that the vertices 𝑎𝑖 ∈ 𝐶1𝐷(𝑄3 ), 𝑖 ∈ {1,2,3,4} adjacent to 𝑏𝑗 ∈ 𝐶2𝐷(𝑄3 ), 𝑗 ∈

{1,2,3,4}, see figure (1b). Hence 𝐶𝐷(𝑄3 ) = 2, which can be expressed as follows:  

𝐶𝐷(𝑄3 ) = 2 𝐶𝐷(𝑄2 )                                 (8) 

• If 𝒏 = 𝟒: 𝑄4 contains four-cycle decomposition 𝐶1𝐷(𝑄4 ), 𝐶2𝐷(𝑄4 ), 𝐶3𝐷(𝑄4 ) and 𝐶4𝐷(𝑄4 ), every cycle has four vertices, 

𝐶1𝐷(𝑄4 ) = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝐶2𝐷(𝑄4 ) = (𝑏1, 𝑏2, 𝑏3, 𝑏4) , 𝐶3𝐷(𝑄4 ) = (𝑐1, 𝑐2, 𝑐3, 𝑐4)  and 𝐶4𝐷(𝑄4 ) = (𝑑1, 𝑑2, 𝑑3, 𝑑4), such that the 

vertices 𝑎𝑖 ∈ 𝐶1𝐷(𝑄4 ), 𝑖 ∈ {1,2,3,4} adjacent to 𝑏𝑗 ∈ 𝐶2𝐷(𝑄4 ) and 𝑐𝑗 ∈ 𝐶3𝐷(𝑄4 ) with 𝑗 ∈ {1,2,3,4}, the vertices 𝑑𝑖 ∈ 𝐶4𝐷(𝑄4 ), 𝑖 ∈

{1,2,3,4} adjacent to 𝑏𝑗 ∈ 𝐶2𝐷(𝑄4 ) and 𝑐𝑗 ∈ 𝐶3𝐷(𝑄4 ) with 𝑗 ∈ {1,2,3,4}, see Figure (1c). Hence 𝐶𝐷(𝑄4 ) = 4,  which can be 

expressed as follows: 

𝐶𝐷(𝑄4 ) = 2 𝐶𝐷(𝑄3 )                                        (9) 

continuing in the same way we can find 𝐶𝐷(𝑄5 ) , 𝐶𝐷(𝑄6 ), as follows: 

𝐶𝐷(𝑄5 ) = 2 𝐶𝐷(𝑄4 )                                        (10) 

𝐶𝐷(𝑄6 ) = 2 𝐶𝐷(𝑄5 )                                         (11) 
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continuing in the same way in (7)-(11). Hence, we get the general formula of cycle decomposition of Hypercube graph 

 𝐶𝐷(𝑄𝑛 ) = 2 𝐶𝐷(𝑄𝑛−1 ). 

5. Conclusion 

The decomposition of the hypercube graph, by identifying diametral paths and calculating the hypercube graph's diametral path 

decomposition number 𝑑𝑒(𝑄𝑛) = 𝑛, are the outcomes of the work of this paper. We also calculate the hypercube graph's diametral 

path decomposition index 𝐷𝑒(𝑄𝑛) =
2𝑛

2
. Lastly, figuring out the hypercube graph's cycle decomposition 𝐶𝐷(𝑄𝑛 ) for every 𝑛 > 2. 
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