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| ABSTRACT 

The paper studies angular singularities of a real smooth function of the 4th degree using real analysis and catastrophe theory. 

After that, we apply an ordinary differential equation (ODE) with its boundary conditions. We show that the real smooth function 

equivalent to the key function associated with the ODE's function by applying the Lyapunov-Schmidt local technique. The 

angular singularities have been used to study the bifurcation analysis of the real smooth function. We have discovered the 

(caustic) bifurcation set's parametric equation and geometric interpretation. Moreover, the critical spots' bifurcated spread has 

been identified. 
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1. Introduction 

The method of Lyapunov-Schmidt (LS) can convert the dimensional equation from the infinite to the finite in Banach spaces. The 

method (LS) reduces most equations that appear in mathematics and physics of the form: 

 

𝑓(𝑥, 𝜆) = 𝑏, 𝑥 ∈ 𝑂, 𝑏 ∈ 𝑌, 𝜆 ∈ ℝ𝑛                                       (1) 

to the finite dimension of the form: 

 Θ(𝜉, 𝜆) = 𝛽, 𝜉 ∈ 𝑀, 𝛽 ∈ 𝑁                                                    (2) 

 

in which 𝑋 and 𝑌 are Banach's spaces, and 𝑓 is a smooth Fredholm map with index zero., 𝑂 ⊆ 𝑋 is open and, M and N are smooth 

finite dimensional manifolds. All of the topological and analytical characteristics of equation (1) such as multiplicity and the 

bifurcation diagram etc. are present in equation (2), (see [Loginov, 1985, Sapronov, 1973, Sapronov, 1996, Vainberg, 1975]. The 

study of the bifurcation solutions of BVPs heavily relies on the singularities of smooth maps [Golubitsky, 1985]. In the early years, 

the study of smooth map singularities and its applications to VPB piqued the interest of the Sapronov group in several of their 

studies [Arnol’d, 1994, Hussain, 2005, Hussain, 2010, Krasnosel’skii, 1964, Mizeal, 2012, Shveriova, 2002].  In recent years, works 

similar to those mentioned above have appeared [Ali, 2023, Hussain, 2024, Kadhim, 2020, Madhi, 2021, Madhi, 2022]. 

 

2. Literature Review  

There are many works referred to in the aforementioned references about the study of singularities and their applications in most 

engineering and physical fields, etc. For example, the boundary singularities of the following function has been examined by 

Shveriova [2002], �̃�(𝜂, 𝛾) = 𝜂1
4 + (𝑐𝜂1 + 𝜂2)2 − 2𝜀1𝜂1

2 + 2𝜀2𝜂1
2𝜂2 + 2𝜀3𝜂1𝜂2 + 2𝜀4𝜂1 + 2𝜀5𝜂2, where 𝜂 = (𝜂1, 𝜂2), 𝛾 =

(𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5), 𝜂1,  𝜂2 ≥ 0, such that she deemed the functional, 

 

𝑉(𝑧, 𝛼) = ∫  
𝜋

0

(
(𝑧′)2

2
+ 𝛼(cos (z(𝑥)) − 1)) 𝑑𝑥 
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with the additional setting, ⟨𝑧, 𝜔⟩ = ∫0

𝜋
 𝑧(𝑥)𝜔(𝑥)𝑑𝑥 ≥ 0, as an applying of her outcomes. Also, another example, Kadhim [14] has 

investigated the following function's border singularities, 

 

𝑊(𝑠, 𝜌) =
𝜂1

3

3
+

𝜂2
3

3
+ 𝜂2𝜂1

2 + 𝜂2
2𝜂1 + 𝜆1𝜂2𝜂1 + 𝜆2(𝜂1

2 + 𝜂2
2) where,  𝑠 = (𝜂1, 𝜂2), 𝜂1, 𝜂2 ≥ 0, 𝜌 = (𝜆1, 𝜆2) with considering the functional, 

𝑉(𝑧, 𝜆) =
1

2
∫  

1

0

(−𝛼(𝑧′)2 + 𝛽𝑧2 + 𝑧3 + 𝑧(𝑧′)2)𝑑𝑥, 

 

with the additional conditions, ⟨𝑒1, 𝑧⟩ + 𝑎⟨𝑒2, 𝑧⟩ ≥ 0 and ⟨𝑒1, 𝑧⟩ − 𝑎⟨𝑒2, 𝑧⟩ ≥ 0. 

 

The method (LS) assumes that 𝑔: 𝛺 ⊂ 𝐸 → 𝐹 is an index zero smooth nonlinear Fredholm map. If there is a functional 𝑉, then the 

map 𝑔 has a variational feature if and only if 𝑉 : Ω ⊂ 𝐸 → ℝ and 
∂𝑉

∂𝑦
(𝑦, 𝛼)𝑘 = ⟨𝑔(𝑦, 𝛼), ℎ⟩𝐻, ∀𝑦 ∈ Ω, 𝑘 ∈ 𝐸, where Hilbert space H's 

scalar product is represented by ⟨. , . ⟩𝐻 and 𝐸 ⊂ 𝐹 ⊂ 𝐻. The critical points of functional 𝑉(𝑦, 𝛼) are the solutions to the equation 

𝑔(𝑦, 𝛼) = 0. The method (LS) can reduce the problem, 

 

𝑉(𝑦, 𝛼) → extr, 

 𝑦 ∈ 𝐸, 𝛼 ∈ ℝ𝑛 to an identical problem, 

𝑊(𝜁, 𝛼) → extr, 𝜁 ∈ ℝ𝑛 

 

where, 𝑊(𝜉, 𝛼) is named key function. The topological and analytical characteristics of the functional 𝑉 (multiplicity, bifurcation 

diagram, etc.) are possessed by the function 𝑊 [Sapronov, 1973]. Investigating bifurcating solutions for functional 𝑉 is analogous 

to examining bifurcating solutions for key function. 

 

3. Methodology  

This paper studies the boundary singularities of the following real smooth function, 

 

𝑊(𝑧, 𝛼) =
𝑧1

4

4
+

𝑧2
4

4
+ 𝑧1 2𝑧2 2 + 𝑧1 3 + 𝑧1𝑧2 2 + 𝛼1𝑧1

2 + 𝛼2𝑧2
2                    (3) 

 

where z = (𝑧1, 𝑧2), 𝛼 = (𝛼1, 𝛼2), and 𝛼1 and 𝛼2 are parameters with considering the functional, 

 

𝑉(𝑟, 𝜆) =
1

2
∫  

1

0

(−𝛽(𝑟′)2 + 𝛾𝑟2 + 𝑟4 + 𝑟(𝑟′)2)𝑑𝑠                                        (4) 

Where 𝑟 = 𝑟(𝑠) and 𝜆 = (𝛽, 𝛾). 

 

The bifurcating solution's sections of equation (18) (here equation (18) is an application of our work (see section 5)) are to be 

identified, where every bifurcate solution is equal to functional (4)'s critical point, and each functional (4)'s critical point matches 

with a crucial point of functional (4)'s key function [Darinskii, 2007]. Therefore, we shall show that the function (3) is tantamount to 

the functional (4)'s key function. That is, analyzing the bifurcating solutions of equation (18) is similar to researching function's 

bifurcating solutions (3). Hence, we are interested in researching function's bifurcating solutions (3). 

 

3.1 Fredholm functional's angular singularities [Darinskii, 2007] 

To examine the behavior of Fredholm's functional near an angular singularity point, the problem of reducing to equivalent extremes 

is employed: 

𝑊(𝑥) →  extr  

 

were, 𝑥 ∈ 𝐷, 𝐷 = {𝑥 = (𝑥1, 𝑥2)⊤ ∈ ℝ2: 𝑥2 ≥ 0}. 

 

When a smooth function 𝑊 has a point 𝑎 in 𝐷, we say that it is conditional critical in ℝ2, if the least face of 𝐷 that contains 𝑎 is 

orthogonal to gradW (𝑎)  ( grad denotes gradient of 𝑊 ).The quotient algebra has dimension 𝜇‾, which represents the conditional 

critical spot's multiplicity 𝑎, where the quotient algebra denotes by  𝑄‾ =
Γ𝑎(ℝ2)

𝐼
, such that  Γ𝑎(ℝ2) represents the smooth functions 

ring of germs on ℝ2 at 𝑎, and the angular Jacobi ideal in Γ𝑎(ℝ2) is defined as 𝐼 = (
∂𝑊

∂𝑥1
, 𝑥2

∂𝑊

∂𝑥2
). 

 

The multiplicity 𝜇‾  of a conditional critical point is equal to the summation of its multiplicities 𝜇 + 𝜇0, here 𝜇 is the (normal) 

multiplicity of 𝑊 on ℝ2 and 𝜇0 is the (normal) multiplicity of the restriction 𝑊 । ∂𝐷 (where ∂𝐷 is the border of the set).  
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In the event that a critical point is normal, the row (𝑟0, 𝑟1, 𝑟2), where  𝑟𝑖  is the number of critical points of the Morse index 𝑖;  𝑖 =

0,1,2, represents the spreading of bifurcating extremes (bifurcation spread). The following order 2 × 3 matrix represents bifurcation 

spread, if the crucial point we need to deal with is angular (or border): 

 

(
𝑟0

1 𝑟1
1 𝑟2

1

𝑟0 𝑟1 𝑟2
) 

 

, here 𝑟𝑖
𝑗
 denotes the number of the angular critical points of index 𝑖 (for 𝑗 = 1 ), and  𝑟𝑖 is the number of normal (situated inside 

D) critical points of index 𝑖(𝑖 = 0,1,2).  

 

4. Results  

In this section, we take into account the function (3), which is defined in the first section. The function (3) has codimension eight 

at the origin, hence it has multiplicity nine. The main objectives are to determine the geometrical description (bifurcation diagram) 

of the caustic of the function (3) and the distribution of its critical points. In order to stay away from certain challenges when 

examining the function (3), one makes the following assumptions, 𝑧1 = 𝑦, 𝑧2 2 = 𝑧. Therefore, researching function (3) is equivalent 

to investigating the function listed below: 

 

𝑊(𝑥, 𝛼) =
𝑦4

4
+

𝑧2

4
+ 𝑦2𝑧 + 𝑦3 + 𝑦𝑧 + 𝛼1𝑦2 + 𝛼2𝑧                                                (5) 

 

where 𝑥 = (𝑦, 𝑧), 𝛼 = (𝛼1, 𝛼2) and 𝑧 ≥ 0. Given that the function (5)'s germ (the principal part) 𝑊0 =
𝑦4

4
+

𝑧2

4
, so from the 2nd  section 

we get, 𝐼 = (
∂𝑊0

∂𝑦
, 𝑧

∂𝑊0

∂𝑧
) = (𝑦3,

𝑧2

2
) = (𝑦3, 𝑧2) and 𝜇‾ = 6 such that 𝜇 = 𝜇0 = 3. Considering that multiplicity  𝜇‾ = the number of 

crucial points [18] , as a result, function (5) has six critical points, three of which are on the border 𝑧 = 0 and three of which are 

inside. Thus, the following union of three sets is the caustic of function (5): 

 

Π = Π1,0
int ∪ Π1,0

ext ∪ Π1,1. 

 

The caustic sets (or components) that indicate the boundary singularity degeneration along the border and along the normal are 

denoted by Π1,0
int  and Π1,0

ext , respectively, while the component corresponding to the degeneration of the interior critical points (non-

boundary) is represented by Π1,1. 

 

Lemma 1. (Degeneration towards the border 𝒛 = 𝟎 (internal degeneration)) The set  Π1,0
int  is expressed by the parametric 

equation of the following form: 𝛼1(8𝛼1 − 9) = 0.  

 

Proof: All points (𝑦, 0, 𝛼1, 𝛼2) that fulfill the following relations are represented by the set Π1,0
int :

∂𝑊(𝑦,0,𝛼1,𝛼2)

∂𝑦
=

∂2𝑊(𝑦,0,𝛼1,𝛼2)

∂𝑦2 = 0. From 

these relations, we have: 𝑦3 + 3𝑦2 + 2𝑦𝛼1 = 3𝑦2 + 6𝑦 + 2𝛼1 = 0. We may use the following equations system to express the prior 

relationships: 

 

𝑦3 + 3𝑦2 + 2𝑦𝛼1 = 0                                                      (6a)

3𝑦2 + 6𝑦 + 2𝛼1 = 0                                                        (6b)
 

 

Multiplying the equation (6b) by −
𝑦

3
 and then adding the result to the equation (6a) gives us: 

1

3
𝑦(3𝑦 + 4𝛼1) = 0, and from this equation we obtain, 𝑦 = 0 or 3𝑦 + 4𝛼1 = 0. Put 𝑦 = 0 into the equation (6b) to get: 

 

 𝛼1 = 0                                                                 (7). 

 

Let 𝑦 ≠ 0 and 3𝑦 + 4𝛼1 = 0 this implies 𝑦 = −
4𝛼1

3
. Put 𝑦 = −

4𝛼1

3
 into the equation (6b) to get: 

2

3
𝛼1(8𝛼1 − 9) = 0. Since, 𝑦 ≠ 0 and 

𝑦 = −
4𝛼1

3
, so 𝛼1 ≠ 0. Therefore,  

 

(8𝛼1 − 9) = 0                                                                (8).  

 

The result of multiplying the equations (7 and 8) is as follows: 𝛼1(8𝛼1 − 9) = 0. 

 

Lemma 2. ( Degeneration towards the normal of the border 𝐳 = 𝟎 (external degeneration)) The structure of parametrical 

formula describing the parametric set Π1,0
ext   is as follows: 
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𝛼2(4𝛼1 2 − 4𝛼1𝛼2 + 𝛼2 2 − 4𝛼1 + 6𝛼2) = 0. 

 

Proof: All points (𝑦, 0, 𝛼1, 𝛼2) that fulfill the following relations are represented by the set Π1,0
𝑒𝑥𝑡:

∂𝑊(𝑦,0,𝛼1,𝛼2)

∂𝑦
=

∂𝑊(𝑦,0,𝛼1,𝛼2)

∂𝑧
= 0, this 

implies 𝑦3 + 3𝑦2 + 2𝑦𝛼1 = 𝑦2 + 𝑦 + 𝛼2 = 0. 

 

These relations are equivalent to the following equations system: 

 

𝑦3 + 3𝑦2 + 2𝑦𝛼1 = 0                                                                     (9a)

𝑦2 + 𝑦 + 𝛼2 = 0                                                                     (9b)
 

 

Multiplying the equation (9b) by −𝑦 and then adding the result to the equation (9a) gives us: 𝑦(2𝑦 − 𝛼2 + 2𝛼1) = 0, and from this 

equation, we obtain 𝑦 = 0 or 2𝑦 − 𝛼2 + 2𝛼1 = 0. Put 𝑦 = 0 into the equation (9b) to get: 

 

𝛼2 = 0                                                              (10).  

 

Let 𝑦 ≠ 0 and 2𝑦 − 𝛼2 + 2𝛼1 = 0, this implies 𝑦 =
1

2
𝛼2 − 𝛼1. Put 𝑦 =

1

2
𝛼2 − 𝛼1 into the equation (9b) to get: 

 

 4𝛼1
2 − 4𝛼1𝛼2 + 𝛼2 2 − 4𝛼1 + 6𝛼2 = 0                                                               (11).  

 

The result of multiplying the equations (10 and 11) is as follows: 𝛼2(4𝛼1 2 − 4𝛼1𝛼2 + 𝛼2 2 − 4𝛼1 + 6𝛼2) = 0. 

 

Lemma 3. ( Interior (non-boundary) degradation)The parametrical equation: 

 

−8𝛼1 3 + 48𝛼1 2𝛼2 − 96𝛼1𝛼2
2 + 64𝛼2 3 + 21𝛼1 2 − 30𝛼1𝛼2 + 57𝛼2 2 − 18𝛼1 + 5 = 0 

 

is what creating the parametric set Π1,1.  

 

Proof: We take into account the function (5)'s critical points that the following structure 

defines in order to find the set Π1,1: 
∂𝑊(𝑦,𝑧,𝛼1,𝛼2)

∂𝑦
=

∂𝑊(𝑦,𝑧,𝛼1,𝛼2)

∂𝑧
= 0, 𝑧 > 0, this implies: 

 

𝑦3 + 3𝑦2 + 2𝑦𝑧 + 2𝑦𝛼1 + 𝑧 =
𝑧

2
+ 𝑦2 + 𝑦 + 𝛼2 = 0                                             (12) 

 

Then, to obtain the following equation, put the function (5)'s Hessian matrix's determinate equal to zero: 

 

 −
5

2
𝑦2 − 𝑦 + 𝑧 + 𝛼1 − 1 = 0                                              (13) 

The relations (12 and 13) can be rewritten as follows: 

 

𝑦3 + 3𝑦2 + 2𝑦𝑧 + 2𝑦𝛼1 + 𝑧 = 0                                               (14a)
𝑧

2
+ 𝑦2 + 𝑦 + 𝛼2 = 0                                              (14b)

−
5

2
𝑦2 − 𝑦 + 𝑧 + 𝛼1 − 1 = 0                                              (14c)

 

 

Multiplying the equation (14b) by 
5

2
 and then adding the result to the equation (14c) gives us: 

3

2
𝑦 +

9

4
𝑧 + 𝛼1 − 1 +

5

2
𝛼2 = 0, its 

solution for 𝑦 gives: 

 

 𝑦 = −
3

2
𝑧 −

2

3
𝛼1 + 

2

3
−

5

3
𝛼2                                                (15). 

 

Put the equation (15) in the equation (14b), to get:  

 

𝑧 = −
4

9
𝛼1 −

10𝛼2

9
+

2

3
±

2

9
√2𝛼1 − 4𝛼2 − 1                   (16). 

 

Substituting the equations (15 and 16) in the equation(14a), and simplifying the result we obtain: 
2

3
𝛼1+

2

3
𝛼2−

4

9
4

9
𝛼1−

8𝛼2
9

−
2

9

= ±√2𝛼1 − 4𝛼2 − 1, thus, after squaring and simplifying both sides of this equation, one finds 
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8𝛼1 3 − 48𝛼1 2𝛼2 + 96𝛼1𝛼2 2 − 64𝛼2 3 − 12𝛼1 2 + 48𝛼1𝛼2 − 48𝛼2 2 + 6𝛼1 − 12𝛼2 − 1 

= 9𝛼1
2 + 18𝛼1𝛼2 + 9𝛼2

2 − 12𝛼1 − 12𝛼2 + 4 

 

Finally, moving all the terms of the last equation to the right, we find: 

 

−8𝛼1 3 + 48𝛼1 2𝛼2 − 96𝛼1𝛼2 2 + 64𝛼2 3 + 21𝛼1 2 − 30𝛼1𝛼2 + 57𝛼2 2 − 18𝛼1 + 5 = 0. 

 

Theorem 1. The formula that follows represents the function (5)'s parametric equation of  its bifurcation set(the caustic): 

 

 𝛼2𝛼1(8𝛼1 − 9)(4𝛼1 2 − 4𝛼1𝛼2 + 𝛼2 2 − 4𝛼1 + 6𝛼2)(−8𝛼1 3 + 48𝛼1 2𝛼2

 −96𝛼1𝛼2 2 + 64𝛼2 3 + 21𝛼1 2 − 30𝛼1𝛼2 + 57𝛼2 2 − 18𝛼1 + 5) = 0.
 

 

Proof: Considering that the union of the following three sets constitutes the caustic of function (5): 

 

Π = Π1,0
𝑖𝑛𝑡 ⋃  Π1,0

ext ⋃  Π1,1 

 

Therefore, the parametrical equation for the caustic will be made up of the result of multiplying each left portion of the caustic 

components formulas together with setting the result to be zero. We know the equations of the caustic components have been 

found in the lemmas (1), (2) and (3), thus,  𝛼2𝛼1(8𝛼1 − 9)(4𝛼1 2 − 4𝛼1𝛼2 + 𝛼2 2 − 4𝛼1 + 6𝛼2)(−8𝛼1 3 + 48𝛼1 2𝛼2 − 96𝛼1𝛼2 2 +

64𝛼2 3 + 21𝛼1 2 − 30𝛼1𝛼2 + 57𝛼2 2 − 18𝛼1 + 5) = 0, will serve as the parametric equation for the bifurcating set (caustic) of the 

function (5). 

 

Theorem 2. The following are the bifurcation spread matrices of the function (5)'s critical points: 

 

(
0 3 0
0 1 0

) , (
0 3 0
0 0 0

) , (
0 3 0
1 1 0

) , (
1 2 0
0 1 0

) , (
1 2 0
0 0 0

)                            (17) 

 

Proof: From the caustic equation that it has been found by Theorem (1), the geometric representation of this equation can be 

found by Figure 1. The parameters' plane can be divided into eight regions (𝑆𝑖 , i = 1,2,3,4,5,6,7,8,9,10) by this figure. Every zone 

has a certain number of real crucial spots that are not degenerate. Both internal and boundary points are included in this set of 

points. The second derivative test can be used to figure out the quality of the boundary and interior points. As a result, the crucial 

points are distributed as follows: 

 

1) If the pair of parameters (𝛼1, 𝛼2) is a member of 𝑆1 or 𝑆2 or 𝑆5, then, there are four crucial points: one saddle point in the interior 

and three saddle points on the boundary 𝑧 = 0. 

2) if the parameters pair (𝛼1, 𝛼2) belong to 𝑆3 or 𝑆4 or 𝑆6 or 𝑆7, then the boundary 𝑧 = 0 has three crucial points that are saddle.  

3)  if the parameters pair (𝛼1, 𝛼2) belong to 𝑆8, then we have five critical points: three saddle points on the boundary 𝑧 = 0, and 

two interior points: a minimum point, and a saddle point. 

4) if the parameters pair (𝛼1, 𝛼2) belong to 𝑆9, then there are four crucial spots: two saddle spots on the border 𝑧 = 0, one minimal 

spot on the border also, and one saddle spot inside. 

5) if the parameters pair (𝛼1, 𝛼2) belong to 𝑆10, then we have three critical points (two saddle points and one minimum point on 

boundary 𝑧 = 0 ). 

 

The matrices are obtained from the five items above as are described in (17). 
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Figure 1: Depicts the function (5)'s caustic in 𝛼1𝛼2- plane 

 

Note 1. Studying graphing by contour lines with critical points: Figure 2 sections (𝑎1), (𝑎2), (𝑎3), (𝑎4), and (𝑎5) depict the contour 

lines' placements in relation to the function's domain borders (5), as well as the number and kind of critical points that correspond 

to each region in the function's caustic regions (5), where depicting of (𝑎1) represents the regions 𝑆1 or 𝑆2 or 𝑆5,( 𝑎2) represents 

the regions 𝑆3 or 𝑆4 or 𝑆6 or 𝑆7, (𝑎3) represents the region 𝑆8, (𝑎4) represents the region 𝑆9 and (𝑎5) represents the region 𝑆10. 

 
(𝑎1) contour lines' placements and kind of critical              (𝑎2) contour lines' placements and kind of critical 

points in the regions 𝑆1 or 𝑆2 or 𝑆5                                       points in the regions 𝑆3 or 𝑆4 or 𝑆6 or 𝑆7 

 

 
(𝑎3) contour lines' placements and kind of critical           (𝑎4) contour lines' placements and kind of critical 

points in the region 𝑆8                                                            points in the region 𝑆9 
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(𝑎5) contour lines' placements and kind of critical 

points in the region 𝑆10 

 

Figure 2. contour lines' placements and kind of critical points in the function's caustic regions (5) 

 

5.  Applications  

The following ordinary differential equation (ODE) is an application of our study: 

 

𝛽𝑟′′ + 𝛾 𝑟 + 2𝑟3 − (
1

2
(𝑟′)2 + 𝑟𝑟′′) = 0, 

 

with the coming boundary conditions 𝑟(0) = 𝑟(1) = 0, where 𝑟 = 𝑟(𝑠), 𝑠 ∈ [0,1] and 𝛽 and 𝛾 are parameters. The ODE has been 

converted from the Camassa Holm equation of the type: 

 

𝑣𝑡 + 2𝑐𝑣𝑦 − 𝑣𝑦𝑦𝑡 + 6𝑣2𝑣𝑦 = 2𝑣𝑦𝑣𝑦𝑦 + 𝑣𝑣𝑦𝑦𝑦, [Li, 2013] 

 

where 𝑣 is the fluid velocity in the y direction and the constant c is associated with the critical wave speed in shallow water, by the 

transformation, 𝑠 = 𝑦 − 𝛽𝑡, 𝑣(𝑦, 𝑡) = 𝑟(𝑠). 

 

We decided to 𝑔: 𝐸 → 𝐹 has an index of zero and is a nonlinear Fredholm operator, the space, 𝐸 = 𝐷2([0,1], ℝ) contains all 

continuous real functions whose derivatives have no more than two orders,  𝐹 = 𝐷0([0,1], ℝ) is the space of all continuous real 

functions and the following operator expression defines the function 𝑔 as :  

 

𝑔(𝑟, 𝛼) = 𝛽𝑟′′ + 𝛾𝑟 + 2𝑟3 − (
1

2
(𝑟′)2 + 𝑟𝑟′′) = 0            (18). 

    

In the following theorem, we show that the key function of the functional (4) and function (3) are interchangeable.  

 

Theorem 3: The key function's normal form 𝑊1, which corresponds to the functional (4), is 

 

𝑊1(𝑧, 𝛼) =
𝑧1

4

4
+

𝑧2
4

4
+ 𝑧1

2𝑧2
2 + 𝑧1

3 + 𝑧1𝑧2
2 + 𝛼1𝑧1

2 + 𝛼2𝑧2
2 

 

𝑧 = (𝑧1 , 𝑧2), 𝛼 = (𝛼1, 𝛼2) and 𝛼1, 𝛼2 are parameters. 

 

Proof: The linearized expression that matches to equation (18) at (0, 𝛼) can be obtained by applying the Lyapunov-Schmidt 

technique. It has the following form:  

 
𝐿𝑘 = 0, 𝑘 ∈ 𝐸

𝑘(0) = 𝑘(1) = 0,
 

where, 𝐿 = 𝛽
𝑑2

𝑑𝑥2 + 𝛾. 

 

The linearized expression's solution that meets the initial conditions is provided by 𝑒𝑝(𝑠) = 𝑐𝑝sin (𝑝𝜋𝑠), 𝑝 = 1,2, … and the 

characteristic formula corresponding to this solution is −𝛽(𝑝𝜋)2 + 𝛾 = 0.This formula provides characteristic lines ℓ𝑝 in the 𝛽𝛾 − 

plane. The points (𝛽, 𝛾)  for which there are non-zero solutions to the linearized equation make up the characteristic lines ℓ𝑝  

[Sapronov, 1996]. The bifurcation point for equation (18)  can be found at (𝛽, 𝛾) = (0,0), which is the place where the characteristic 

lines in the 𝛽𝛾 – plane intersect.  
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The bifurcation along the modes is caused by parameters 𝛽, 𝛾 that are localized as follows: 𝛽 = 0 + 𝛿1, 𝛾 = 0 + 𝛿2, 𝛿1, 𝛿2. The modes 

are 𝑒1(𝑠) = 𝑐1sin (𝜋𝑠), 𝑒2(𝑠) = 𝑐2sin (2𝜋𝑠), where ∥∥𝑒1∥∥ = ∥∥𝑒2∥∥ = 1. Then we get 𝑐1 = 𝑐2 = √2. 

 

Let 𝑁 = Ker (𝐿) = span{𝑒1, 𝑒2}, then both 𝑁 and its orthogonal supplement where they represent direct summation that can be 

used to decompose the space 𝐸: 

𝐸 = 𝑁 ⊕ 𝑁⊥, 𝑁⊥ = {𝑣 ∈ 𝐸: ∫  
1

0

 𝑣𝑒𝑠𝑑𝑥 = 0, 𝑠 = 1,2}. 

 

Two projections are in existence 𝑃: 𝐸 → 𝑁 and 𝐼 − 𝑃: 𝐸 → 𝑁⊥ in which 𝑃𝑛 = 𝜏 and (𝐼 − 𝑃)𝑛 = 𝑤, (𝐼 serves as the operator for 

identity). Therefore, any vector 𝑛 in 𝐸 may be expressed in the form, 

 

𝑛 = 𝜏 + 𝑤                                                                          (19), 

where 𝜏 = 𝑧1𝑒1 + 𝑧2𝑒2 ∈ 𝑁, 𝑤 ∈ 𝑁⊥, 𝑧𝑖 = ⟨𝑛, 𝑒𝑖⟩; 𝑖 = 1,2. 

 

Consequently, a smooth map Θ exists according to the implicit function theorem, such that Θ: 𝑁 → 𝑁⊥ and 

�̃�(𝜁, 𝜂) = 𝑉(Θ(𝑤, 𝜂), 𝜂),  𝜁 = (𝑧1, 𝑧2), 𝜂 = (𝛿1, 𝛿2). 

 

The key function �̃� can therefore be expressed as follows: 

 

�̃�(𝜁, 𝜂) = 𝑉(𝑧1𝑒1 + 𝑧2𝑒2 + Θ(𝑧1𝑒1 + 𝑧2𝑒2, 𝜂), 𝜂)

  = 𝑊2(𝜁, 𝜂) + 𝑜(|𝜁|4) + 𝑂(|𝜁|4)𝑂(𝜂),
 

where, 

 

 𝑊2(𝜁, 𝜂) =
3

4
𝑧1 4 +

2

3
𝜋√2𝑧1 3 + (−

1

2
𝛽𝜋2 +

𝛾

2
) 𝑧1 2 + 3𝑧1

2𝑧2
2 +

24𝜋√2𝑧1𝑧2 2

5

  +
3

4
𝑧2

4 + (−2𝛽𝜋2 +
𝛾

2
) 𝑧2

2.

 

 

For the function �̃�, its principal part 𝑊2 fully determines the geometrical shape of critical points' bifurcations and the branches' 

initial asymptotic of bifurcating. 𝑊1 and 𝑊2are contact equivalences if we replace 𝑧1 by 
𝑧1

√3
4  and 𝑧2 by 

𝑧2

√3
4   in the function 𝑊2. This is 

because they share the same germ (the same principal part), 𝑊0 =
𝑧1

4

4
+

𝑧2
4

4
, and the deformation in this instance. Consequently, the 

function 𝑊2's and the function 𝑊1's caustics correspond [Marsden, 1983]. 

 

Thereby, the function 𝑊1 possesses all of the functional (4)'s topological and analytical properties, meaning that studying the 

bifurcation of equation (18) is the same as studying the bifurcation of the function 𝑊1. This demonstrates that it is equal to 

investigating the bifurcating solutions of equation (18) to investigate the bifurcating solutions of function (3).  

 

6. Conclusion  

In this paper, we found the functional (4) that satisfies the variational property of (18) (as an operator). We found the key function 

corresponding to functional (4) in Theorem 3. We proved that function (3) of the fourth degree is equivalent to the key function. 

We found the bifurcation solution regions of (18) (as an equation), which are the critical points of function (3) spread in the 

branching diagram (caustic). Also, the parametric equation was found. The critical points were classified and their regions of 

existence in the diagram were found. Finally, an application of this work was given. 
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