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| ABSTRACT 

In [Ungar 2008; Ungar 2015] A.A. Ungar, employs the Einstein gyrovector spaces for the introduction of the gyrotrigonometry, 

Ungar’s and other researcher’s works play a major role in translating some theorems from Euclidean geometry to corresponding 

theorems in Einstein gyrovector spaces.  In Euclidean geometry, the sum of the squares of the lengths of opposite sides of convex 

or concave quadrilaterals whose diagonals intersect perpendicularly is equal to each other.  In this paper, we present this theorem 

in Einstein gyrovector spaces in terms of gamma factors. 
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1. Introduction 

Hyperbolic geometry appeared in the first half of the 19th century. It is also known as a type of non-Euclidean geometry. Although 

Euclidean Geometry and Hyperbolic Geometry have common concepts as distance, angle, both these geometries have many 

different. Hyperbolic Geometry has many models such as: Poincare’ disc model, Einstein relativistic velocity model, etc. 

Einstein gyrovector spaces form the algebraic setting for the Beltrami-Klein ball model of Hyperbolic Geometry, just as vector 

spaces form the algebraic setting for the standard model of Euclidean Geometry. 

Let c be the vacuum speed of light, and let 

ℝ𝑐
3 = {𝒗 ∈ ℝ3 ∶ ‖𝒗‖ < 𝑐}                                                                                     (1.1) 

be the c ball of all relativistically admissible velocities of material particles. Einstein addition in c-ball is given by the equation  

𝒖 ⨁ 𝒗  =
1

1+
𝒖⋅𝒗

𝑠2

{𝒖 + 𝒗 +
1

𝑐2

𝛾𝒖

1+𝛾𝒖
(𝒖 × (𝒖 × 𝒗))} (1.2) 

for all 𝒖, 𝒗 ∈ ℝ𝑐
3, where 𝒖 ⋅ 𝒗is the inner product that the ball ℝ𝑐

3 inherits from its space ℝ3, 𝒖 × 𝒗is the vector product in ℝ𝑐
3 ⊂ ℝ3 

and where 𝛾𝒖 is the gamma factor 

𝛾𝒖 =  
1

√1−
‖𝒖‖2

𝑐2

≥ 1                                                                                          (1.3) 

in the c-ball.  

Owing to the vector identity, 

(𝒙 × 𝒚) × 𝒛 = −(𝒚 ∙ 𝒛)𝒙 + (𝒙 ⋅ 𝒛)𝒚                                                                          (1.4) 
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for all   𝒙, 𝒚, 𝒛 ∈ ℝ3, Einstein addition (1.2) can also be written in the form 

𝒖⨁𝒗 =
1

1+
𝒖⋅𝒗

𝑠2

{𝒖 +
1

𝛾𝒖
𝒗 +

1

𝑠2

𝛾𝒖

1+𝛾𝒖

(𝒖 ⋅ 𝒗)𝒗}                                                                     (1.5) 

which remains valid in higher dimensions. Einstein addition (1.5) of relativistically admissible velocities was introduced Einstein in 

1905.  

In this paper, we study in an Einstein gyrovector space who was introduced by A. A. Ungar [2008, 2009, 2015]. 

2. Preliminaries  

Definition 2.1. A groupoid(𝔾,⊕) is a gyrogroup if its binary operation satisfies the following axioms. In 𝔾 there is at least one 

element, 0, calledleftidentity, satisfying 

𝟎⨁𝒂 = 𝒂 

for all 𝒂 ∈ 𝔾. There is an element 𝟎 ∈ 𝔾 for each 𝒂 ∈ 𝔾 there is an element ⊖ 𝒂 ∈ 𝔾, called a left inverse of 𝒂, satisfying  

⊖ 𝒂⨁𝒂 = 𝟎. 

Moreover, for any 𝒂, 𝒃, 𝒄 ∈ 𝔾 there exit a unique element 𝑔𝑦𝑟[𝒂, 𝒃]𝒄 ∈ 𝔾 such that binary operation obeys the left gyroassociative 

law  

𝒂⨁(𝒃⨁𝒄) = (𝒂⨁𝒃)⨁𝑔𝑦𝑟[𝒂, 𝒃]𝒄. 

The map  𝑔𝑦𝑟: 𝔾 → 𝔾  is given by 𝒄 ↦ 𝑔𝑦𝑟[𝒂, 𝒃]𝒄is an automorphism of the groupoid (𝔾,⊕), that is,  

𝑔𝑦𝑟[𝒂, 𝒃] ∈ 𝑨𝒖𝒕(𝔾,⊕) 

and the automorphism  𝑔𝑦𝑟[𝒂, 𝒃] of automorphism of 𝔾 is called the gyroautomorphism  of𝔾 generated by 𝒂, 𝒃 ∈ 𝔾. Finally, the 

gyroautomorphism  of𝔾 generated by 𝒂, 𝒃 ∈ 𝔾 possesses the left loop property  

𝑔𝑦𝑟[𝒂, 𝒃] = 𝑔𝑦𝑟[𝒂 ⊕ 𝑏, 𝒃]. 

Additionally, if the binary operation “⊕ " obeys the gyrocommutative law  

𝒂⨁𝒃 = 𝑔𝑦𝑟[𝒂, 𝒃](𝒃⨁𝒂) 

for all 𝒂, 𝒃 ∈ 𝔾, then (𝔾,⊕) is called a gyrocommutative gyrogroup. 

Definition 2.2. Let 𝕍 be a real inner product space and let 𝕍𝑠 be the s-ball of 𝕍, 

𝕍𝑠 = {𝒗 ∈ 𝕍 ∶ ‖𝒗‖ < 𝑠}, 

where  𝑠 > 0 is an arbitrary fixed constant. Einstein addition ⊕ is a binary operation in 𝕍𝑠 given by the equation 

𝒖⨁𝒗 =
1

1 +
𝒖⋅𝒗

𝑠2

{𝒖 +
1

𝛾𝒖
𝒗 +

1

𝑠2

𝛾𝒖

1 + 𝛾𝒖

(𝒖 ⋅ 𝒗)𝒗} 

where 𝛾𝒖 is the gamma factor 

𝛾𝒖 =  
1

√1 −
‖𝒖‖2

𝑠2

≥ 1 

in the s-ball 𝕍𝑠, and where  ∙ and ‖. ‖ are the inner product and norm that the ball 𝕍𝑠 inherits from its space 𝕍. 

Einstein addition satisfies the mutually equivalent gamma identities  

𝛾𝒖⨁𝒗 = 𝛾𝒖𝛾𝒗 (1 +
𝒖 ⋅ 𝒗

𝑠2 ) 

and 

𝛾⊖𝒖⨁𝒗 = 𝛾𝒖𝛾𝒗 (1 −
𝒖 ⋅ 𝒗

𝑠2
) 

for all 𝒖, 𝒗 ∈ ℝ𝑠
𝑛.  
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When the nonzero vectors 𝒖and 𝒗in the ballℝ𝑠
𝑛of ℝ𝑛are parallel in   ℝ𝑛, 𝒖 ∥ 𝒗, that is, 𝒖 = 𝜆𝒗for some 0 ≠ 𝜆 ∈ ℝ, Einstein addition 

reduces to the Einstein addition of parallel velocities 

 

𝒖⨁𝒗 =
𝒖 + 𝒗

1 +
‖𝒖‖‖𝒗‖

𝑠2

 

Hence,  

‖𝒖‖⨁‖𝒗‖  =
‖𝒖‖ + ‖𝒗‖

1 +
‖𝒖‖‖𝒗‖

𝑠2

 

for all 𝒖, 𝒗 ∈ ℝ𝑠
𝑛. In this case, Einstein addition is both commutative and associative. 

In the Newtonian limit, 𝑠 → ∞, s-ball ℝ𝑠
𝑛 expands to the whole of its space ℝ𝑛, and Einstein addition ⨁ in ℝ𝑠

𝑛 reduces to vector 

addition +  inℝ𝑛. 

Theorem2.3.(ℝ𝑠
𝑛,⊕) Einstein groupoid is a gyrocommutative gyrogroup. 

Some gyrocommutative gyrogroups admit scalar multiplication, giving rise to gyrovector spaces. 

Definition 2.4. A (𝔾,⊕,⊗) gyrovector space is a gyrocommutative gyrogroup (𝔾,⊕)that obeys the following axioms: 

1. 𝑔𝑦𝑟[𝒖, 𝒗]𝒂 ⋅ 𝑔𝑦𝑟[𝒖, 𝒗]𝒃 = 𝒂 ⋅ 𝒃for all points 𝒂, 𝒃, 𝒖, 𝒗 ∈ 𝔾. 

2. 𝔾 admits a scalar multiplication,  ⊗ , possessing following properties. For all real numbers  𝑟, 𝑟1, 𝑟2 ∈ ℝ and all points  

and𝒂 ∈ 𝔾: 

• 1⨂𝒂 = 𝒂 

• (𝑟1 + 𝑟2)⨂𝒂 = (𝑟1⨂𝒂)⨁ (𝑟2⨂𝒂) 

• (𝑟1𝑟2)⨂𝒂 = 𝑟1⨂(𝑟2⨂𝒂) 

• 
|𝑟|⨂𝒂

‖𝑟⨂𝒂‖
=

𝒂

‖𝒂‖
𝒂 ≠ 𝟎   , 𝑟 ≠ 0 

• gyr[𝒖, 𝒗](𝑟⨂𝒂) = 𝑟 ⨂ gyr[𝒖, 𝒗](𝒂) 

• gyr[𝑟1⨂𝒗, 𝑟2⨂𝒗] = 𝐼 

3. Real vector space structure (‖𝔾‖,⊕,⊗) for the set ‖𝔾‖ of one-dimensional “vectors” 
‖𝔾‖ ≔ {∓‖𝒂‖:  𝒂 ∈ 𝔾} ⊂ ℝ 

with vector addition ⊕ and scalar multiplication ⊗, such that for all   𝑟 ∈ ℝ and 𝒂, 𝒃 ∈ 𝔾, 

• ‖𝑟⨂𝒂‖ = |𝑟|⨂‖𝒂‖ 

• ‖𝒂⨁𝒃‖ ≤ ‖𝒂‖⨁‖𝒃‖ 

Theorem2.5. An Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is an Einstein gyrocommutative gyrogroup (ℝ𝑠
𝑛, ⨁) with scalar 

multiplication ⨂ given by 

𝑟⨂𝒗 = 𝑠
(1 +

‖𝒗‖

𝑠
)

𝑟
− (1 −

‖𝒗‖

𝑠
)

𝑟

(1 +
‖𝒗‖

𝑠
)

𝑟
+ (1 −

‖𝒗‖

𝑠
)

𝑟

𝑣

‖𝒗‖
= 𝑠𝑡𝑎𝑛ℎ(𝑟𝑡𝑎𝑛ℎ−1

‖𝒗‖

𝑠
)

𝑣

‖𝒗‖
 

Definition 2.6. Let ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) be an Einstein gyrovector space. Its gyrometric is given by the gyrodistance function 

𝑑⊕: ℝ𝑠
𝑛 × ℝ𝑠

𝑛 ⟶ ℝ≥0 ≔ {𝑟 ∈ ℝ: 𝑟 ≥ 0}, 

𝑑⊕(𝒂, 𝒃) = ‖⊖ 𝒂 ⊕ 𝒃‖ = ‖𝒃 ⊖ 𝒂‖ 

where 𝑑⊕(𝒂, 𝒃) is the gyrodistance of 𝒂and 𝒃.  

The unique Einstein gyroline𝐿𝐴𝐵 that passes two given points 𝐴 and 𝐵 in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is 

represented by the equation 

𝐿𝐴𝐵 = 𝐴 ⊕ (⊖ 𝐴 ⊕ 𝐵)⨂𝑡 

𝑡 ∈ ℝ. Gyrolines in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) turn out to be well-known geodesic of the Beltrami Klein ball 

model of hyperbolic geometry.  
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3. Some Gyrotrigonometric Identities 

Let 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛 be three distinct points and ⊖ 𝑨 ⊕ 𝑩, ⊖ 𝑨 ⊕ 𝑪be two rooted gyrovectors with a common tail A. They include the 

gyroangle𝜶 = ∠𝑩𝑨𝑪 = ∠𝑪𝑨𝑩,  the radian measure of which is given by the equation 

𝒄𝒐𝒔𝜶 =
⊖𝑨⊕𝑩

‖⊖𝑨⊕𝑩‖
∙

⊖𝑨⊕𝑪

‖⊖𝑨⊕𝑪‖
.(3.1) 

Definition 3.1.  A gyrotriangle 𝑨𝑩𝑪 in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is a object formed by the three points 

𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛, called the vertices of the triangle, and the gyrovectors  ⊖ 𝑨 ⊕ 𝑩, ⊖ 𝑩 ⊕ 𝑪and⊖ 𝑪 ⊕ 𝑨, called the sides of the 

triangle.These are respectively, the sides opposite to the verticesC,Aand B. The gyrotriangle sides generate the 

threegyrotrianglegyroangles𝜶, 𝜷and𝜸 at the respective vertices A, B and C. 

 

Gyrotrianglegyroanglesum in hyperbolicgeometryislessthan𝜋. The difference, 𝛿,  

𝛿 = 𝜋 − (𝛼 + 𝛽 + 𝛾)                                                                                            (3.2) 

being the gyrotriangulardefect. 

 

Theorem 3.2. Let 𝑨𝑩𝑪be a gyrotriangle in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛,and sides𝒄 =

⊖ 𝑨 ⊕ 𝑩, 𝒂 = ⊖ 𝑩 ⊕ 𝑪and𝒃 =⊖ 𝑪 ⊕ 𝑨,withgyroangles𝜶, 𝜷and𝜸 at the vertices A, B and C.Thenwe have the law of cosines 

𝛾𝑐 = 𝛾𝑎𝛾𝑏(1 − 𝑏𝑠𝑐𝑠𝑐𝑜𝑠𝛾)                                                                                        (3.3) 

where𝑎 = ‖𝒂‖, 𝑏 = ‖𝒃‖, 𝑐 = ‖𝒄‖and𝑏𝑠 = 𝑏/𝑠, etc. 

 

Definition 3.3. A right gyroangle𝛾 is a gyroangle measuring  
𝜋

2
 radians. 

 

Theorem 3.4.A gyrotriangle 𝑨𝑩𝑪 in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is a right gyrotriangle with gyrolegs  𝒂, 𝒃and 

gyrohypotenuse𝒄, if and only if  

𝛾𝑐 = 𝛾𝑎𝛾𝑏.                                                                                               (3.4) 

 

Theorem 3.5. Let 𝑨𝑩𝑪be a right gyrotriangle in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) with the right gyroangle𝛾 = 𝜋/2. 

Thenwe have two distinct Einsteinian-Phytagoreanidentities 

𝑎2 + (
𝛾𝑏

𝛾𝑐
)

2
𝑏2 = 𝑐2                                                                                      (3.5) 

(
𝛾𝑎

𝛾𝑐
)

2
𝑎2 + 𝑏2 = 𝑐2                                                                                      (3.6) 

with hypotenuse𝑐 and legs 𝑎 and 𝑏. 

 

4. Application of Einsteinian-PhtagoreanIdentities 

As an application of gyrotrigonometryin an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), we verify the following theorem: 

 

Theorem 4.1. Let 𝑨𝑩𝑪be a gyrotriangle in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛,and sides𝒄 =

⊖ 𝑨 ⊕ 𝑩, 𝒂 = ⊖ 𝑩 ⊕ 𝑪and𝒃 =⊖ 𝑪 ⊕ 𝑨.We suppose that the orthogonal projections ofsides𝒃and 𝒂 on side 𝒄of the 

gyrotriangleare𝒄𝟏 =⊖ 𝑨 ⊕ 𝑫 and 𝒄𝟐 =⊖ 𝑩 ⊕ 𝑫,respectively, and 𝑬is an arbitrary point on the gyroline segment 𝑪𝑫.Then 

(𝑎2 ⊖ 𝑚2)⨂𝛾𝑎
2 = (𝑏2 ⊖ 𝑘2)⨂𝛾𝑏

2 . 

where𝑎 = ‖⊖ 𝑩 ⊕ 𝑪‖, 𝑏 = ‖⊖ 𝑪 ⊕ 𝑨‖, 𝑐 = ‖⊖ 𝑨 ⊕ 𝑩‖, 𝒎 = ‖⊖ 𝑬 ⊕ 𝑩‖, 𝒌 = ‖⊖ 𝑬 ⊕ 𝑨‖. 

Proof : For simplicity, let 

𝑐1 = ‖⊖ 𝐴 ⊕ 𝐷‖, 𝑐2 = ‖⊖ 𝐵 ⊕ 𝐷‖, 𝑥 ⊕ 𝑦 = ‖⊖ 𝐶 ⊕ 𝐷‖, 𝑦 = ‖⊖ 𝐸 ⊕ 𝐷‖ 

be gyrolenghts of gyrovectors⊖ 𝑨 ⊕ 𝑫,⊖ 𝑩 ⊕ 𝑫,⊖ 𝑪 ⊕ 𝑫and ⊖ 𝑬 ⊕ 𝑫. For the right gyrotriangles 𝑨𝑫𝑪and 𝑨𝑫𝑬, by the (3.6), 

we have  

(
𝛾𝑥⊕𝑦

𝛾𝑏
)

2
⨂(𝑥 ⊕ 𝑦)2 ⊕ 𝑐1

2 = 𝑏2(4.1) 

and 

(
𝛾𝑦

𝛾𝑘
)

2
⨂𝑦2 ⊕ 𝑐1

2 = 𝑘2 .(4.2) 

From (4.1) and (4.2), we obtain that  

(
𝛾𝑥⊕𝑦

𝛾𝑏
)

2
⨂(𝑥 ⊕ 𝑦)2 ⊖ (

𝛾𝑦

𝛾𝑘
)

2
⨂𝑦2 = 𝑏2 ⊖ 𝑘2.(4.3) 

Similary, for the right gyrotriangles 𝑩𝑫𝑪and 𝑩𝑫𝑬, by the (3.6), we have  
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(
𝛾𝑥⊕𝑦

𝛾𝑎
)

2
⨂(𝑥 ⊕ 𝑦)2 ⊕ 𝑐2

2 = 𝑎2(4.4) 

and 

(
𝛾𝑦

𝛾𝑚
)

2
⨂𝑦2 ⊕ 𝑐2

2 = 𝑚2.(4.5) 

We have by (4.4), (4.5) 

(
𝛾𝑥⊕𝑦

𝛾𝑎
)

2
⨂(𝑥 ⊕ 𝑦)2 ⊖ (

𝛾𝑦

𝛾𝑚
)

2
𝑦2 = 𝑎2 ⊖ 𝑚2(4.6) 

Hence by, (4.3) and (4.6), we have , 

⊖
𝛾𝑦

2𝛾𝑏
2

𝛾𝑘
2 ⨂𝑦2 ⊕

𝛾𝑦
2𝛾𝑎

2

𝛾𝑚
2 𝑦2 = (𝑏2 ⊖ 𝑘2)𝛾𝑏

2 ⊖ (𝑎2 ⊖ 𝑚2)𝛾𝑎
2(4.7) 

On the other hand, from Theorem 3.4., for the right gyrotriangles 𝑩𝑫𝑪,𝑩𝑫𝑬, 𝑨𝑫𝑪, 𝑨𝑫𝑬, we get  

𝛾𝑦
2

𝛾𝑚
2 =

1

𝛾𝑐2
2

,             𝛾𝑎
2

𝛾𝑐2
2 =

1

𝛾𝑥⊕𝑦
2 ,       

𝛾𝑦
2

𝛾𝑘
2 =

1

𝛾𝑐1
2 ,     

𝛾𝑏
2

𝛾𝑐1
2 = 𝛾𝑥⊕𝑦

2 .(4.8) 

These equations imply that  

⊖ (
1

𝛾𝑐1

2 𝛾𝑏
2) ⨂𝑦2 ⊕ (

1

𝛾𝑐2

2 𝛾𝑎
2) ⨂𝑦2 = (𝑏2 ⊖ 𝑘2)⨂𝛾𝑏

2 ⊖ (𝑎2 ⊖ 𝑚2)⨂𝛾𝑎
2 

and 

⊖ 𝛾𝑥⊕𝑦
2 ⨂𝑦2 ⊕ 𝛾𝑥⊕𝑦

2 ⨂𝑦2 = (𝑏2 ⊖ 𝑘2)⨂𝛾𝑏
2 ⊖ (𝑎2 ⊖ 𝑚2)⨂𝛾𝑎

2. 

Then we obtain 

(𝑎2 ⊖ 𝑚2)⨂𝛾𝑎
2 = (𝑏2 ⊖ 𝑘2)⨂𝛾𝑏

2 . 

5. Conclusion  

The Einstein relativisticvelocitymodel is a model of hyperbolicgeometry. Many of theorem of Euclideangeometry are 

relativelysimilarform in the  Einsteinrelativisticvelocity model is a model of hyperbolicgeometry. In Euclidean geometry, the sum of 

the squares of the lengths of opposite sides of convex or concave quadrilaterals whose diagonals intersect perpendicularly is equal 

to each other, that is,  

𝑎2 − 𝑚2 = 𝑏2 − 𝑘2                                                                     (5.1) 

 

In an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) for agyrotriangle, a 𝑨𝑩𝑪 with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛,and sides𝒄 =⊖ 𝑨 ⊕ 𝑩, 𝒂 = ⊖

𝑩 ⊕ 𝑪and𝒃 =⊖ 𝑪 ⊕ 𝑨. (5.1) turns to  

(𝑎2 ⊖ 𝑚2)⨂𝛾𝑎
2 = (𝑏2 ⊖ 𝑘2)⨂𝛾𝑏

2 . 

where 𝑎 = ‖⊖ 𝑩 ⊕ 𝑪‖, 𝑏 = ‖⊖ 𝑪 ⊕ 𝑨‖, 𝑐 = ‖⊖ 𝑨 ⊕ 𝑩‖, 𝒎 = ‖⊖ 𝑬 ⊕ 𝑩‖, 𝒌 = ‖⊖ 𝑬 ⊕ 𝑨‖. In the Euclideanlimit, of large s, 𝑠 → ∞, 

gamma factor 𝛾𝒖 reduces to 1, gyroequalty in Theorem 4.1 reduces to the 

𝑎2 − 𝑚2 = 𝑏2 − 𝑘2 

inEuclideangeometry. 
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