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| ABSTRACT

The primary purpose of this work was to prove the boundedness of the Fractional Maximal Operator in Grand Herz Spaces on
the Hyperplane. Here, We defined Grand Herz Space in a continuous Case. For Simplicity, We divided our Problem into two
theorems by taking two subsets of Hyperplane(U) as (U(1)) and its complement (U\U(1)). We proved the boundedness of the
Fractional Maximal Operator in Grand Herz Space on these two subsets of Hyperplane. We also defined the continuous Case of
Grand Herz Space. We proved some results to use in our proof. We represented other terms this paper uses, i.e. the Hyperplane
and Fractional Maximal operator. Our proof method relied on one of the corollaries we gave in this paper. We proved the
condition to apply that corollary, and then by referring to this, we confirmed both of our theorems. This paper is helpful in
Harmonic analysis and delivers ways to analyse the solutions of partial differential equations. The Problem of our discussion
provides methods to study the properties of very complex functions obtained from different problems from Physics, Engineering
and other branches of science. Solutions of nonlinear Partial Differential equations often resulted in such functions which
required deep analysis. Our work helps check the boundedness of such types of functions.
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1. Introduction

Grand Herz Spaces (GHS) are in active research these days. Herz spaces (HS) introduced by Herz (Lipschitz 1968, p.14) play a
significant role in harmonic analysis and PDEs. These are very helpful in studying functions in every field of Science, i.e. Physics,
Chemistry, Biology, Engineering and many more. The boundedness of the maximal operator M, was studied for Herz spaces (HS)
in Li and Yang (Li 1996, p.14) and Herz spaces (HS) with variable exponents in Aimeida and Drihem (Almeida 2012, p.14). See also
literature (Izuki 2009, p.14), (Mizuta 2020, p.14), (Ragusa 2009, p.14) and (Samko 2013, p.14). Cruz-Uribe, Fiorenza and Neugebauer
(Cruz-Uribe 2012, p.14) proved an extension of the well-known weighted boundedness results for the maximal operator in variable
weighted Lebesgue spaces. Capone, Cruz-Uribe and Fiorenza (Capone 2007, p.14) studied the boundedness of the fractional
maximal operator M, in LPO(R™). In (Mizuta 2015, p.14) Weighted Morrey spaces of variable exponent and Riesz potentials were
studied. The work of Mizuta Y, Shimomura (Mizuta 2021, p.14) shows the boundedness of the fractional maximal operator M, in
the Herz spaces H?47(U) on the Hyperplane. Inspired by this work we shall prove the Boundedness of Fractional Maximal
Operators in Grand Herz Spaces on the Hyperplane. We proved the result with the help of two theorems by splitting the Hyperplane
into two subsets U(1) and U\U(1) and treating them separately. In this paper, C is a constant and is an independent parameter.

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.
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2. Preliminaries

2.1 Grand lebesgue space

2.1.1 Definition

The grand lebesgue space is defined as the space of Lebesgue measurable functions f on Q such that

€ 1
Iy = sup G [ IFGOP-Sdni= < oo
0<e<p-1 |Q| Q

Where |Q]| is Lebesgue measure of Q.

2.1.2 Holder inequality for Grand Lebesgue space
By [12] the following Hdélder-type inequality holds.
1
i | fax = Wl llgllvf € 1@, vg € 1)
Where [|gll is norm of small lebesgue space given by
- -1 1
lgllp: = inf Z inf ev-e f (=€) dx)w-or
g » 30 { (lﬂl ﬂlgkl ) }

9=k 0<e<p-1
k=1 =i

2.2 Fractional Maximal Operator
2.2.1 Definition
For the Euclidean space R™ (n = 2) and 0 < A < n a measurable function f on R", we define the fractional maximal function M, f
as
A

M;f(x):= SUP B )] . IfO)ldy
Here B(x,r) is the ball in R™ of center x and radius r > 0 and its Lebesgue measure is |B(x,r)|. Fractional maximal operator is the
mapping f = M, f. We can write Mf for M,f if 1 = 0.

2.3 Hyperplane
2.3.1 Definition

Lets take
U={x= (%) € R xR:|x'| <1,x, > 0}
and
Ur)={x=((,x) ER"IXR: x| <1,0 < x, <71}
Where r > 0.

2.4 Grand Herz Space
2.4.1 Definition
When 1 < g < o and Q € R" ,a measurable set we represent the Grand Herz space of all measurable functions f on Q by HP)47(Q)

« dt L
1 llymancy = C fo @1l anpy)? ) <
ForU(t):={y e U:t/2 < y, < t}
Important results: Now we shall modify some main lemmas and corollaries to prove our main theorems. We can write that
L _ - _ 2Yn _e) dt
sup e [ IF Py Py < € [ IFOP=(C [T 1@ Tydy (1)

0<e<p-1

@ _ - d
<C Ly PO (fy IFOIPdN) T @

Fory, <tand U(t) ={y e U:t/2 <y, <t}

Lemma 2.1 Suppose u > 0

(a) For constants a = 0 and B; > 0 satisfying

sup_eve Joer 1f)IP~€dx < Byr=® ©)

0<e<p-—
Where 0 <r <1,
then a constant C > 0 depending on Bj, a, p exists such that

1
Il ey <7+ 6 f@IP-ednp=
U(r)

foro<r<1.
(b) For constant b = 0 and B, > 0 satisfying
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”f”LP)(ETJ(r)) < Bz’”_b
foro<r<1i,
then a constant € > 0 depending on By, b, u satisfying
1

sup er-e ﬁ IfIP~¢dx < v# + CUIf ll o @ry) P~
0<e<p-1

U
for0<r<1.
proof: Let A(7): = lIf |l ) then
S M@hpe,
W Jogy Gy )P "dx =1 “)
Assume

sup e;f [f(X)|P~€dx < Byr™@
0<e<p-—-1 @(r)

Where 0 <r < 1.

Ifrt < A(r) < 1then C71A(r)~ P9 < A(r)=®=9) < CA(r)~ (=9

Forall x € U(r)

If A(r) = 1 then A(r)~®=9) < A(r)~! so that A(r) < B;r~% by (3) and (4).

Therefore for each x € T(r),A(r)~®~© < CA(r)~P~9) having a constant € > 0 depending on B, a. Hence by (4) again

A(r) < C( fm @

Which proves result (a).
Result (b) follow a similar proof.
From the Lemma 2.1 and relation relation (2) we get following corollary.
Corollary 2.1.1 Suppose n is a real number

”f”HP)rqrn(U(l)) <
Iff

1 q-€

EENY e e dr
sup ep-ff (r"(p'e)f |f(x)|P~€dx)pe— < o0
1 U(r) r

0<e<p-1

Lemma 2.2 From [13] Suppose € < 1 is a real number
f lx =yl "dy" < Cy ™
{yeU:|x—y|>xn/2}
when y, > x,, and
| b~ ylendy’ < Cx?
YE{U:|x—y|>xn/2}
when x,, = y,
From lemma 2.1 and relation (2) we get the Lemma as given below.
Lemma 2.3 Suppose u > 0
(@) For constants a = 0 and B; > 0 such that

1

sup E;J- |f (x)|P~€dx < Byr®
o

0<e<p-1
where r > 1,
then a constant C > 0 exists which depends on By, a, u so that

1
Iy <77+ (| 1rGor-<an=
U(r)

forr > 1.
(b) For constants b > 0 and B, > 0
”f”LP)(@(r)) < Bzrb
Where r > 1,
then a constant C > 0 exists which depends on B,, b, u so that
1
sup e [ IFIP<dx < 77+ ClIfl )
0<e<p-1 U(r)
Where r > 1.
From Lemma 2.3 and relation (2) we attain following corollary.
Corollary 2.3.1 Consider that n is a real number
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”f”H”)'q'"(IUQZ(U(l)) <

< dr
sup er- Ef (- e)f |f(x)|P~€dx)pc— <
/) r

0<e<p-1

3. Boundedness of FMO in GHS on the Hyperplane

First we shall show boundedness of fractional maximal operator M; in HPA1(U(1)).
1

= _— < —_ < —

Theorem 3.1 Suppose e 6)* o " n 2>00nU Let 6)* <n < and 1<(@—-€e)<(p—¢€)=
Then C > 0 is a constant in such a way that
||le”1-117*)rqﬂ7([u(1)) < C”f”yp)m?aua» (5)
for f € L},.(U(1)).
proof: For a measurable function f on U we can start by

My f () < Ma[f XB(xxn] (%) + Cf lx = yI* " If )Idy

U\B(x,xn/2)

=:A;(x) + CA(x)
Now
A1 (x) < CMy[fxpe](®) (6)

Where x € TU(t),U(t) = U(t/2) uT()u T2t = {y e U:]y'| < 1,% < yp < 2t}

If C > 0 is a constant we shall prove that

”A1||HP*)J1J1(U(1)) <C (7)
Where f € L%oc([U) with “f”HP)rqﬂl([U(n) <1

Now by boundedness of fractional maximal operator [13] We can write that there exists a constant C > 0 so that
||M/1f||Lp*)(U(1)) < C||f||Lp)(uJ(1))) (8)
Using relation (6) and (8) we get

(g0 dt (a-e) dt
f (t “AlHL?’*)EU(t)) a-e —< Cf (tn||Ml[fX[TJ(t)]“Lw)([U)> T

( )dt
< Cf (tn”f”LP)[ﬁ(t)) - T
0

2

(a-e) dt

< Cf (tn”f”LP)ﬁ(t)) - T
0

<C
Relation (7) has proved.
Now we shall prove the following result for a constant € > 0

”A2||Hp*)q77(uj(1)) <C (9)

A measurable function f on U is in such a way that ”f”Hp),q,n(]U(l)) <1
and f = 0 on (U\U(1))
We consider the case only 1 < (g — €) < (p — €) * for ease

n n 1 A
(P—E)_A_(p—E)*ZP—E_A_(p—E_5>
A
=(n—1)( _E)>O

o “pe G- e)*'" - e)f
Gi:={y € U\B(x, xn/z) Yn < Xn}

_uf [P dt
Aza () = j x =y f(ydy < f x =y Oy (f th T) dy
2xn @ Gl_ dt Yn
Cf <j Ix—yl’l‘"f(y)yn”dy> th—
o \Mawwone

Zxn dt
c f ([ sorou)es
0 (UENGy)

Here s(y) =[x — y| “p-¢ @-a'y * and F(y) = |x — y|e<f (). Let s(y) € LP" and F(y) € L® then by using Hélder inequality from
[12] we have

and

We choose €, 4 > 0 in such a way that —
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A _szxnU F d)t#ﬂ
21(x) = | (U(t)ncl)S(y) Ondy n

2xp dt
< Cfo (”S”LI”)(@(t)nGl)”F”L(p(lﬁ(t)ncl))t#T

Here we use generalized Hélder inequality

1
2xp —
@ dt\@-er @
Ay =C <f0 (llS”LP’)(uJ(t)nGl)) ¢ ) X . (”F”L(p(lu(t)ncl))

=:0Q110Q1,2
Now set
Q:= S(y)(p_f)’dy
U()nG,
Now from Lemma 2.1 for 0 <t < 2x, and 0 < x, <1
Q < C[;_ll(p—E)’ f~ |x _ yl(A—E——(p_é),)(p—e)ldy
(U()NG1)
< Cemr@=or | Ix — yl( —=)(p-e)r My
U)ING1)
t (A=) p—-e)r—
< Ct—u(p—e)rf xr(l p_e)(p €) 1dyn
t/2
< Cx,(f_ﬁ)(p_e)’_lt—#(p—e)r+1
and
Zl,l = ”S”Lp’)(ﬁ(t)n(;l) )
L p—€)!
= sup €®- E'<7.’- Iul(p e)rdx>
0<e<p-1 [U() NGy
<cC (x,(f_ﬁ)(p_e)’_lt—u(p—E)'+1>( =
-1 ) _ 1
< er(l p-€ (p—s)')t L ITEY,
Also

ﬁ F ()P dy = f I = Yl )P dy
T(t)nG, U()NG,

= keyere)eody
O
< Ccte—n-np-e)
As |x — y| 2"2—">%>£ande<nsofrom lemma 2.1

Zipi= ”F”L@(ﬁ(t)ncl)

1

p-e
<ti4C (f |x — ylf‘"f(y)“"é)dy>
T()nG,

1
2xp Jo€ __1 L \@-ey dt (@-er
A =C (J (x,(l pe e)’)t (p_s),> t”?
0

for a > 0 finally we get

1 (B3] q-€
2xp p—e dt
[ {ewe(] ey =
0 T()nG, t
A——+a A-—=-L
<Cx, " +Cx, "1
P e

2Xn p—€ dt
x f f X =yl F o) POdy |
0 T(e)nG, t

Aspu < noting that

( )

—€

K

2Xn p—€ dt
Zyqi= f f =yl fn@Ody )
0 T(e)nG, t

dt
t

1
>(q—6)
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2xp ¢ ) a-c dt
<c e TP gy Yp-eth —
<cf )t

@-¢
(e-n)—
<Cx, ®°

As (E—n)éz:g—n(q—e)+u<0and (g—€e)<(p—e) =~

—n(q—€)+u

From Minkowski's inequality
(q-¢)

(p—€)*
Ay (0P dx
U

< Cr(l—ﬁﬂz = E))(q €)

q-¢)
A€ _H -+ (-e)
+C f T pme a-€(Z; 3)@adx
WG]

< Cr(l_ﬁ-'—a (p— e)*)(q €) + Cr( péé q- 5)(q €)

(e-myZ=

2r )
x f F)@O f X =yl dyrerdy | S
0 T(e) (NG

Here Gy, = {U\B(y,yn/2)}As

f [x —y| w-9dx < Cr
E(T)ncu

From lemma 2.2 and (ﬁ - A) (p — €) *< 1 we have

q-¢)

A———ta+——

-6y [CROR (
Ay (0)PT"dx < Cr\” p-e
U(r)

So
(a-¢) d
€ n(p-€)* . (p—€)* (p-e)- A1
0<esh- fp =l )% (Jry 42200~ dx) 7"
< Cfol (n+/1 - s)*)(q € dr

r

ﬁ
1 2 (0 2 (g 1200 o)

rob+n(a-€) ﬂ) et
T t

<c+cfy (fue f(Y)p_edy)g (12 K

<ctefZ oo ([ o)L
<C

€ 1
Whenr)+/1—p:+a+m>0and —u+n(@g—e)<o0

In the same way we use ¢, u > 0 so that

€ u €

@-o+ @-o:,
& &2+

2
|
o

=
I
L

dt
t

—-€

< |

*)(q [ p—€ ﬂ
(- + Cr™* fy)P~€dy tH
0 T(e) t

(10)
(m
(12)
(13)
(14)
(15)

1

1
—a=(n+o—mr) <-n<
p—e€ TTe-o- 757
and take G,: = {y € U\B(x, x,/2): ¥ = xp}

N CELE

NCEDE

ndt
taa@) = [ ey Oy < C fG Ix—yl’l‘”f(y)yy’f(f t‘*‘T)dy

z A dt
sc[ ([ eyt e
xn \YU(t)NG,

2 _dt
<c j n < jm (t)nazw(”')(”dy> %

PRI en
Here w(y) = |x — y|" »=< @-o7y} and D(y) = |x — y|-<f ()

By Hdlder inequality from [12] we get

2
42200 = € [ IWlln @nanIP oot ™ 5
Xn

Using generalized Hélder inequality

Yn

dt
t
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2 (q-eyr dt\@-er E)'
12200 < ([ AWl o) @t
Xn

2 dt (q )
% (| (1Mhogone) e F)
=:CQ2,1Q2,2
Now take
Q:= w()®~"dy
T(t)NG,
From Lemma 2.2
Q< Ct#(ﬁ-é)'f |x — y|( )@ dy
; @®NGy)
1—)w-e)r-1
SCt#(P—E)’f yrg p—e) dyn,
t/2
< Ct(l—ﬁﬂt)(p—e)'

Fory € (T(t) n GZ)

ASA_;<(1J E),

2 , dt\@-or e)r
Qo1 = | AWlliongone,) e =

Xn
1

1 (q—e) (q—e)’
2 1 @-or dt
sup e@-or o ( [w(y)|®=e tTH—
0<e<pr-1 [U) N G| Jgne, t

n

2 1 1 . 1 (q—e)r it @
=C f sup e€w@-e’ <~—> (t(’l‘gw)(p—e)')(z}—e) -t
x, \0<e<pr—1 [U(t) N Gy ;

1
< C< 2 t(l—ﬁﬂt)(q—e)rt_ﬂ ﬁ)(q—s)r
Xn t

1
’ < @or
<cC <J t(l—;ﬂt)(q—e)r_u ﬂ)(q )
Xn t
R
<Clx, —€ q-€

Since £~ < = — 1 and
q-€  p-€

| poypcay= [ -yierropcdy
T()NG, (NG,

< Ccten-n—e)
As |x —y| = y,/3 >t/6 and € < n from Lemma 2.1 for b > 0

1
p-e€
IDIl.0@@ne,y St°+C (ﬁ |x — YIA(”‘E)‘"f(Y)(p‘S)dy>
U

(HNG,
for € > 0 Finally we obtain
q—€

e 1

A_ﬁ+(qﬁ€) 2 b(p—€) e-n p-€ P —u dt L
Azp(x) < C| xp (] |t + lx =T f )P dy | tTE )
Xn U(t)NnG,

< er(f pie+(qlié)) + er(ll pie+(q56))

1

a-€ q-€
q-€

2 e dt
x f f =yl foyr-edy | s
xn \YT()NG, t

2 E-n p—€ P —-u dt
Zys = B lx =yIT"f NP dy | tTH
xn \YU(t)NG,

2 q-€
< Cf (tf—n—n(p—e))ﬁt—uﬂ
Xn t

When b(q —€) > u

™
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(e— n)(—) n(q—€)—u
<(Cx,

. (e—n) I 1 _n _ _ _
Since (.29 @ o pe (1 WP =)< 0
Here we apply Minkowski's inequality
q-€
p—€)*
(f Az z(x)(P E)*dx>
U(r)
< Cr(l_ﬁ-'—ie (p— e)*)(q €)
q—€
(p—e)* (p-e)*
+C<f Oz (2, 3)q6dx>p
U]
€ " 1
< Cr(l_ﬁ ) @ +
q-€
-, @-o  \@-or
Cr(l —te- )(q 2 (J- (Zy3) o dx) '
LG)
€ " € "
< cr st @-o + cr st )@-o
-9\
? e (e-m) 22y \@=er
<[] powre([ e ) ey
r/2 \ 1 TE)NGy)
q-€
€k 2 p—e dt
< e G +Cr"f ( f(}’)p_edy) tTH—
r/2 \J0() t
Here G, = {x € U: |[x —y| > r/4}
So
q-¢) d
su gp € rn—e)* A () @Oy PO A
0<E<E 1 f ( ) ([U(r) 22() ) r
N
< Cfoz r(" Sy tsemrn) (CRIOR
=

2 € dt\d
+6 (00 13, (o FOP ) )

2 — Tg 2t —e) d _yat
<0+ C (o FOI3)" (fo a9 ) on

<C

Results (15) and (21) shows that by corollary 2.1.1 assertion (9) holds.
By results (7) and (9) result (5) holds.

Hence proof of theorem is complete.

tTH —

t

Now in this paper we shall show boundedness of fractional maximal operator M, in HP»47(U\U(1)).

1 1 A
o o ; > 0 on Hyperplane and suppose

n 1

—A— < j— < —
oo <n< (p_e),(< n—A2a — ) and1<(g—¢e)<(p—¢)=
Then there is a constant C > 0 in such a way that

Theorem 3.2 Let

”le”Hp*)'q'”(U\[U(l)) < C”f”yl’)ﬂﬂ?([u\[u(l))
For f € Lio(U\U(D)
proof: We can write

MAf () < Mlf eyl + C [
[U\B(x,xn/z)
=:4;(x) + CAx(x)

Note that

A1 (x) < CMu[fxon] ()

Forx € U(t),U(t) = T(t/2)uT()u TRt ={y e U:|y'| < 1,% < yp < 2t}

For a constant C > 0 we shall prove that

“A1I|HF*)rquI([U\[U(1)) <C

For f € Lioc(U) with If llymanoauqyy < 1

lx = y1* ™ Oldy

(16)
(17)
(18)
(19)
(20)
(21)
(22)

(23)

(24)
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Now by boundedness of fractional maximal operator [13] We can write that there exists a constant € > 0 so that
”le”Lp*)([U\lU(l)) < C||f||LP)(U\[U(1))) (25)

From relations (23) and (25) we get

(q-e) dt ® @-o dt
f (4 lpou) O T < € fl GULATZE [ R

dt
f (tn”f”LP)U(t))(q 6)

( )dt
f (tn”f”LP)U(t)) e
c

IA

Where f is a measurable function on (U\U(1)).
Which proves the result (24).
Now we shall prove that if C > 0 is a constant then
”AZHHP*)JNI([U\U(l)) <C (26)
Where f is a measurable function on U so that ||l ym.anypay) < 1
and f =0 on (U(1))
As |41l ypoananuay) < C SO we see that
IMALF X (Ul gporanquegpucayy < €

forty > 1.
Hence we treat only fxU\U(t,) so that we may suppose that f = 0 on IU(tO)

. €
Tafe €1 > 0 in such a way tha;c oo i A<ga" < —y and
_ £ _
(r-€)+ q-¢ tn< p—€ A< (p-e)+
If to > 1 is much larger then

1

€
oo -0 oo
for x € U\U(t,)
Now considering Gy: = {y € U\B(x, x,/2): ¥, < x5}
As in proof of theorem 3.1 by Hélder inequality for grand lebesgue space from [12] for
X, >ty >1

2xp dt
Ay (%) —f lx —y|* " f(y)dy < Cf (||5||LP'>(®(t)nc;1)”F”L(P(ﬁ(t)ncl))t”T

€ n €—

P
Here s(y) = |x —y|" 7= @9y, “ and F(y) = |x — ylp‘ef(y)
From generalized Hélder inequality

1 1
(a6, AL\ (@), 4L\
A <C <L (IIsll 0@y, ) t) <\, (”F”L@(wt)ncl)) 7
0 0
=:CQz,1Q2,2

Now take
e=[  see-ody
0()nG,

By Lemma 2.2 for ty < t < 2x,

(-
0< Ct_u(p_e)rf |x _yl_ p_e +A(P—é)/—ndy
([U(t)FGlg
t ep— :'+A(p €)r-1
< Ct‘“(p‘e)’f x, p- dy,
t/2
lettg <t < 2x,
Zy1 = ”5”L1”)(®(t)nG1) N
1 1 (p-e)
= sup e | ———— |S|(p_€),dx
0<e<pi—1 [U®) NGl Jwwney
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1

- (p—e)
<C (x(/1 w-er- #(p—E)'+1> ’

< 75 p—e (p 15)!)t ﬁ

As
f F(y)(p—e)dy < Ccten-np—e)
T(t)nG,

From lemma 2.3
Z12:= IFll e @one,)

1
—€

P
<tadc ( [ - y|€-"f(y)@-f>dy>
(N6,

for € > 0. Finally we get

1

2xn (== 1 dt\@-e
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0
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As 11(q — €) < u so by applying Minkowski’s mequality we get
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Here G;, = U\B(y, y,/2).Since
)((p—e)* (e- )((p 6)
w-o9dx < Cr [ 6)

[ e
T(r)NGy,

N Ce (R
From lemma 2.2 and (ﬁ —D(p —€) *< 1 we attain

-
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(27)

(28)
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In the same way we will take ¢, u > 0 so that —n < £ <« )< .
q-€ p-e€ (p—€)=

<A<ﬁand—u+n(q—e)<0

n

Now considering G,: = {y € U\B(x, x,/2): Y, = X}
Azp(¥) = | x—yI* " f()dy
Gy
By Hélder inequality from [12] and then
by generalized Hdélder inequality we get

1
o @@-ey _ dt\@or
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Here w(y) = |x —y|" #=< @-oy} and D(y) = |x — y|r=<f (¥)
Now let

Q:= w()P~'dy
T(t)NG,

From Lemma 2.2

0< Ct(l—ﬁﬂt)(p—e)'

Where y € (T(t) N G,).
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From lemma 2.3 forb > 0
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(e} q—€
< Cf (te—n—n(p—E))Et—uﬁ
=¢J. n

L& m(E5)-na-e-n
TL

(e-m@-e) _ .
As— 5 —n@-e)-u<0

so from Minkowski's inequality we get
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Here G,, = {x € U: |x — y| > Z} and

€ u c € 1
A= + - <A- -b+
p—€ q—€ (p—e)=* p—€ p—e€)x
Therefore
1 @-e)
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o e (2t d ud
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<C (38)

€ 1
Whenr)+/1—p——b+(p_

—€
Results (32) and (38) shows that by corollary (2.3.1) assertion (26) holds.
By results (26) and (24) result (22) holds. Hence proof of theorem is complete.

e)*<0and,u+n(q—e)>0

4. Conclusion

Here, we took continuous cases for Grand Herz Space. We studied the boundedness of the FMO in GHS on Hyperplane. To prove
our required result, we split our work into two theorems. We successfully proved both theorems. Hence, theorem 3.1 and theorem
3.2 prove the boundedness FMO in GHS on Hyperplane. Grand Herz Space is a newly defined space. It is advantageous in studies
and properties of solutions of many differential equations arising from Physics and other fields of Science. It was challenging to
prove boundedness on the entire Hyperplane, and due to this difficulty, we had to divide the Hyperplane into two subsets. This
way, we confirmed our required claim but had to follow a lengthy procedure. The continuous case of Grand Herz Space is a newly
defined space, and still, there are many operators whose boundedness can be checked through this space. Our work in this paper
has many applications in solutions of nonlinear partial differential equations.
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