
Journal of Mathematics and Statistics Studies  

ISSN: 2709-4200 

DOI: 10.32996/jmss 

Journal Homepage: www.al-kindipublisher.com/index.php/jmss 

   JMSS  
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

 

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 47  

| RESEARCH ARTICLE 

On Modules over 𝑮-sets 

Mehmet Uc1 ✉ and Mustafa Alkan2 

1Burdur Mehmet Akif Ersoy University, Assistant Professor Doctor, Department of Mathematics, Burdur, Turkey 
2Akdeniz University, Professor Doctor, Department of Mathematics, Burdur, Turkey 

Corresponding Author: Mehmet Uc, E-mail: mehmetuc@mehmetakif.edu.tr 

 

| ABSTRACT 

Let 𝑅 be a commutative ring with unity, 𝑀 a module over 𝑅 and let 𝑆 be a 𝐺–set for a finite group 𝐺. We define a set 𝑀𝑆 to be 

the set of elements expressed as the formal finite sum of the form ∑ 𝑚𝑠𝑠∈𝑆 𝑠 where 𝑚𝑠 ∈ 𝑀. The set 𝑀𝑆 is a module over the 

group ring 𝑅𝐺 under the addition and the scalar multiplication similar to the 𝑅𝐺–module 𝑀𝐺. With this notion, we not only 

generalize but also unify the theories of both, the group algebra and the group module, and we also establish some significant 

properties of (𝑀𝑆)𝑅𝐺 . In particular, we describe a method for decomposing a given 𝑅𝐺–module 𝑀𝑆 as a direct sum of 𝑅𝐺–

submodules. Furthermore, we prove the semisimplicity problem of (𝑀𝑆)𝑅𝐺 with regard to the properties of 𝑀𝑅, 𝑆 and 𝐺. 
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1. Introduction 

Throughout this paper, 𝐺 is a finite group with identity element 𝑒, 𝑅 is a commutative ring with unity 1, 𝑀 is an 𝑅–module, 𝑅𝐺 is 

the group ring, 𝐻 ≤ 𝐺 denotes that 𝐻 is a subgroup of 𝐺 and 𝑆 is a 𝐺–set with a group action of 𝐺 on 𝑆. If 𝑁 is an 𝑅–submodule 

of 𝑀, it is denoted by 𝑁𝑅 ≤ 𝑀𝑅. 

𝑀𝑆 denote the set of all formal expression of the form ∑ 𝑚𝑠𝑠∈𝑆 𝑠 where 𝑚𝑠 ∈ 𝑀 and 𝑚𝑠 = 0 for almost every 𝑠. For elements 𝜇 =

∑ 𝑚𝑠𝑠∈𝑆 𝑠, 𝜂 = ∑ 𝑛𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆, by writing 𝜇 = 𝜂 we mean 𝑚𝑠 = 𝑛𝑠 for all 𝑠 ∈ 𝑆. 

We define the sum in 𝑀𝑆 componentwise 

𝜇 + 𝜂 = ∑ (𝑚𝑠 + 𝑛𝑠)

𝑠∈𝑆

𝑠. 

It is clear that 𝑀𝑆 is an 𝑅–module with the sum defined above and the scalar product of ∑ 𝑚𝑠𝑠∈𝑆 𝑠 by 𝑟 ∈ 𝑅 that is ∑ (𝑟𝑚𝑠)𝑠∈𝑆 𝑠. 

For 𝜌 = ∑ 𝑟𝑔𝑔∈𝐺 𝑔 ∈ 𝑅𝐺, the scalar product of ∑ 𝑚𝑠𝑠∈𝑆 𝑠 by 𝜌 is 

𝜌𝜇 = ∑ 𝑟𝑔

𝑠∈𝑆

𝑚𝑠(𝑔𝑠), 𝑔𝑠 = 𝑠′ ∈ 𝑆,

= ∑ 𝑚𝑠′

𝑠′∈𝑆

𝑠′ ∈ 𝑀𝑆.
 

It is easy to check that 𝑀𝑆 is a left module over 𝑅𝐺, and also as an 𝑅–module, it is denoted by (𝑀𝑆)𝑅𝐺  and (𝑀𝑆)𝑅, respectively. 

The 𝑅𝐺–module 𝑀𝑆 is called 𝐺–set module of 𝑆 by 𝑀 over 𝑅𝐺. It is clear that 𝑀𝑆 is also a 𝐺–set. If 𝑆 is a 𝐺–set and 𝐻 is a subgroup 

of 𝐺, then 𝑆 is also an 𝐻–set and 𝑀𝑆 is an 𝑅𝐻–module. In addition, if 𝑆 is a 𝐺–set and a group, and 𝑀 = 𝑅, then it is easy to verify 

that 𝑅𝑆 is a group algebra. On the other hand, if a group acts on itself by multiplication then naturally, we have (𝑀𝑆)𝑅𝐺 = (𝑀𝐺)𝑅𝐺 . 

Since there is a bijective correspondence between the set of actions of 𝐺 on a set 𝑆 and the set of homomorphisms from 𝐺 to 𝛴𝑆 

(𝛴𝑆 is the group of permutations on 𝑆), the 𝐺–set modules is a large class of 𝑅𝐺–modules and we would say that (𝑀𝐺)𝑅𝐺 Introduced 

in (Kosan et al., 2014) considering the group acting itself by multiplication is the first example of the 𝐺–set modules. That is why 
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the notion of the 𝑅𝐺–module 𝑀𝑆 presents a generalization of the structure and discussions of 𝑅𝐺–module 𝑀𝐺 and some principal 

module-theoretic questions arise out of the structure of (𝑀𝑆)𝑅𝐺 . Therefore, this new concept generalizes not only the group ring 

(see Anderson & Fuller, 2012; Connell, 1963; Karpilovsky, 1986; Passi, 1979, Passmann, 2011; Shen, 2018) and group algebra (see 

Alperin & Rowen, 1995; Curtis & Reiner, 1983; Milies & Sehgal, 2002) but also the group module (see Kosan et al. 2014; Kosan & 

Zemlicka, 2020; Ones et al., 2020; Uc et al., 2016; Uc & Alkan, 2017), and also unifies the theory of these concepts. 

 

The purpose of this paper is to introduce the concept of the 𝑅𝐺–module 𝑀𝑆, and show the close connection between the properties 

of (𝑀𝑆)𝑅𝐺 , 𝑀𝑅, 𝑆  and 𝐺. The semisimplicity of (𝑀𝑆)𝑅𝐺 with regard to the properties of 𝑀𝑅, 𝑆 and 𝐺 and the decomposition of 

(𝑀𝑆)𝑅𝐺  into 𝑅𝐺–submodules will occupy a significant portion of this paper. In Section 1, we present some examples and some 

properties of (𝑀𝑆)𝑅𝐺  to show that an 𝑅–module can be extended to 𝑅𝐺–modules in various ways via the change of the 𝐺–set and 

the group ring. In Section 2, we give our first major result about the decomposition of a given 𝑅𝐺–module 𝑀𝑆 as a direct sum of 

𝑅𝐺–submodules. In Section 3, in order to go further into the structure of (𝑀𝑆)𝑅𝐺 , we first require 𝜀𝑀𝑆 that is an extension of the 

usual augmentation map 𝜀𝑅 and the kernel of 𝜀𝑀𝑆 denoted by △𝐺 (𝑀𝑆). Then we give the condition for when △𝐺 (𝑀𝑆) is an 𝑅𝐺–

submodule of (𝑀𝑆)𝑅𝐺 . Finally, we are interested in the semisimplicity of (𝑀𝑆)𝑅𝐺  according to the properties of 𝑀𝑅, 𝑆 and 𝐺. 

 

2. Examples of 𝑮–set Modules  

We start to set out the idea of 𝐺–set modules in more detail by considering some examples of 𝐺–set modules and establishing 

some properties of (𝑀𝑆)𝑅𝐺 . The following examples for (𝑀𝑆)𝑅𝐺 show how useful the notion of 𝐺–set module for extension of an 

𝑅–module 𝑀 to an 𝑅𝐺–module. They also point the relations among 𝐺–set 𝑆, 𝑅𝐺–module 𝑀𝑆, 𝐺 and 𝐻 where 𝐻 ≤ 𝐺. Example 1 

shows that for different group actions on different 𝐺–sets of the same finite group we get different extensions of an 𝑅–module 𝑀 

to an 𝑅𝐺–module. Moreover, we see that these are also 𝑅𝐻–modules unsurprisingly in Example 2. 

 

Example 1.  Let 𝑀 be an 𝑅–module, 𝐺 = 𝐷6 = ⟨𝑎, 𝑏: 𝑎3 = 𝑏2 = 𝑒, 𝑏−1𝑎𝑏 = 𝑎−1⟩ and 𝑟 = ∑ 𝑟𝑔𝑔∈𝐷6
𝑔 = 𝑟1𝑒 + 𝑟2𝑎 + 𝑟3𝑎2 + 𝑟4𝑏 + 𝑟5𝑏𝑎 +

𝑟6𝑏𝑎2 ∈ 𝑅𝐷6. 

1. Let 𝑆 = 𝐺 and let the group act itself by multiplication. Then 𝑀𝑆 = 𝑀𝐺 is an 𝑅𝐺–module. 

2. Let 𝑆 = {𝐷6, 𝐶3, 𝐶2, 𝐼𝑑} and let 𝐺 act on its set of subgroups 𝐶3 = ⟨𝑎: 𝑎3 = 𝑒⟩ ≤ 𝐷6, 𝐶2 = ⟨𝑏: 𝑏2 = 𝑒⟩ ≤ 𝐷6, 𝐼𝑑 = {𝑒} ≤ 𝐷6 by 

𝑔 ∗ 𝐻 = 𝑔𝐻𝑔−1 for 𝐻 ≤ 𝐺, 𝑔 ∈ 𝐺. Then 𝑀𝑆 = {∑ 𝑚𝑠𝑠∈𝑆 𝑠 = 𝑚𝐼𝑑𝐼𝑑 + 𝑚𝐶2
𝐶2 + 𝑚𝐶3

𝐶3 + 𝑚𝐷6
𝐷6 ∣ 𝑚𝑠 ∈ 𝑀} and we get 

 
𝑟𝜇 = (𝑟1𝑚1 + 𝑟2𝑚1 + 𝑟3𝑚1 + 𝑟4𝑚1 + 𝑟5𝑚1 + 𝑟6𝑚1)𝐼𝑑

+(𝑟1𝑚𝐶2
+ 𝑟2𝑚𝐶2

+ 𝑟3𝑚𝐶2
+ 𝑟4𝑚𝐶2

+ 𝑟5𝑚𝐶2
+ 𝑟6𝑚𝐶2

)𝐶2

+(𝑟1𝑚𝐶3
+ 𝑟2𝑚𝐶3

+ 𝑟3𝑚𝐶3
+ 𝑟4𝑚𝐶3

+ 𝑟5𝑚𝐶3
+ 𝑟6𝑚𝐶3

)𝐶3

+(𝑟1𝑚𝐷6
+ 𝑟2𝑚𝐷6

+ 𝑟3𝑚𝐷6
+ 𝑟4𝑚𝐷6

+ 𝑟5𝑚𝐷6
+ 𝑟6𝑚𝐷6

)𝐷6.

 

 

3. Let 𝑆 = {𝐾1 = {𝑒, 𝑏}, 𝐾2 = {𝑎, 𝑏𝑎}, 𝐾3 = {𝑎2, 𝑏𝑎2}} that is the set of right cosets of a fixed subgroup 𝐻 = 𝐶2 = ⟨𝑏: 𝑏2 = 𝑒⟩ ≤

𝐷6 and let 𝐺 act on 𝑆 by 𝑔 ∗ (𝐻𝑥) = 𝐻(𝑔𝑥) for 𝑥, 𝑔 ∈ 𝐺. Then 𝑀𝑆 = {∑ 𝑚𝑠𝑠∈𝑆 𝑠 = 𝑚𝐾1
𝐾1 + 𝑚𝐾2

𝐾2 + 𝑚𝐾3
𝐾3 ∣ 𝑚𝑠 ∈ 𝑀} and 

we have the following relations such that 

 
𝐾11 = 𝐾1 𝐾21 = 𝐾2 𝐾31 = 𝐾3

𝐾1𝑎 = 𝐾2 𝐾2𝑎 = 𝐾1 𝐾3𝑎 = 𝐾1

𝐾1𝑎2 = 𝐾3 𝐾2𝑎2 = 𝐾3 𝐾3𝑎2 = 𝐾2

𝐾1𝑏 = 𝐾1 𝐾2𝑏 = 𝐾3 𝐾3𝑏 = 𝐾2

𝐾1𝑏𝑎 = 𝐾2 𝐾2𝑏𝑎 = 𝐾1 𝐾3𝑏𝑎 = 𝐾3

𝐾1𝑏𝑎2 = 𝐾3 𝐾2𝑏𝑎2 = 𝐾2 𝐾3𝑏𝑎2 = 𝐾1.

 

 

 So, we get  

 

𝑟𝜇 = (𝑟1𝑚𝐾1
+ 𝑟4𝑚𝐾1

+ 𝑟3𝑚𝐾2
+ 𝑟5𝑚𝐾2

+ 𝑟2𝑚𝐾3
+ 𝑟6𝑚𝐾3

)𝐾1

+(𝑟2𝑚𝐾1
+ 𝑟5𝑚𝐾1

+ 𝑟1𝑚𝐾2
+ 𝑟6𝑚𝐾2

+ 𝑟3𝑚𝐾3
+ 𝑟4𝑚𝐾3

)𝐾2

+(𝑟3𝑚𝐾1
+ 𝑟6𝑚𝐾1

+ 𝑟2𝑚𝐾2
+ 𝑟4𝑚𝐾2

+ 𝑟1𝑚𝐾3
+ 𝑟5𝑚𝐾3

)𝐾3.

 

 

Example 2.  Let 𝑀 be an 𝑅–module, 𝐺 = 𝐷6 = ⟨𝑎, 𝑏: 𝑎3 = 𝑏2 = 𝑒, 𝑏−1𝑎𝑏 = 𝑎−1⟩, 𝐻 = 𝐶3 = ⟨𝑎: 𝑎3 = 𝑒⟩ ≤ 𝐷6 and 𝑘 = ∑ 𝑘𝑔𝑔∈𝐷6
𝑔 =

𝑘1𝑒 + 𝑘2𝑎 + 𝑘3𝑎2 ∈ 𝑅𝐶3. 

1. Let 𝑆 = 𝐺 and let the group act itself by multiplication. Then 𝑀𝑆 = 𝑀𝐺 is an 𝑅𝐻–module. 

2. Let 𝑆 = {𝐷6, 𝐶3, 𝐶2, 𝐼𝑑} with the group action defined in Example 1 (2). For 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 = 𝑚𝐼𝑑𝐼𝑑 + 𝑚𝐶2
𝐶2 + 𝑚𝐶3

𝐶3 +

𝑚𝐷6
𝐷6 ∈ 𝑀𝑆, we get 
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𝑘𝜇 = (𝑘1𝑚1 + 𝑘2𝑚1 + 𝑘3𝑚1)𝐼𝑑 + (𝑘1𝑚𝐶2
+ 𝑘2𝑚𝐶2

+ 𝑘3𝑚𝐶2
)𝐶2

+(𝑘1𝑚𝐶3
+ 𝑘2𝑚𝐶3

+ 𝑘3𝑚𝐶3
)𝐶3 + (𝑘1𝑚𝐷6

+ 𝑘2𝑚𝐷6
+ 𝑘3𝑚𝐷6

)𝐷6.
 

 

3. Let 𝑆 = {𝐾1 = {𝑒, 𝑏}, 𝐾2 = {𝑎, 𝑏𝑎}, 𝐾3 = {𝑎2, 𝑏𝑎2}} with the group action defined in in Example 1 (3). For 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 =

𝑚𝐾1
𝐾1 + 𝑚𝐾2

𝐾2 + 𝑚𝐾3
𝐾3 ∈ 𝑀𝑆, we get 

 

𝑘𝜇 = (𝑘1𝑚𝐾1
+ 𝑘3𝑚𝐾2

+ 𝑘2𝑚𝐾3
)𝐾1 + (𝑘2𝑚𝐾1

+ 𝑘1𝑚𝐾2
+ 𝑘3𝑚𝐾3

)𝐾2 + (𝑘3𝑚𝐾1
+ 𝑘2𝑚𝐾2

+ 𝑘1𝑚𝐾3
)𝐾3 

 

3. Results on 𝑮–set Modules 

Now, we make a point of some relations between the 𝑅–submodules of 𝑀 and the 𝑅𝐺–submodules of 𝑀𝑆 by the following 

results. 

 

Lemma 3.  Let 𝑁1, 𝑁2 be 𝑅–submodules of 𝑀. Then 𝑁1𝑆 + 𝑁2𝑆 = 𝑀𝑆 if and only if 𝑁1 + 𝑁2 = 𝑀. 

 

Proof. Let 𝑁1𝑆 + 𝑁2𝑆 = 𝑁𝑆. Take 𝑚 ∈ 𝑀 and so 𝑚𝑠 ∈ 𝑀𝑆 for any 𝑠 ∈ 𝑆. We write 𝑚𝑠 = ∑ 𝑛𝑠𝑖𝑠𝑖∈𝑆 𝑠𝑖 + ∑ 𝑛𝑠𝑗𝑠𝑗∈𝑆 𝑠𝑗 for ∑ 𝑛𝑠𝑖𝑠𝑖∈𝑆 𝑠𝑖 ∈ 𝑁1𝑆 

and ∑ 𝑛𝑠𝑗𝑠𝑗∈𝑆 𝑠𝑗 ∈ 𝑁2𝑆 where 𝑛𝑠𝑖
∈ 𝑁1, 𝑛𝑠𝑗

∈ 𝑁2𝑆. So, there exists 𝑖, 𝑗 such that 𝑚 = 𝑚𝑠𝑖
+ 𝑚𝑠𝑗

. 

Let 𝑁1 + 𝑁2 = 𝑀 and 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆. For all 𝑠 ∈ 𝑆, we can write 𝑚𝑠 = 𝑛𝑠 + 𝑛𝑠
′  where 𝑛𝑠 ∈ 𝑁1, 𝑛𝑠

′ ∈ 𝑁2. Hence, 𝜇 = ∑ 𝑛𝑠𝑠∈𝑆 𝑠 +

∑ 𝑛𝑠
′

𝑠∈𝑆 𝑠, and so 𝑁1𝑆 + 𝑁2𝑆 = 𝑁𝑆.  ∎ 

 

Lemma 4.  Let 𝑁1, 𝑁2 be 𝑅–submodules of 𝑀. Then 𝑁1𝑆 ∩ 𝑁2𝑆 = 0 if and only if 𝑁1 ∩ 𝑁2 = 0. 

 

Proof. Let 𝑁1𝑆 + 𝑁2𝑆 = 0. Take 𝑛 ∈ 𝑁1 ∩ 𝑁2, and so 𝑛𝑠 ∈ 𝑁1𝑆 ∩ 𝑁2𝑆. So, 𝑛 = 0 since 𝑛𝑠 = 0. 

Conversely, let 𝑁1 ∩ 𝑁2 = 0. Take 𝜂 = ∑ 𝑛𝑠𝑠∈𝑆 𝑠 ∈ 𝑁1𝑆 ∩ 𝑁2𝑆. So 𝑛𝑠 ∈ 𝑁1 ∩ 𝑁2 and 𝑛𝑠 = 0 for all 𝑠 ∈ 𝑆. Hence, 𝑁1𝑆 ∩ 𝑁2𝑆 = 0.  ∎ 

 

From (Alperin & Rowen, 1995) we recall that if 𝐺 is a finite group, 𝑆 and 𝑇 are 𝐺–sets, then 𝜑: 𝑆 → 𝑇 is said to be a 𝐺–set 

homomorphism if 𝜑(𝑔𝑠) = 𝑔𝜑(𝑠) for any 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆. If 𝜑 is bijective, then 𝜑 is a 𝐺–set isomorphism. Then we say that 𝑆 and 𝑇 

are isomorphic 𝐺–sets, and we write 𝑆 ≃ 𝑇. 

For 𝑠 ∈ 𝑆, 𝐺𝑠 = {𝑔𝑠: 𝑔 ∈ 𝐺} is the orbit of 𝑠. It is easy to see that 𝐺𝑠 is also a 𝐺–set under the action induced from that on 𝑆. In 

addition, a subset 𝑆′ of 𝑆 is a 𝐺–set under the action induced from 𝑆 if and only if 𝑆′ is a union of orbits. 

 

Theorem 5. Let 𝑀 be an 𝑅–module, 𝑁 an 𝑅–submodule of 𝑀, 𝐺 a finite group, 𝑆 a 𝐺–set. Then 
𝑀𝑆

𝑁𝑆
≃ (

𝑀

𝑁
) 𝑆. 

 

Proof. We know that 𝑁𝑆 is an 𝑅𝐺–submodule of 𝑀𝑆. Define a map 𝜃 such that 

 

  𝜃: 𝑀𝑆 → (
𝑀

𝑁
) 𝑆,  𝜇 = ∑ 𝑚𝑠

𝑠∈𝑆

𝑠 ↦ 𝜃(𝜇) = ∑ (𝑚𝑠 + 𝑁)

𝑠∈𝑆

𝑠  

𝜃(𝑔𝜇) = 𝜃 (𝑔 ∑ 𝑚𝑠

𝑠∈𝑆

𝑠) = 𝑔𝜃(𝜇)
 

So, 𝜃 is a 𝐺–set homomorphism. It is clear that 𝜃 is a 𝐺–set epimomorphism. Furthermore, 𝜃 is an 𝑅𝐺–epimorphism and we get 

ker𝜃 = 𝑁𝑆.  ∎ 

 

Lemma 6.  Any proper subset of an orbit 𝐺𝑠 of 𝑠 ∈ 𝑆 is not a 𝐺–set under the action induced from 𝑆. 

 

Proof. Suppose that a proper subset 𝑇 of an orbit 𝐺𝑠 of 𝑠 ∈ 𝑆 is a 𝐺–set. Then there exist 𝑔 ∈ 𝐺, 𝑔𝑠 ∉ 𝑇. Take an element ℎ𝑠 in 𝑇, 

ℎ ∈ 𝐺, and so 

(𝑔ℎ−1)(ℎ𝑠) = 𝑔(ℎ−1(ℎ𝑠)) = 𝑔𝑠 ∉ 𝑇. 

Hence, we call the orbit 𝐺𝑠 of 𝑠 ∈ 𝑆 the minimal 𝐺–set. Moreover, 𝑆 = ⋃
𝑖∈𝐼

𝐺𝑠𝑖 where 𝐼 denotes the index of disjoint orbits of 𝑆. 

Hence, we have 

𝑀𝑆 = 𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖). 

 ∎ 
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Lemma 7.  Let 𝑁 be an 𝑅–submodule of an 𝑅–module 𝑀, 𝑆 a 𝐺–set. Let 𝐼 denote the index of disjoint orbits of 𝑆, 𝐽 a subset of 𝐼 and 

𝑆′ = ⋃
𝑗∈𝐽

𝐺𝑠𝑗 and let 𝐺𝑠𝑖 be an orbit 𝐺𝑠 of 𝑠𝑖 ∈ 𝑆 for 𝑖 ∈ 𝐼. Then we have the following results: 

1. 𝑁𝐺𝑠𝑖 is an 𝑅𝐺–submodule of 𝑀𝑆 for 𝑠𝑖 ∈ 𝑆. Moreover, 𝑁𝐺𝑠𝑖 is a minimal 𝑅𝐺–submodule of 𝑀𝑆 containg 𝑁 under the 

action induced from that on 𝑆. 

2. 𝑁𝑆′ = 𝑁 ( ⋃
𝑗∈𝐽

𝐺𝑠𝑗) = ⋃
𝑗∈𝐽

(𝑁𝐺𝑠𝑗). 

3. 𝑁𝑆′ is an 𝑅𝐺–submodule of 𝑀𝑆. 

 

Proof. 1. It is clear that 𝑁𝐺𝑠𝑖 ⊆ 𝑀𝑆. Let 𝜂 = ∑ 𝑛𝑔𝑔∈𝐺 𝑔𝑠𝑖 ∈ 𝑁𝐺𝑠𝑖 , 𝑟 ∈ 𝑅, ℎ ∈ 𝐺. Then we have 𝑟𝜂 ∈ 𝑁𝐺𝑠𝑖 and ℎ𝜂 = ℎ(∑ 𝑛𝑔𝑔∈𝐺 𝑔𝑠𝑖) =

∑ 𝑛𝑔𝑔∈𝐺 ℎ𝑔𝑠𝑖 = ∑ 𝑛𝑔ℎ𝑔=𝑔′∈𝐺 𝑔′𝑠𝑖 ∈ 𝑁𝐺𝑠𝑖 . Hence, 𝑁𝐺𝑠𝑖 is an 𝑅𝐺–submodule of 𝑀𝑆. Assume that there is an 𝑅𝐺–submodule 𝑁1 of 𝑀𝑆 

such that 𝑁𝑅 ≤ (𝑁1)𝑅𝐺 ≤ (𝑁𝐺𝑠𝑖)𝑅𝐺 . Take an element 𝑛 ∈ 𝑁, and so 𝑛ℎ𝑠𝑖 ∈ 𝑁1 for some ℎ ∈ 𝐺 since (𝑁1)𝑅𝐺 ≤ (𝑁𝐺𝑠𝑖)𝑅𝐺 . Then 

ℎ−1(𝑛ℎ𝑠𝑖) = (𝑛𝑒𝑠𝑖) = 𝑛𝑠𝑖 ∈ 𝑁1 and 𝑔(𝑛𝑠𝑖) = 𝑛𝑔𝑠𝑖 ∈ 𝑁1 for all 𝑔 ∈ 𝐺. This means that 𝑁1 = 𝑁𝐺𝑠𝑖. 

2, 3. Clear by the definition of 𝑀𝑆. ∎ 

 

Lemma 8.  Let 𝐿 be an 𝑅𝐺–submodule of 𝑀𝑆, a fixed 𝑠 ∈ 𝑆. Then, 

1.  𝐿𝑠 = {𝑥 ∈ 𝑀 ∣ there is 𝑦 ∈ 𝐿 such that 𝑦 = 𝑥𝑠 + 𝑘, 𝑘 ∈ 𝑀𝑆} is an 𝑅–submodule of 𝑀. 

2. 𝑆𝐿 = {𝑠 ∈ 𝑆 ∣there is 𝑥 ∈ 𝑀, and also 𝑘 ∈ 𝐿 such that 𝑦 = 𝑥𝑠 + 𝑘 ∈ 𝐿 } is a 𝐺–set in 𝑆 under the action induced from that on 𝑆. 

 

Proof. 1. It is obvious that 𝐿𝑠 is in 𝑀. Let 𝑥1, 𝑥2 ∈ 𝐿𝑠′ and 𝑟 ∈ 𝑅. Then, there is 𝑦1 = 𝑥1𝑠 + 𝑘1, 𝑦2 = 𝑥2𝑠 + 𝑘2 ∈ 𝐿 and 𝑦1 + 𝑦2 =

(𝑥1 + 𝑥2)𝑠 + 𝑘1 + 𝑘2 ∈ 𝐿 where 𝑥1 + 𝑥2 ∈ 𝑀𝑆. Furthermore, 𝑟𝑦1 = 𝑟𝑥1𝑠 + 𝑟𝑘1 ∈ 𝐿, and so 𝑟𝑥1 ∈ 𝐿𝑠. 

2. Let 𝑠 ∈ 𝑆′ and 𝑔, ℎ ∈ 𝐺. Then ∃𝑥 ∈ 𝑀, ∃𝑘 ∈ 𝐿 such that 𝑦 = 𝑥𝑠 + 𝑘 ∈ 𝐿 and 

𝑥𝑠 + 𝑘 = 𝑦 = 𝑒𝑦 = 𝑒(𝑥𝑠 + 𝑘) = 𝑥𝑒𝑠 + 𝑒𝑘 = 𝑥𝑒𝑠 + 𝑘 

So, 𝑠 = 𝑒𝑠. Since 𝑠 is also an element of 𝑆, we have 

(ℎ𝑔)𝑦 = (ℎ𝑔)(𝑥𝑠 + 𝑘) = (ℎ𝑔)𝑥𝑠 + (ℎ𝑔)𝑘.
.

 

Hence, we get (ℎ𝑔)𝑠 = ℎ(𝑔𝑠). ∎ 

 

Lemma 9.  Let 𝑀 be an 𝑅–module and 𝑆 a 𝐺–set. Let 𝐼 denote the index of disjoint orbits of 𝑆 such that 𝑆 = ⋃
𝑖∈𝐼

𝐺𝑠𝑖 and let 𝐺𝑠𝑖 be an 

orbit of 𝑠𝑖 ∈ 𝑆 for 𝑖 ∈ 𝐼. If 𝑁𝐺𝑠𝑖 is a simple 𝑅𝐺–submodule of 𝑀𝑆, then 𝑁 is a simple 𝑅–submodule of 𝑀 and 𝐺 is a finite group whose 

order is invertible in 𝐸𝑛𝑑𝑅(𝑀) (|𝐺|−1 ∈ 𝐸𝑛𝑑𝑅(𝑀)). 

 

Proof. Assume that there is an 𝑅–submodule 𝐿 of 𝑀 such that 𝐿 ≤ 𝑁 ≤ 𝑀. Then (𝐿𝐺𝑠𝑖)𝑅𝐺 ≤ (𝑁𝐺𝑠𝑖)𝑅𝐺 , and by Lemma 6 this is a 

contradiction. So, 𝑁 is a simple 𝑅–submodule of 𝑀.  ∎ 

 

Theorem 10.  Let 𝐿 be a simple 𝑅𝐺–submodule of 𝑀𝑆. Then there is a unique simple 𝑅–submodule 𝑁 of 𝑀 and a unique orbit 𝐺𝑠 

such that 𝐿 = 𝑁𝐺𝑠. 

 

Proof. For some 𝑠 ∈ 𝑆, by Lemma 8 𝐿𝑠 is a non-zero 𝑅–module. And so, 𝐿𝑠𝐺𝑠 ≠ 0 is an 𝑅𝐺–submodule of 𝐿. Since 𝐿 is simple 𝑅𝐺–

submodule, we have 𝐿𝑠𝐺𝑠 = 𝐿. Then, by Lemma 9 𝐿𝑠 is a simple 𝑅–submodule of 𝑀. 

Take an element 𝑠′ ∈ 𝑆 such that 𝐿𝑠′ is non-zero 𝑅–submodule of 𝑀. Hence, 𝐿𝑠′𝐺𝑠′ = 𝐿 = 𝐿𝑠𝐺𝑠. Take an element 𝑥 ∈ 𝐿𝑠′𝐺𝑠′. And 

so, we write 

𝑥 = ∑ 𝑙𝑖

𝑛

𝑖=1

𝑔𝑖𝑠′ = ∑ 𝑘𝑖

𝑛

𝑖=1

𝑔𝑖𝑠 

where 𝑙𝑖 ∈ 𝐿𝑠′ , 𝑘𝑖 ∈ 𝐿𝑠, 𝑔𝑖 ∈ 𝐺 and 𝑛 = |𝐺|. Then, there exists 𝑔𝑗 ∈ 𝐺 such that 𝑔1𝑠 = 𝑔𝑗𝑠′, and 𝑠 = 𝑔1
−1𝑔𝑗𝑠′. So, we get 𝐺𝑠 = 𝐺𝑠′. 

That is why we can write 

𝐺𝑠 = 𝑆𝐿 = {𝑠 ∈ 𝑆 ∣ there is 𝑥 ∈ 𝑀, and also 𝑘 ∈ 𝐿 such that 𝑦 = 𝑥𝑠 + 𝑘 ∈ 𝐿}. 

Moreover, 𝑁 = 𝐿𝑠 = 𝐿𝑠′ is unique by the definition of 𝑀𝑆.  ∎  

 

On the other hand, the following example shows that the converse of the theorem does not hold. 

 

Example 11. Let 𝑅 = ℤ3, 𝑀 = ℤ3, 𝐺 = 𝐶2 = ⟨𝑎: 𝑎2 = 𝑒⟩ and 𝑅𝐺 = ℤ3𝐶2. If 𝑆 = 𝐺 and 𝐺 acts on itself by group multiplication, then 

𝑀𝑆 = ℤ3𝐶2 where ℤ3𝐶2 is semisimple 𝑅𝐺–module since |𝐺| ≤ ∞ and characteristic of 𝑅 does not divide |𝐺| by Maschke’s Theorem. 

Since ℤ3𝐶2 is semisimple there is a unique decomposition of ℤ3𝐶2 by Artin-Weddernburn Theorem. Then, ℤ3𝐶2 ≃ ℤ3 ⊕ ℤ3 as 𝑅–

module since |𝐶2| = 2. Here, ℤ3 is a simple 𝑅–submodule of ℤ3𝐶2. Moreover, by (Milies & Sehgal, 2002) we have ℤ3𝐶2 ≃ ℤ3𝐶2 (
1+𝑎

2
) ⊕
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ℤ3𝐶2 (
1−𝑎

2
) as 𝑅𝐺–module where ℤ3𝐶2 (

1+𝑎

2
) and ℤ3𝐶2 (

1−𝑎

2
) are simple 𝑅𝐺–submodules of ℤ3𝐶2. Let 𝑁 = ℤ3 that is a simple 𝑅–

submodule of 𝑀. Hovewer, 𝑁𝐺𝑠 = ℤ3𝐶2 is not simple 𝑅𝐺–module. 

Lemma 12.  Let {𝑀𝑖: 𝑖 ∈ 𝐼} be a family of right 𝑅 −modules, 𝐺 a finite group and 𝑆 a 𝐺 −set. Then ((⨁
𝑖∈𝐼

𝑀𝑖) 𝑆)
𝑅𝐺

= (⨁
𝑖∈𝐼

𝑀𝑖𝑆)
𝑅𝐺

 

Proof. Consider the following map 

(⨁
𝑖∈𝐼

𝑀𝑖) 𝑆 → ⨁
𝑖∈𝐼

𝑀𝑖𝑆, ∑ (. . . , 𝑚𝑠
(𝑖)

, . . . )

𝑠∈𝑆

𝑠 ↦ ∑ (. . . , 𝑚𝑠
(𝑖)

𝑠, . . . )

𝑠∈𝑆

 

that is an isomorphism.  ∎ 

 

Theorem 13.  An 𝑅–module 𝑀𝑅 is projective if and only if (𝑀𝑆)𝑅𝐺  is projective. 

 

Proof. Assume that 𝑀𝑅 is projective. Then for an index 𝐼, (𝑅)(𝐼) ≃ 𝑀 ⊕ 𝐴 where 𝐴 is a right 𝑅–module. So, by Lemma 12 

((𝑅𝑆)(𝐼))
𝑅𝐺

≃ ((𝑅)(𝐼)𝑆)
𝑅𝐺

≃ ((𝑀 ⊕ 𝐴)𝑆)
𝑅𝐺

≃ (𝑀𝑆)𝑅𝐺 ⊕ (𝐴𝑆)𝑅𝐺

 

So, (𝑀𝑆)𝑅𝐺  is projective. 

Now, assume that (𝑀𝑆)𝑅𝐺  is projective. Then ((𝑅𝑆)(𝐼))
𝑅𝐺

≃ (𝑀𝑆)𝑅𝐺 ⊕ 𝐵 where 𝐵 is a right 𝑅𝐺–module for some set 𝐼. All these 

concerning modules are also 𝑅–modules and ((𝑅𝑆)(𝐼))
𝑅

≃ (𝑀𝑆)𝑅 ⊕ 𝐵𝑅. ((𝑅𝑆)(𝐼))
𝑅
 is a free module because (𝑅𝑆)𝑅 is free. Since 

(𝑀𝑆)𝑅 is direct summand of a free module, it is projective. So, 𝑀𝑅 is projective.  ∎ 

 

4. The Decomposition of (𝑴𝑺)𝑹𝑮  

The theme of this section is the examination of a 𝐺–set module (𝑀𝑆)𝑅𝐺  through the study of a decomposition of it. The 

decompositions of 𝑅𝐺 and (𝑀𝐺)𝑅𝐺 obtained from the idempotent defined as 𝑒𝐻 =
�̂�

|𝐻|
 , where |𝐻| is the order of 𝐻 and �̂� = ∑ ℎℎ∈𝐻 , 

explained in (Milies & Sehgal, 2002) and (Uc & Alkan, 2017), respectively. A similar method gives a criterion for the decomposition 

of a 𝐺–set module (𝑀𝑆)𝑅𝐺 . In addition, 𝐸𝑛𝑑𝑅𝐺𝑀𝑆 denotes all the 𝑅𝐺–endomorphisms of 𝑀𝑆. 

 

Lemma 14.  Let 𝑀 be an 𝑅-module and 𝐻 a normal subgroup of finite group 𝐺. If |𝐻|, the order of 𝐻, is invertible in 𝑅 then �̃�𝐻 =
�̂�

|𝐻|
 is 

an idempotent in 𝐸𝑛𝑑𝑅𝐺(𝑀𝑆). Moreover, �̃�𝐻 is central in 𝐸𝑛𝑑𝑅𝐺(𝑀𝑆). 

 

Proof. Firstly, we will show that �̃�𝐻 is an 𝑅𝐺–homomorphism. We start with proving that �̂�𝑔 = 𝑔�̂�for 𝑔 ∈ 𝐺. Since for all ℎ𝑖 ∈ 𝐻, 

there is ℎ𝑖𝑔 ∈ 𝐻 such that ℎ𝑖𝑔 = 𝑔ℎ𝑖𝑔, we have that �̂�𝑔 = ∑ ℎ𝑖ℎ𝑖∈𝐻 𝑔 = ∑ 𝑔ℎ𝑖∈𝐻 ℎ𝑖𝑔 = 𝑔�̂�. Therefore, 
�̂�

|𝐻|
𝑟𝑔 = 𝑟𝑔

�̂�

|𝐻|
 and we have 

�̃�𝐻(𝑟𝑔𝑚) = 𝑟𝑔�̃�𝐻(𝑚) for 𝑚 ∈ 𝑀𝑆, 𝑟 ∈ 𝑅 and 𝑔 ∈ 𝐺. It is also clear that �̃�𝐻(𝑚 + 𝑛) = �̃�𝐻(𝑚) + �̃�𝐻(𝑛) for 𝑚, 𝑛 ∈ 𝑀𝑆, 𝑔 ∈ 𝐺. 

Secondly, by using the fact that �̂�. �̂� = |𝐻|. �̂�, we get 

�̃�𝐻(�̃�𝐻(𝑚)) = �̃�𝐻 (
�̂�

|𝐻|
𝑚) = �̃�𝐻(𝑚). 

So, �̃�𝐻 is an idempotent. 

Finally, we prove that �̃�𝐻 is a central idempotent in 𝐸𝑛𝑑𝑅𝐺(𝑀𝑆). We will show that �̃�𝐻 commutes with every element of 𝐸𝑛𝑑𝑅𝐺(𝑀𝑆). 

Let 𝑓 be in 𝐸𝑛𝑑𝑅𝐺(𝑀𝑆) and so �̂�𝑓(𝑚) = 𝑓(�̂�𝑚) for 𝑚 ∈ 𝑀𝑆. Thus, we have 

�̃�𝐻𝑓(𝑚) =
�̂�

|𝐻|
𝑓(𝑚) = 𝑓 (

�̂�

|𝐻|
𝑚) = 𝑓�̃�𝐻(𝑚). 

 ∎ 

For 𝜇 = ∑ 𝑚𝑔𝑔∈𝐺 𝑔 ∈ 𝑀𝐺 and 𝑠𝑖 ∈ 𝑆, we write 

𝜇𝑠𝑖 = ∑ 𝑚𝑔

𝑔∈𝐺

(𝑔𝑠𝑖) = ∑ 𝑚𝑔𝑠𝑖

𝑔𝑠𝑖∈𝑆

(𝑔𝑠𝑖) ∈ 𝑀𝑆 

Then for 𝑖 ∈ 𝐼 and 𝛼 ∈ 𝑀(𝐺𝑠𝑖), we write 𝛼 = ∑ 𝑚𝑔𝑠𝑖𝑔𝑠𝑖∈𝐺𝑠𝑖
𝑔𝑠𝑖. Moreover, we write 𝛽 = ∑ ∑ 𝑚𝑔𝑠𝑖𝑔𝑠𝑖∈𝐺𝑠𝑖𝑖∈𝐼 𝑔𝑠𝑖 for 𝛽 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆 

since 𝑀𝑆 = 𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖). 

Let 𝐻 be a normal subgroup of 𝐺. It is well known that on 𝐺/𝐻 we have the group action 𝑔(𝑡𝐻) = 𝑔𝑡𝐻 for 𝑔, 𝑡 ∈ 𝐺. Consider 𝑔(∑𝑠∈𝑆

𝑚𝑠 (𝐻𝑠)) = (∑ 𝑚𝑠𝑠∈𝑆 (𝑔𝐻𝑠)) for 𝑚𝑠 ∈ 𝑀. 

Let 𝑆′ ⊂ 𝑆 be a 𝐺/𝐻–set. Then 𝑆′ = ⋃
𝑗∈𝐽

𝐺/𝐻𝑠𝑗
′ where 𝐽 denotes the index of disjoint orbits of 𝑆′ and 𝑀𝑆′ = 𝑀 ( ⋃

𝑗∈𝐽
𝐺/𝐻𝑠𝑗

′). Then for 

𝜂 = ∑ 𝑚𝑠′𝑠′∈𝑆′ 𝑠′ ∈ 𝑀𝑆, we can write 𝜂 = ∑ ∑ 𝑚𝑠′𝑠′∈𝐺/𝐻𝑠𝑗
′𝑗∈𝐽 𝑠′. 

Hence, we have the following result. 
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Lemma 15.  Let 𝑀 be an 𝑅–module, 𝐺 a finite group, 𝐻 a normal subgroup of 𝐺, 𝑆 a 𝐺–set and 𝑆′ ⊂ 𝑆 a 𝐺/𝐻–set. Then 𝑀𝑆′ is an 

𝑅𝐺–module with action defined as 𝑔𝜂 = 𝑔 (∑ ∑ 𝑚𝑠′𝑠′∈𝐺/𝐻𝑠𝑗
′𝑗∈𝐽 𝑠′) = 𝑔(∑ ∑ 𝑚𝑠′𝑠′∈𝐺/𝐻𝑠𝑗

′𝑗∈𝐽 (𝑡𝐻𝑠𝑗
′) = ∑ ∑ 𝑚𝑠′𝑠′∈𝐺/𝐻𝑠𝑗

′𝑗∈𝐽 (𝑔𝑡𝐻𝑠𝑗
′) where 

𝜂 = ∑ ∑ 𝑚𝑠′𝑠′∈𝐺/𝐻𝑠𝑗
′𝑗∈𝐽 𝑠′ ∈ 𝑀𝑆′ and 𝑠′ = 𝑡𝐻𝑠𝑗

′ for 𝑡 ∈ 𝐺. 

 

Theorem 16.  Let 𝐻 be a normal subgroup of 𝐺, |𝐻| invertible in 𝑅 and �̃�𝐻, defined above, then we have 𝑀𝑆 = �̃�𝐻. 𝑀𝑆 ⊕ (1 − �̃�𝐻). 𝑀𝑆 

and there exists a 𝐺/𝐻–set 𝑆′ ⊂ 𝑆 such that �̃�𝐻. 𝑀𝑆 ≃ 𝑀𝑆′. More precisely, �̃�𝐻. 𝑀𝑆 = �̃�𝐻 (𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖)) ≃ 𝑀 ( ⋃
𝑖∈𝐼

�̃�𝐻𝐺𝑠𝑖) 

 

Proof. Firstly, we know that 𝑀𝐺 = �̃�𝐻 . 𝑀𝐺 ⊕ (1 − �̃�𝐻). 𝑀𝐺 and �̃�𝐻. 𝑀𝐺 ≃ 𝑀(𝐺/𝐻) by the theorem in (Uc & Alkan, 2017). Since �̃�𝐻 is 

a central idempotent by Lemma 14, we get 𝑀𝑆 = �̃�𝐻. 𝑀𝑆 ⊕ (1 − �̃�𝐻). 𝑀𝑆. Now, consider 𝜃: 𝐺 → 𝐺. �̃�𝐻 where 𝑔 ↦ 𝑔�̃�𝐻 . This is a group 

homomorphism since 𝜃(𝑔ℎ) = 𝑔ℎ�̃�𝐻 = 𝑔ℎ�̃�𝐻
2 = 𝑔�̃�𝐻ℎ�̃�𝐻 = 𝜃(𝑔)𝜃(ℎ). It is clear that 𝜃 is a group epimorphism. We have 𝑘𝑒𝑟𝜃 =

{𝑔 ∈ 𝐺 ∣ 𝑔�̃�𝐻 = �̃�𝐻} = {𝑔 ∈ 𝐺 ∣ (𝑔 − 1)�̃�𝐻 = 0} = 𝐻 since (𝑔 − 1)
�̂�

|𝐻|
= 0 and 𝑔�̂� = �̂� for 𝑔 ∈ 𝐻. Moreover, we get 

𝐺

𝑒𝑟𝜃
=

𝐺

𝐻
≃ Im𝜃 =

𝐺�̃�𝐻. So, 

�̃�𝐻. 𝑀𝑆 = �̃�𝐻 (𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖)) = 𝑀 ( ⋃
𝑖∈𝐼

𝐺�̃�𝐻𝑠𝑖) ≃ 𝑀 ( ⋃
𝑖∈𝐼

(𝐺/𝐻)𝑠𝑖) 

Since 𝑔𝐻𝑠𝑖 = 𝑔𝐻𝑠𝑙 for 𝑠𝑖 , 𝑠𝑙 ∈ 𝑆, 𝑖, 𝑙 ∈ 𝐼, we get a 𝐺/𝐻–set 𝑆′ ⊂ 𝑆 where ⋃
𝑗∈𝐽

(𝐺/𝐻)𝑠𝑗 = 𝑆′ ⊆ 𝑆. Hence 

�̃�𝐻. 𝑀𝑆 ≃ 𝑀 ( ⋃
𝑖∈𝐼

(𝐺/𝐻)𝑠𝑖) = 𝑀 ( ⋃
𝑗∈𝐽

(𝐺/𝐻)𝑠𝑗) = 𝑀𝑆′ 

So, �̃�𝐻. 𝑀𝑆 ≃ 𝑀𝑆′.  ∎ 

 

Theorem 17.  Let 𝑀 be an 𝑅–module and 𝐺 a finite group. For a 𝐺–set 𝑆 = ⋃
𝑖∈𝐼

𝐺𝑠𝑖 (𝐼 denotes the index of disjoint orbits of 𝑆), 𝑀𝑆 ≃

⨁
𝑖∈𝐼

𝑀𝐺 ∖ ker𝜃𝑖 where 𝜃𝑖: 𝑀𝐺 → 𝑀𝐺𝑠𝑖 are 𝑅𝐺–epimorphisms. 

 

Proof. Since 𝑀𝐺𝑠𝑖 ∩ 𝑀𝐺𝑠𝑗 = ∅ for 𝑖 ≠ 𝑗 ∈ 𝐼 where 𝑆 = ⋃
𝑖∈𝐼

𝐺𝑠𝑖 and 𝐼 denotes the index of disjoint orbits of 𝑆 , we have 𝑀𝑆 =

𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖) = ⨁
𝑖∈𝐼

𝑀𝐺𝑠𝑖 . 

Consider 

𝜃𝑖 : 𝑀𝐺 → 𝑀𝐺𝑠𝑖 , 
∑ 𝑚𝑔

𝑔∈𝐺

𝑔 ↦ ∑ 𝑚𝑔

𝑔∈𝐺

𝑔𝑠𝑖 

For 𝜇 = ∑ 𝑚𝑔𝑔∈𝐺 𝑔 ∈ 𝑀𝐺, 𝑟 ∈ 𝑅, ℎ ∈ 𝐺, we have 

𝜃𝑖(𝑟𝜇) = 𝜃𝑖 (𝑟 ∑ 𝑚𝑔

𝑔∈𝐺

𝑔) = 𝜃𝑖 (∑ 𝑟

𝑔∈𝐺

𝑚𝑔𝑔) = ∑ 𝑟

𝑔∈𝐺

𝑚𝑔𝑔𝑠𝑖 = 𝑟 ∑ 𝑚𝑔

𝑔∈𝐺

𝑔𝑠𝑖 = 𝑟𝜃𝑖 (∑ 𝑚𝑔

𝑔∈𝐺

𝑔) = 𝑟𝜃𝑖(𝜇).
 

𝜃𝑖(ℎ𝜇) = 𝜃𝑖 (ℎ ∑ 𝑚𝑔

𝑔∈𝐺

𝑔) = 𝜃𝑖 (∑ 𝑚𝑔

𝑔∈𝐺

ℎ𝑔) = ∑ 𝑚𝑔

𝑔∈𝐺

ℎ𝑔𝑠𝑖 = ℎ (∑ 𝑚𝑔

𝑔∈𝐺

𝑔𝑠𝑖) = ℎ𝜃𝑖 (∑ 𝑚𝑔

𝑔∈𝐺

𝑔) = ℎ𝜃𝑖(𝜇).
 

Hence, 𝜃𝑖 is an 𝑅𝐺–homomorphism. It is clear that 𝜃𝑖 is an epimorphism. Moreover, 𝑀𝐺 ∖ ker𝜃𝑖 ≃ Im𝜃𝑖 = 𝑀𝐺𝑠𝑖. Then, 

𝑀𝑆 = 𝑀 ( ⋃
𝑖∈𝐼

𝐺𝑠𝑖) = ⨁
𝑖∈𝐼

𝑀𝐺𝑠𝑖 ≃ ⨁
𝑖∈𝐼

𝑀𝐺 ∖ ker𝜃𝑖 . 

 ∎ 

 

5. Augmentation Map on 𝑴𝑺  

In the theory of the group ring, the augmentation ideal denoted by △ (𝑅𝐺) is the kernel of the usual augmentation map 𝜀𝑅 such 

that 

 𝜀𝑅 ∶ 𝑅𝐺 → 𝑅,  ∑ 𝑟𝑔

𝑔∈𝐺

𝑔 ↦ ∑ 𝑟𝑔

𝑔∈𝐺
. 

The augmentation ideal is always the nontrivial two-sided ideal of the group ring and we have △ (𝑅𝐺) = {∑𝑔∈𝐺

𝑟𝑔 (𝑔 − 1): 𝑟𝑔 ∈ 𝑅, 𝑔 ∈ 𝐺}. The augmentation ideal △ (𝑅𝐺) is of use for studying not only the relationship between the subgroups 

of 𝐺 and the ideals of 𝑅𝐺 but also the decomposition of 𝑅𝐺 as direct sum of subrings. 

In (Kosan et al., 2014), 𝜀𝑅 is extended to the following homomorphism of 𝑅–modules 

 𝜀𝑀 ∶ 𝑀𝐺 → 𝑀,   ∑ 𝑚𝑔

𝑔∈𝐺

𝑔 ↦ ∑ 𝑚𝑔

𝑔∈𝐺
. 

The kernel of 𝜀𝑀 is denoted by △ (𝑀𝐺) and 
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△ (𝑀𝐺) = {∑ 𝑚𝑔

𝑔∈𝐺

(𝑔 − 1): 𝑚𝑔 ∈ 𝑀, 𝑔 ∈ 𝐺}. 

We devote this section to 𝜀𝑀𝑆 that is an extension of 𝜀𝑀, and to the kernel of 𝜀𝑀𝑆 denoted by △𝐺 (𝑀𝑆). 

 

Definition 18.  The map  

 𝜀𝑀𝑆 ∶ 𝑀𝑆 → 𝑀,   ∑ 𝑚𝑠

𝑠∈𝑆

𝑠 ↦ ∑ 𝑚𝑠

𝑠∈𝑆

 

is called augmentation map on 𝑀𝑆.  

 

In addition, 𝜀𝑀𝑆(𝑚𝑠𝑠1) = 𝜀𝑀𝑆(𝑚𝑠𝑠2) = 𝑚𝑠 for 𝑚𝑠𝑠1, 𝑚𝑠𝑠2 ∈ 𝑀𝑆 where 𝑚𝑠 ∈ 𝑀, 𝑠1, 𝑠2 ∈ 𝑆, however 𝑚𝑠𝑠1 ≠ 𝑚𝑠𝑠2. Hence, 𝜀𝑀𝑆 is not 

one-to-one. 

 

Lemma 19.  Let 𝑀 be an 𝑅–module, 𝐺 a group and 𝑆 a 𝐺–set. Then 𝜀𝑀𝑆(𝑟𝜇) = 𝜀(𝑟) 𝜀𝑀𝑆(𝜇) for 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆, 𝑟 = ∑ 𝑟𝑔𝑔∈𝐺 𝑔 ∈

𝑅𝐺. In particular, 𝜀𝑀𝑆 is an 𝑅–homomorphism. 

 

Proof. Let 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆, 𝑟 = ∑ 𝑟𝑔𝑔∈𝐺 𝑔 ∈ 𝑅𝐺, then 

𝜀𝑀𝑆(𝑟𝜇) = 𝜀𝑀𝑆 ( ∑ (𝑟𝑔𝑚𝑠)

𝑔𝑠∈𝑆

(𝑔𝑠)) = 𝜀𝑀𝑆 (∑ 𝑚𝑠′

𝑠′∈𝑆

𝑠′) , 𝑚𝑠′ = 𝑟𝑔𝑚𝑠, 𝑔𝑠 = 𝑠′ ∈ 𝑆, 

= (∑ 𝑟𝑔

𝑔∈𝐺

) (∑ 𝑚𝑠

𝑠∈𝑆

) = 𝜀(𝑟)𝜀𝑀𝑆(𝜇). 

 

In addition, for 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠, 𝜂 = ∑ 𝑛𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆, 𝑡 ∈ 𝑅, 

𝜀𝑀𝑆(𝜇 + 𝜂) = 𝜀𝑀𝑆 (∑ (𝑚𝑠 + 𝑛𝑠)

𝑠∈𝑆

𝑠) = ∑ 𝑚𝑠

𝑠∈𝑆

+ ∑ 𝑛𝑠

𝑠∈𝑆

 

𝜀𝑀𝑆(𝑡𝜇) = 𝜀𝑀𝑆 (∑ (𝑡𝑚𝑠)

𝑠∈𝑆

𝑠) = 𝑡 ∑ 𝑚𝑠

𝑠∈𝑆

 

 ∎ 

Furhermore, 

𝑘𝑒𝑟(𝜀𝑀𝑆) = {𝜇 = ∑ 𝑚𝑠

𝑠∈𝑆

𝑠 ∈ 𝑀𝑆 ∣ 𝜀𝑀𝑆(𝜇) = 𝜀𝑀𝑆 (∑ 𝑚𝑠

𝑠∈𝑆

𝑠) = ∑ 𝑚𝑠

𝑠∈𝑆

= 0}. 

It is clear that 𝑘𝑒𝑟(𝜀𝑀𝑆) ≠ 0 because for 𝑚𝑠𝑠1 + (−𝑚𝑠𝑠2) ∈ 𝑀𝑆, where 𝑚 ∈ 𝑀, 𝑠1 ≠ 𝑠2 ∈ 𝑆, we have 

𝜀𝑀𝑆(𝑚𝑠𝑠1 + (−𝑚𝑠𝑠2)) = 𝜀𝑀𝑆(𝑚𝑠𝑠1) + 𝜀𝑀𝑆(−𝑚𝑠𝑠2) = 0 

Thus, 𝑚𝑠𝑠1 + (−𝑚𝑠𝑠2) ∈ 𝑘𝑒𝑟(𝜀𝑀𝑆). Moreover, we will characterize the elements of the kernel of 𝜀𝑀𝑆 in detail. For this purpose, we 

define △𝐺,𝐻 (𝑀𝑆) = {∑ (ℎ − 1)ℎ∈𝐻 𝜇ℎ ∣ 𝜇ℎ ∈ 𝑀𝑆} where 𝐻 is a subgroup of finite group 𝐺. 

 

Theorem 20.  Let 𝑀 be an 𝑅–module, 𝐻 a subgroup of 𝐺, |𝐻| invertible in 𝑅, 𝑆 a 𝐺–set and �̃�𝐻, defined in Lemma 14. Then, △𝐺,𝐻 (𝑀𝑆) 

is an 𝑅𝐺–module and △𝐺,𝐻 (𝑀𝑆) = (1 − �̃�𝐻). 𝑀𝑆. 

 

Proof. △𝐺,𝐻 (𝑀𝑆) is obviously an 𝑅𝐺–module. Now, take any element 𝛼 ∈△𝐺,𝐻 (𝑀𝑆). Then we get 

𝛼 = ∑ (ℎ − 1)

ℎ∈𝐻

𝜇ℎ = ∑ (ℎ − 1)

ℎ∈𝐻

(∑ 𝑚𝑠

𝑠∈𝑆

𝑠) = ∑ (∑ 𝑚𝑠

𝑠∈𝑆

(ℎ − 1)𝑠)

ℎ∈𝐻

 

= ∑ (∑ 𝑚𝑠

𝑠∈𝑆

(ℎ𝑠 − 𝑠))

ℎ∈𝐻

= ∑ (∑ 𝑚𝑠

𝑠∈𝑆

(ℎ𝑠 − 1) − (𝑠 − 1))

ℎ∈𝐻

 

 

On the other hand, for any element 𝛽 ∈ (1 − �̃�𝐻). 𝑀𝑆 

 

𝛽 = (1 − �̃�𝐻)𝜂 = (1 − �̃�𝐻) (∑ 𝑛𝑠

𝑠∈𝑆

𝑠) = (1 −
�̂�

|𝐻|
) (∑ 𝑛𝑠

𝑠∈𝑆

𝑠) = −
1

|𝐻|
(∑ (ℎ − 1)

ℎ∈𝐻

) (∑ 𝑛𝑠

𝑠∈𝑆

𝑠) 
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= (∑ (ℎ − 1)

ℎ∈𝐻

) (∑ 𝑛𝑠
′

𝑠∈𝑆

𝑠) = ∑ (ℎ − 1)

ℎ∈𝐻

(∑ 𝑛𝑠
′

𝑠∈𝑆

𝑠) = ∑ (∑ 𝑛𝑠
′

𝑠∈𝑆

(ℎ𝑠 − 1) − (𝑠 − 1))

ℎ∈𝐻

 

 

where 𝜂 ∈ 𝑀𝑆, 𝑛𝑠
′ = −

1

|𝐻|
𝑛𝑠. Hence, 𝛽 ∈△𝐺,𝐻 (𝑀𝑆). Similarly, 𝛼 ∈ 𝑀𝑆. (1 − �̃�𝐻).  ∎ 

 

Furthermore, we write △𝐺,𝐺 (𝑀𝑆) =△𝐺 (𝑀𝑆). It is clear that 𝑘𝑒𝑟(𝜀𝑀𝑆) =△𝐺 (𝑀𝑆) and we have 𝑘𝑒𝑟(𝜀𝑀𝑆) =△𝐺 (𝑀𝑆) = (1 − �̃�𝐺). 𝑀𝑆. 

Recall that △𝑅 (𝐺) is the augmetation ideal of 𝑅𝐺 and for a normal subgroup 𝑁 of 𝐺, △𝑅 (𝐺, 𝑁) denote the kernel of the natural 

epimorphism 𝑅𝐺 → 𝑅(𝐺/𝑁) induced by 𝐺 → 𝐺/𝑁. Moreover, △𝑅 (𝐺, 𝑁) is a two-sided ideal of 𝑅𝐺 generated by △𝑅 (𝑁). 

 

Theorem 21.  If 𝑁 is a normal subgroup of 𝐺, then △𝐺,𝑁 (𝑀𝑆) =△𝑅 (𝑁). 𝑀𝑆. 

 

Proof. We know that △𝑅 (𝑁) = {∑ 𝑟𝑛𝑛∈𝑁 (𝑛 − 1) ∣ 𝑟𝑛 ∈ 𝑅} and △𝐺,𝐻 (𝑀𝑆) = {∑ (ℎ − 1)ℎ∈𝐻 𝜇ℎ ∣ 𝜇ℎ ∈ 𝑀𝑆}. For 𝛼 = ∑ 𝑟𝑛𝑛∈𝑁 (𝑛 − 1) ∈

△𝑅 (𝑁), 𝜇 = ∑ 𝑚𝑠𝑠∈𝑆 𝑠 ∈ 𝑀𝑆, 

𝛼𝜇 = (∑ 𝑟𝑛

𝑛∈𝑁

(𝑛 − 1)) (∑ 𝑚𝑠

𝑠∈𝑆

𝑠) = ∑ 𝑟𝑛

𝑛∈𝑁

(𝑛 − 1) (∑ 𝑚𝑠

𝑠∈𝑆

𝑠) = ∑ (𝑛 − 1)

𝑛∈𝑁

(∑ (𝑟𝑛𝑚𝑠)

𝑠∈𝑆

𝑠) = ∑ (𝑛 − 1)

𝑛∈𝑁

𝜇𝑛  

where 𝜇𝑛 = ∑ (𝑟𝑛𝑚𝑠)𝑠∈𝑆 𝑠 ∈ 𝑀𝑆.  ∎ 

 

6. Semisimple 𝑮–set Modules 

In examination of the studies in group rings which make use of the theory of group modules (see Kosan et al., 2014; Kosan & 

Zemlicka, 2020; Uc & Alkan, 2017), the semisimplicity problem of the 𝐺–set module arises. In (Connell, 1963; Milies & Seghal, 2002; 

Passmann, 2011), the generalized Maschke’s Theorem states that a group ring 𝑅𝐺 is a semisimple Artinian ring if and only if 𝑅 is a 

semisimple Artinian ring, 𝐺 is finite and |𝐺|−1 ∈ 𝑅. A module theoretic version of the Maschke’s Theorem is proven in (Kosan et al., 

2014) for group modules. This version states that for a nonzero 𝑅–module 𝑀 and a group 𝐺, 𝑀𝐺 is a semisimple module over 𝑅𝐺 

if and only if 𝑀 is a semisimple module and 𝐺 is a finite group whose order is invertible in 𝐸𝑛𝑑𝑅(𝑀) that is all the 𝑅–endomorphisms 

of 𝑀. The purpose of this section is giving a criterion for the semisimplicity of a 𝐺–set module to generalize the Maschke’s Theorem 

via the 𝐺–set modules. 

 

Theorem 22.  Let 𝑀 be a nonzero 𝑅–module, 𝐺 a group, 𝑆 a 𝐺–set. If 𝑋 ∩△𝐺 (𝑀𝑆) = 0 for some nonzero 𝑅𝐺–submodule 𝑋 of (𝑀𝑆)𝑅𝐺 , 

then each orbit 𝐺𝑠 of 𝑆 for 𝑠 ∈ 𝑆 is a finite set. 

 

Proof. Firstly, we know that △𝐺 (𝑀𝑆) is an 𝑅𝐺–submodule of (𝑀𝑆)𝑅𝐺 . Assume that 𝐺𝑠 is an infinite orbit for some 𝑠 ∈ 𝑆. Then for 

any 0 ≠ 𝑥 = 𝑚1𝑠1+. . . +𝑚𝑘𝑠𝑘 ∈ 𝑋 where 𝑠1, . . . , 𝑠𝑘 ∈ 𝐺𝑠 are distinct and 𝑚𝑖𝑠𝑖 ≠ 0, there is an element 𝑔 of 𝐺 such that 𝑠1𝑔 ≠ 𝑠𝑗 for 

1 ≤ 𝑗 ≤ 𝑘. Hence, (1 − 𝑔)𝑥 = ∑ 𝑚𝑖𝑠𝑖∈𝑆 𝑠𝑖 − ∑ 𝑚𝑖𝑠𝑖∈𝑆 𝑔𝑠𝑖 ≠ 0, and also (1 − 𝑔)𝑥 ∈ 𝑌 . On the other hand, 0 ≠ (1 − 𝑔)𝑥 = ∑𝑠𝑖∈𝑆

𝑚𝑖 (𝑠𝑖 − 1) − ∑ 𝑚𝑖𝑠𝑖∈𝑆 (𝑔𝑠𝑖 − 1) ∈△𝐺 (𝑀𝑆). Then, 𝑋 ∩△𝐺 (𝑀𝑆) ≠ 0 and this is a contradiction.  ∎ 

 

We recall the following lemma in (Lam, 2001), and also in (Kosan et al., 2014). 

 

Lemma 23. (Kosan et al., 2014; Lam, 2001) Let 𝑋 ≤ 𝑌 be right 𝑅𝐺–modules and 𝐺 be a finite group whose order is invertible in 

𝐸𝑛𝑑𝑅(𝑉). If 𝑋 is a direct summand of 𝑌 as 𝑅–modules, then 𝑋 is a direct summand of 𝑌 as 𝑅𝐺–modules. 

 

Theorem 24.  If 𝑀 is a semisimple 𝑅–module, 𝐺 is a finite group whose order is invertible in 𝐸𝑛𝑑𝑅(𝑀) (|𝐺|−1 ∈ 𝐸𝑛𝑑𝑅(𝑀)), and 𝑆 is a 

finite 𝐺–set, then (𝑀𝑆)𝑅𝐺  is semisimple. 

 

Proof. Assume that 𝑀 is a semisimple 𝑅–module, 𝐺 is a finite group whose order is invertible in 𝐸𝑛𝑑𝑅(𝑀), and 𝑆 is a finite 𝐺–set. 

Let 𝑌 be an 𝑅𝐺–submodule of 𝑀𝑆. Firstly, (𝑀𝑆)𝑅 is semisimple since 𝑀𝑅 is semisimple. Hence, 𝑌𝑅 is a direct summand of (𝑀𝑆)𝑅. 

Moreover, |𝐺|−1 ∈ 𝐸𝑛𝑑𝑅(𝑀𝑆) since 𝐺 is finite and |𝐺|−1 ∈ 𝐸𝑛𝑑𝑅(𝑀). So, 𝑌𝑅𝐺 is a direct summand of (𝑀𝑆)𝑅𝐺 by Lemma 23 that 

means (𝑀𝑆)𝑅𝐺  is semisimple.  ∎ 
 

7. Conclusion 

In the context of this study, we establish the set denoted as 𝑀𝑆, which encompasses elements represented as a formal finite sum 

in the format ∑ 𝑚𝑠𝑠∈𝑆 𝑠 where 𝑚𝑠 belongs to the set 𝑀 and S is a 𝐺 −set. It is noteworthy that the set 𝑀𝑆 exhibits module-like 

properties with respect to the group ring 𝑅𝐺, supporting both addition and scalar multiplication, akin to the 𝑅𝐺 −module 𝑀𝐺. 

Therefore, incorporating 𝐺 −set modules enable us to extend and consolidate the theories pertaining to both group algebra and 

group modules. Additionally, we identify crucial properties of (𝑀𝑆)𝑅𝐺 , elucidating a technique for decomposing the 𝑅𝐺 −module 
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𝑀𝑆 into a direct sum of 𝑅𝐺 −submodules. Moreover, we substantiate the semisimplicity issue of (𝑀𝑆)𝑅𝐺  concerning the 

characteristics of 𝑀𝑅, 𝑆 and 𝐺. On the other hand, if the properties of 𝑀𝑅, 𝑆 and 𝐺 can be determined when the semi-simplicity of 

(𝑀𝑆)𝑅𝐺  is given, a quite strong result related to the semisimplicity of 𝐺 −set modules is obtained bilaterally. In addition, the 

regularity of (𝑀𝑆)𝑅𝐺 , such as the examination of the semisimplicity of (𝑀𝑆)𝑅𝐺 , can be characterized according to the properties of 

𝑀𝑅, 𝑆 and 𝐺 and other necessary parameters. 
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