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| ABSTRACT 

Given a directed graph E and a labeling L, one forms the labeled graph algebra by taking a weakly left-resolving labeled space 

(E, L, B) and considering a generating family of partial isometries and projections.  In this paper, we discuss details in the 

formulation of the algebras, provide examples, and formulate a process that describes the algebra given the graph and a 

labelling. 
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1. Introduction 

A directed graph E = (E0, E1, s, r) consists of a countable set E0 of vertices and E1 of edges, and maps s,r : E1 → E0 identifying the 

source (origin) and the range (terminus) of each edge. The graph is row-finite if each vertex emits at most finitely many edges. A 

vertex is a sink if it is not a source of any edge.  A path is a sequence of edges e1e2 ...  en with r(ei) = s(ei+1) for each i = 1, 2, ..., n-1. 

An infinite path is a sequence e1 e2 ...  of edges with r(ei)=s(ei+1) for each i. 

 

For a finite path p=e1e2 ...  en, we define s(p):=s(e1) and r(p):= r(en).  

 

We use the following notation 

 

Let E = (E0, E1, s, r) be a directed graph and let A be a set of alphabets (colors). A labeling is a function L : E1 → A. Without loss of 

generality, we will assume that A = L(E1). The pair (E, L) is called a labeled graph. 

 

Look at the graph in Example 1.1 below and the next for examples of labeled graphs. 

 

Given a labeled graph (E, L), we extend the labeling function L canonically to the sets E* as follows. 

Using An for the set of words of size n, L is defined from En into An as  

 
Following tradition, we use 
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This is the set of all finite ``legal" words in the labeled graph. Thus, abc ϵ L*(E) if there is a path of three edges labeled “a", “b", and 

“c", in that order. 

 

For a word    

we write  

 
And 

 
 

Each of these sets is a subset of E0. The use of s and r for an edge/path versus a label/word should be clear from the context. 

 

A labeled graph (E, L) is said to be left-resolving if for each vϵ E0 the function L : r-1(v) → A is injective.  In other words, no two edges 

pointing to the same vertex are labeled the same. 

 

Example 1.1 

In the labeled graph below, we have two edges, both labeled a, with a range of u, thus our graph is not left-resolving. 

 

Let B be a non-empty subset of P(E0), where P(E0) is the power set of E0, the set of all subsets of E0. 

Given a set A ϵ B we write L(AE1) for the set {L(e): e ϵ E1 and s(e) ϵ A}. 

For a set A ϵ B and a word α ϵ Ln(E) we define the relative range of α with respect to A as  

 
 

 

In the above graph  

  
and  

 
 

Several works have been done on labeled graph C*-algebras (for example, see [1], [2], [3] or [4]) with the restriction that the graph 

has no sinks. In this paper, we will present results on these algebras when the graph may have sinks. We will only consider finite 

graphs that have no loops, because infinite graphs or graphs that have loops or cycles produce infinite dimensional algebras which 

are beyond the intended scope of this paper. This paper's main aim is to provide algebra formulation, provide examples, and 

formulate a process describing the algebra given the graph and a labeling. We consider these results an introductory steppingstone 

towards characterizing algebras generated by different graphs and/or different labelling. Moreover, due to the level of this work, 

we have avoided discussion of the norms and completeness, as such, we are considering *-algebras as opposed to C*-algebras.  
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The paper is organized as follows. In section 2, we recall basic definitions and examples, and develop some terminologies for 

labeled graphs. In section 3, we briefly describe labeled graph *-algebras. In section 4, we formulate a means by which we compute 

labeled graph *-algebras for finite graphs with no cycles. 

 

2. Preliminaries 

We will start this section by recalling the definition of a ring. A ring R is a set with two binary operations, addition denoted a+b, 

and multiplication denoted ab such that Ɐa, b, c ϵ R  

1. a+b = b+a 

2. (a+b)+c = a+(b+c) 

3. There is an element, typically denoted 0 ϵ R  such that Ɐa ϵ R, a+0 = a 

4. For each a ϵ R there is an element, typically denoted -a in R , with a+(-a) = 0 

5. a(bc)=(ab)c 

6. a(b+c) = ab+ac, (b+c)a = ba+ca 

 

In this paper, we will mainly discuss algebras, which are rings that also interact with a field of scalars. For much of our discussion, 

this field will be the set of complex numbers, ℂ.  For all a, b ϵ R  and α, β ϵ ℂ we have 

1. α a ϵ R  

2. α (a + b) = α a + α b 

3. (α + β) a = α a + β b 

4. 0 a = 0 = α 0 

 

The algebras discussed in this paper are called *-algebra. A *-algebra A is an algebra along with an operation * (called adjoint) 

with the following Ɐ A, B ϵ A and λ ϵ C 

1. A* ϵ A 

2. (A+B)* = A*+B* 

3. (λ A)* = λ A* 

4. (A*)* = A 

5. (AB)* = B* A* 

 

Example 2.1 We provide a few examples: 

1. The set of complex numbers ℂ is a *-algebra, where the adjoint of a complex number is simply the complex conjugate. 

 

2. The set of 2 X 2 matrices of complex numbers, M2(ℂ) is a *-algebra where the adjoint of a matrix A is the conjugate transpose 

of A. In fact, Mn(ℂ), the set of n X n matrices of complex numbers is a *-algebra. 

 

3. The set of complex valued continues functions on [0, 1] is a *-algebra, where addition and multiplication are the usual addition 

and multiplication of functions and the adjoint is the complex conjugate.  

 

We call P ϵ A a projection if P2 = P=P*. In this paper, projections will generally be denoted by P. Note that any identity matrix is a 

projection, as is any (0,1)-matrix with 1s only on the diagonal. We call Sϵ A a partial isometry if S*S is a projection. We note that 

if S*S is a projection then SS* is also a projection.  

 

Example 2.2 

1. Let      .  Then  which is a projection, so  is a partial isometry. 

 

2. Let . Then 
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is a projection. 

Notice that  is also a projection. 

 

Remark 2.3 

We will use the following standard facts on partial isometries: 

 

If S is a partial isometry, so is S*.  Also, S is a partial isometry if and only if S = SS*S, these are also equivalent to S* = S*SS*. 

 

Lemma 2.4 

Given a set A ϵ B, if α = a1a2 ...  an is in L*(E), then r(A,α) = r(r(...  r(r(A,a1),a2),...  ,an-1),an). 

 

Proof 

For simplicity we will prove that r(A, ab) = r(r(A, a), b).  The complete proof follows inductively. 

We first wish to show r(r(A,a)) ⊆ r(A,ab). Let x ϵ r(r(A,a),b). Then ∃ y ϵ r(A,a) and λ2 ϵ E1  with  L(λ2)=b with s(λ2) = y, r(λ2) = x. Then ∃ 

z ϵ A and λ1 ϵ E1 with L(λ1)=a, s(λ1) = z, r(λ1) = y. Then because r(λ1) = s(λ2) we define λ := λ1 λ2. Also, L(λ) = ab. Then x ϵ r(A,ab). By 

the arbitrary choice of x, r(r(A,a),b) ⊆ r(A,ab). 

 

We now wish to show r(A,ab) ⊆ r(r(A,a),b). Let x ϵ r(A,ab). Then ∃ λ ϵ E2 with L(λ) = ab and z ϵ A with s(λ) = z and r(λ) = x.  

By the nature of λ ϵ E2, ∃ λ1,λ2 ϵ E1 with r(λ1)=s(λ2) and λ = λ1 λ2. Also, L(λ1) = a, L(λ2)=b. This means s(λ2) ϵ r(A,a). Because r(λ2) = x, 

x ϵ r(r(A,a),b). Then by the arbitrary choice of x ϵ r(A,ab), r(A,ab) ⊆ r(r(A,a),b). 

 

By the two way inclusion of the sets, we have shown r(A,ab) = r(r(A,a),b). 

QED 

We say B is closed under relative ranges if r(A,α) ϵ B for any AϵB and any α ϵ L*(E). 

 

A set B is said to be accommodating for a labeled graph (E, L) if 

1. r(α)ϵ B for each α ϵ L*(E) 

  2. B is closed under relative ranges 

  3. B is closed under finite intersections and unions. 

 

A labeled space is a triple (E, L, B) where B is accommodating for a labeled graph (E, L).  We will assume that B ≠q {Φ}. 

An accommodating labeled space (E, L, B) is called weakly left-resolving if for any A, B ϵ B and any α ϵ L*(E)  

r(A ꓵ B, α) = r(A,α) ꓵ r(B,α). 

 

Given sets A, B ϵ B and α ϵ L*(E), in general r(A ꓵ B,α) ⊆ r(A,α) ꓵ r(B,α). 

 

Proof 

Suppose v ϵ r(A ꓵ B, α). Then ∃ x ϵ A ꓵ B such that x ϵ s(α) and v ϵ r(α). Then v ϵ r(A,α) and v ϵ r(B,α). By our arbitrary choice of v, 

r(A ꓵ B, α) ⊆ r(A,α)ꓵ r(B,α). 

QED 

Theorem 2.5 

If a labeled graph (E, L) is left-resolving then the labeled triple (E, L, B) is weakly left-resolving. 

 

Proof 

We will proceed by proving the contrapositive of the theorem. Suppose (E, L, B) is not weakly left-resolving. Then because r(A ꓵ B, 

α) ≠ r(A, α)ꓵ r(B, α) and by Lemma 2.2, r(A ꓵ B, α) ⊂ (r(A, α) ꓵ r(B, α)).  

Then ∃v ϵ r(A, α) ꓵ r(B, α) \ r(A ꓵ B, α). This implies ∃ x ϵ A \ B, y ϵ B \ A such that x, y ϵ s(α). Then there exist distinct λ1, λ2 ϵ E* 

with s(λ1) = x, r(λ1) = v, s(λ2) = y, r(λ2) = v and L(λ1)=L(λ2) = α. Note λ1, λ2 ϵ r-1(v) and λ1 ≠ λ2.  

This shows L : r-1 → A is not injective. Then (E, L) is not left-resolving. 

QED 

 

The converse of Theorem 2.5 is not true. The labeled graph below is not left resolving.  However, if  

B = {{v,w}, {u}, Φ} then (E, L, B) is weakly left-resolving.  
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Notice also that some labeled graphs cannot be made weakly left-resolving labeled spaces; the labeled graph in Example 1.1 is an 

example of such. 

 

We say (E, L, B) is non-degenerate if B is closed under relative complements. A normal labeled space is accommodating and non-

degenerate. 

 

3. Labeled Graph *-algebras 

Let (E, L, B) be a weakly left-resolving labeled space. A representation of (E, L, B) in a *-algebra consists of projections {pA : A ϵ B }, 

and partial isometries {sa : a ϵ A}, satisfying: 

 
 

The labeled graph *-algebra is the *-algebra generated by a (non-zero) representation of (E, L, B). Thus, the labeled graph *-algebra 

is the sums of products of the elements in the set {PA : A ϵ B } ꓴ {sa : a ϵ A}ꓴ {sa* : a ϵ A} following the rules/axioms listed above. 

We use A(E, L, B) for the labeled graph *-algebra. 

  

Remark 3.1 The following will be useful when constructing the *-algebra of a given labeled space. 

1. Since sa is a partial iscometry, sa = sasa*sa = sapr(a). 

2. If a, b ϵ A then sa sb = sapr(a)sb = sasbpr(r(a), b).  And this is either 0, if ab is not in L*(E) or sasbpr(ab).  Thus, if ab is a legal 

word (i.e., is in L*(E)) then sasb = sasbpr(ab), otherwise sasb = 0. 

3. For a word μ = a1 … an we write sμ to mean sa1 … san. Therefore from (2) we get sμ = sμ pr(μ). 

4. Taking the adjoint: (sμ)* = (sμ pr(μ))* = pr(μ)* sμ*=pr(μ) sμ*.  That is, sμ* = pr(μ) sμ*. 

5. Given A ϵ B and μ ϵ L*(E), since Poops sμ  = sμ pr(A, μ), taking the adjoint gives us:  sμ* PA = pr(A, μ)sμ*. 

 

Lemma 3.2 

Let μ = a1 … an be a word in L*(E), then sμ* sμ = pr(μ). 

 

Proof 

For simplicity, we will demonstrate this using a word of length two μ = ab. The complete proof can be done by induction. 

 sμ*sμ = (sasb)*(sasb) = sb*sa*sasb = sb*pr(a)sb = sb*sbpr(r(a), b)=pr(b)pr(ab) = pr(b)ꓵ r(ab) = pr(ab) = pr(μ). 

QED 

 

In the next lemma, we will show that sμ* sν = 0 unless one of the words μ, ν extends the other. 

 

Lemma 3.3 Let μ, ν ϵ L*(E).  Then 
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Proof 

If  then by Lemma 3.2 we get  

If  then  

If  then  

Lastly, suppose  and neither  nor  extends the other.  This means  for some 

  We will assume that  is the smallest such index, that is, 

  Then  

     QED 

Recall that the *-algebra of (E, L, B) is generated by the set of isometries {sa:aϵA} and the set of projections {PA: AϵB}.  This is the 

linear span of the products of these elements and their adjoints.  However, from Remark 3.1 and the above two lemmas we see 

that the products of these elements and/or their adjoints is always one of the form PA, sμPA,  PAsν* or sμPAsν*.  Therefore A(E, L, B) 

is the linear span of elements of this form. That is A(E, L, B) is the span of the union of the following four sets: 

 

 

 

 
 

4. Algebras 

In this section we will consider some graphs and determine their labeled graph *-algebra. We will first demonstrate the full 

procedure on a simple graph and then discuss the results for the more involved graphs.  

 

As the *-algebra of a labeled graph is generated by partial isometries assigned to labels and projections assigned to sets of vertices, 

we need a means of choosing which collection of sets of vertices we wish to consider. We will use the following convention: 

 

 
 

Notation: We will write Pv, P{vw}, etc. to mean P{{v}}, P{{v, w}}, etc. for ease of writing. 

 

Example 4.1 

 

 
We will consider the labeled graph given above for our first example. We note E = {{v, w}}, E−=E, E0 = {{v, w}, Φ}. We then choose B 

= {{v, w}, Φ}. Then, based on our definitions above, A(E, L, B) is generated by the linear span of {P{vw}, Sa P{vw}, P{vw}Sa*, Sa P{vw}Sa*}. 
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Further, (Sa P{vw})(Sa P{vw})*=Sa P{vw}Sa* and (Sa P{vw})*(Sa P{vw}) = P{vw}Sa*Sa P{vw} = P{vw}. Then all units of the algebra can be expressed 

as products and adjoints of the partial isometry Sa P{vw}. For this reason, we define a map Φ: A(E, L, B) → M2(ℂ) we need only to 

define Φ(SaP{vw}) =[
0 1
0 0

]. We will define Φ to preserve multiplication, addition, and adjoint. Therefore Φ(P{vw}Sa*) = Φ((SaP{vw})*) 

=(Φ(SaP{vw}))* = [
0 1
0 0

]
∗

 =[
0 0
1 0

], Φ(P{vw}) = Φ(P{vw}Sa*SaP{vw}) = [
0 1
0 0

] [
0 0
1 0

] = [
0 0
0 1

], and Φ(SaP{vw}Sa*) = [
1 0
0 0

]. 

This gives us that  

A(E, L, B) = span{P{vw},SaP{vw},P{vw}Sa^{*},SaP{vw}Sa^{*}}  span{[
1 0
0 0

] . [
0 1
0 0

] . [
0 0
0 1

] , [
0 0
1 0

]}.  

Therefore A(E, L, B) is isomorphic to M2(ℂ). 

 

Example 4.2 

In the next example, we will consider the same labeled graph given above, and we will choose B = {{v}, {w}, {v, w}, Φ}, which also 

gives us a normal labeled space. A(E, L, B) is generated by the linear span of {Pv, Pw, P{vw}, SaPv, SaPw, SaP{vw}, PvSa*, PwSa*, P{vw}Sa*, 

SaPvSa*, SaPwSa*, SaP{vw}Sa*}. However, P{vw} = Pv + Pw, SaP{vw} = SaPv+SaPw, similarly for the other terms. Therefore A(E, L, B) is the 

linear span of {Pv, Pw, SaPv, SaPw, PvSa*, PwSa*, SaPvSa*, SaPwSa*}.  

Further, after careful observation (and some computations) we see that the set S1 = {Pv, SaPv, PvSa*, SaPvSa*} is closed under 

multiplication, so is S2 = {Pw, SaPw, PwSa*, SaPwSa*}. Moreover the product of any element from S1 and any element from S2 is zero, 

for instance (SaPvSa*) (SaPw)= SaPvP{vw}Pw = 0, since PvP{vw}Pw = (PvP{vw})Pw = PvPw = 0. 

Thus the building units of the algebra can be expressed as products and adjoints of the partial isometry SaPv and the partial 

isometry SaPw and the two subalgebras are “orthogonal". For this reason, we may define a map Φ: A(E, L, B) → M4(ℂ) we need only 

to define  

 

As before, we will want Φ to preserve multiplication, addition, and adjoint. 

This gives us that A(E, L, B) = span(S1 ꓴ S2) 

 

 

 

Therefore A(E, L, B) is isomorphic to M2(ℂ) Ꚛ M2(ℂ)  

                                                                                        . 
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For the remaining examples we will choose B to be E0. 

Example 4.3 

 

Above is the next labeled graph we will consider. Note that E0 = {{v}, {w}, {v,w}, Φ}. Choosing B as E0, our representation of (E, L, B) 

gives projections {Pw,SaPwSa*,SaaPw,Saa*} and partial isometries {SaPw,SaaPw,SaaPwSa*,PwSa*,PwSaa*,SaaPwSa* }. It can be shown, as above, 

that the union of these sets is closed under multiplication, as such, the elements provide us with the matrix units we need. As we 

have three projections and six partial isometries, it can be shown above that A(E, L, B) is isomorphic to M3(ℂ).  

Example 4.4 

     

Above is the next labeled graph we will consider. This gives us B = {{x}, {w}, {v}, {x,w}, {v,x,w}, Φ}. Then our representation of (E, L, B) 

has projections {Px, SaPxSa*, Pw, SaPwSa*, SbaPwSba*}. It can be shown that ⱯP ϵ {Px, SaPxSa*} and ⱯQ ϵ {Pw,SaPwSa*,SbaPwSba*}, PQ = QP 

= 0. Similarly, our representation of (E, L, B) gives two sets of partial isometries, {SaPx,PxSa*} and {SaPw, SbaPw, SbaPwSa*, PwSa*, Pw, 

Sba*,SaPwSba*}, in which the partial isometries are mutually orthogonal between sets. This goes to show that A(E, L, B) is isomorphic 

to M2(ℂ) Ꚛ M3(ℂ).  

In the example above, if we drop the non-degenerate property for B, then we will not have {x} as an element in B. In this case, it is 

not difficult to see that the projection Pwx-Pw functions the same as the projection as Px would. We deem the non-degenerate 

property ineffective. Accordingly, we choose a modified version of E0, giving B = {{x,w},{w},{v}, {v, x, w}, Φ}. Then our representation 

of (E, L, B) has projections 

 {Pxw-Pw,Sa(Pxw-Pw)Sa*,Pw,SaPwSa*,SbaPwSba*}. It can be shown that ⱯP ϵ {Pxw-Pw,Sa(Pxw-Pw)Sa*} and ⱯQ ϵ {Pw,SaPwSa*,SbaPwSba*}, PQ = 

QP = 0. Similar to the case in the example, our representation of (E, L, B) gives two sets of partial isometries, {Sa(Pxw-Pw),(Pxw-Pw)Sa*} 

and {SaPw, SbaPw, SbaPwSa*,PwSa*,Pw,Sba*,SaPwSba*}, in which the partial isometries are mutually orthogonal between sets. This gives 

us A(E, L, B) as being isomorphic to M2(ℂ) Ꚛ M3(ℂ).  

Remark 4.5 

When carefully observing the examples above, and many more experiments, we noticed a method of determining the *-algebra 

representation of a labeled graph. For a label space (E, L, B), where B = E0 as described at the beginning of this section: 

-  First, let V = {E0
sink} ꓵ r(μ) : μ ϵ L*(E)}, since we have a finite set, we can call it V = {V1, V2, ... Vk}. 

- Next disjointize the members of set V, call the resulting set C = {C1, C2, ... , Cn}. The disjointization process is briefly 

described below. 

- Then A(E, L, B)  ꚚCi ϵ CMni+1(ℂ) where ni = the number of words μ with Ci ⊆ r(μ). 

There are a few ways to distontize a group of sets. We will describe a hand on and visual process. To disjointize a finite group of 

sets such as V = {V1, V2, ... Vk}. First take the intersection of all, if it is non-empty, then that is the first set. ꓵi=1
n Vi. Next take the 

intersection of all but one, and then subtract the first set (set difference); do this for each set V1, V2, ... , Vk. Then the intersection of 

all but two, subtracts the previously found sets. Continue this process by taking intersections of less and a smaller number of sets 

and subtracting more and more. 

We now consider the following labeled graphs for our final examples. We have determined the *-algebra representation by 

traditional means as well to confirm our findings but here will be using the proposed methodology. 
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Example 4.6 

     

We note that, in following the terminology above, V = {{x, v, w}, {v, w},Φ }. Then we disjointize V to get C = {{x},{v, w}}. Then, as one 

word, a, has {x} as a subset of its range, and two words, a, ba, have {v,w} as a subset of their ranges, it can be shown that A(E, L, B) 

 M2(ℂ) Ꚛ M3(ℂ). 

Example 4.7 

    

In this labeled graph, we note that V = {{x, v}, {w}, {v}}. Then we disjointize V to obtain C = {{x}, {v}, {w}}. Then, as one word, a, has 

{x} as a subset of its range, two words, a,ba, have {v} as a subset of their ranges, and two words, b,bb, have {w} as a subset of their 

ranges, it can be shown that A(E, L, B)  M2(ℂ) Ꚛ M3(ℂ) Ꚛ M3(ℂ). 

We should emphasize the fact that the algebra that is created by a labeled space is dependent on three things: the graph, the 

labeling and the choice of set B. As such, the method described in Remark 4.5 only applies to the set B = E0, where E0 is the smallest 

subset of P(E) that contains E0
sink and makes (E, L, B) a normal labeled space. A similar, but more involving, process may be 

developed for any labeled space (E, L, B) so long as B contains E0
sink. 
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