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| ABSTRACT 

In this paper, we introduced and studied 𝛿-small submodule over prime module. Two concepts are very important namely 

strongly prime submodule and completely prime submodule. Multiple results led to obtaining a 𝛿-small submodule of a singular, 

divisible and Bezout module with 𝑅 is local. Important terms that appeared in this article, together with some terms, produced 

the submodule that we were interested in. 
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1. Introduction 

All rings in this paper are commutative with 1 and all modules with unitary. An 𝑅-module ℳ is called multiplication if every 

submodule 𝐴 of ℳ, there exists an ideal 𝐽 such that 𝐴 = 𝐽ℳ [Singh, 2001]. The prime ideal was extended to module by several 

researchers. Any proper submodule 𝐴 of ℳ is called prime submodule of ℳ if for each ideals 𝐽 of 𝑅 and 𝐴1 ≤ ℳ such that 𝐽𝐴1 ⊆

𝐴, so 𝐴1 ⊆ 𝐴 or 𝐽ℳ ⊆ 𝐴. A definition of prime module [Ssevviiri, 2011]. Any submodule 𝐴 of ℳ is called a completely prime 

submodule if for every 𝑟 ∈ 𝑅, 𝑚 ∈ ℳ such that 𝑟𝑚 ∈ 𝐴, so 𝑚 ∈ 𝐴 module in [Ssevviiri, 2013]. A module ℳ is called pseudo valuation 

module if 𝐴 ≤ ℳ is a strongly prime submodule of ℳ. Note that the strongly prime submodule (𝑠-𝑝𝑟-submodule) in [Moghaderi, 

2011]. Fractional ideal and fractional submodule with more details in [Abed, 2019]. Any module ℳ is called singular if 𝑍(ℳ) = ℳ 

and non-singular 𝑍(ℳ) = 0 where 𝑍(ℳ) = {𝑥 ∈ ℳ: 𝑎𝑛𝑛𝑇(𝑥)  ≤𝑒𝑠𝑠 𝑇 } [Kasch, 1982]. Any submodule 𝐴 of ℳ is called small (𝐴 ≪

ℳ) if there exists another submodule 𝐵 in ℳ such that 𝐴 + 𝐵 ≠ ℳ [Leonard, 1966]. Also, 𝐴 is called 𝛿-small if there exists a non-

zero submodule 𝐵 of ℳ such that 𝐴 + 𝐵 ≠ ℳ with ℳ 𝐵⁄  is a singular module (𝐴 ≪𝛿 ℳ) [Wang, 2007]. Torsion module in and 

simple module in [Kasch, 1982]. A module ℳ is called indecomposable if ℳ = {0} + ℳ [Janusz, 1968]. The module ℳ is called 

uniform if every submodule 𝐴 of ℳ is essential in ℳ[Dauns, 1980]. 

2- 𝑺-𝒑𝒓-submodule: 

Definition 2.1: [Ssevviiri, 2011] Any submodule 𝐴 of an 𝑅-𝑚𝑜𝑑𝑢𝑙𝑒 ℳ is called prime if: 

i) 𝐴 ≠ ℳ . 

ii) 𝑟 ∈ 𝑅 , 𝑚 ∈ ℳ , 𝑟𝑚 ∈ 𝐴 ⇒ 𝑚 ∈ 𝐴 or 𝑟 ∈ (𝐴: ℳ) such that (𝐴: ℳ) = {𝑟𝑚 ⊆ 𝐴; 𝑟 ∈ 𝑅}. 

Remark 2.2: If 𝐴 is a prime submodule of ℳ, so (𝐴: ℳ) is a prime ideal of 𝑅.  

Definition 2.3: [Kasch, 1982] Let ℳ be an 𝑅-module over integral domain 𝑅 with quotient field. Then ℳ is said to be torision free 

module if 𝑇(ℳ) = 0 where 𝑇(ℳ) refere to any torsion elements in ℳ.  

Remark 2.4: From [Al-Bahrani, 2017]; ℳ𝑇 = { 
𝑥

𝑡
∶  𝑥 ∈ ℳ , 𝑡 ∈ 𝑇 } where 𝑇 = 𝑅 − {0}. Therefore, suppose 𝑅 has no zero divisors with 

a quotient field 𝐹 and 0 = 𝑇(ℳ); 
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∀ 𝐴 ≤ ℳ ⋀𝑦 =
𝑟

𝑘
 ∈ 𝐹, 𝑏 =

𝑥

𝑡
 ∈ ℳ𝑇 

Implies 𝑦𝑏 ∈ 𝐴 if ∃𝑎 ∈ 𝐴 ∋ 𝑟𝑥 = 𝑠𝑡𝑎 . 

Now all the tools became available to present new definition named strongly prime submodule (𝑠-𝑝𝑟-submodule). 

Definition 2.5: [Moghaderi, 2011] For all non-zero elements 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ≠ 0 with qutiont field 𝐹 and 𝑇(ℳ) = 0, we say 

𝐴 is a 𝑠-𝑝𝑟-submodule of ℳ, if 𝑦 ∈ 𝐹, 𝑥 ∈ ℳ, 𝑦𝑥 ∈ 𝐴 implies that 𝑥 ∈ 𝐴 𝑜𝑟 𝑦 ∈ (𝐴: ℳ).  

From [Abed, 2019], fractional ideal (𝐹𝐼) means an ideal 𝐼 of a finitely generated 𝑍-module 𝑍 with 𝐼𝑖 is the principal ideal over the 

ring 𝑅𝑖; where 𝑖 represent every maximal ideal in 𝑍. 

And from [Al-Bahrani, 2017]; any submodule 𝐴 of ℳ over the integral domain 𝑅 is called a fractional submodule if 𝑟𝐴 is a subset 

of ℳ. On the other hand; if 𝐴 is a 𝑠-𝑝𝑟-submodule, so ℳ is a prime module. In the next proposition; we utilize two concepts are 

fractional ideal and fractional submodule 𝐴 in order to get 𝐴 is a 𝛿-small in ℳ. But before that, we need to state the following 

lemma:  

Lemma 2.6: Let ℳ be an 𝑅-module and let 𝐴 be a proper submodule of ℳ. If 𝐽 is a fractional ideal of 𝑅 and 𝐵 is a fractional 

submodule (𝐹𝑆) of ℳ such that 𝐽𝐵 ⊆ 𝐴; implies 𝐵 ⊆ 𝐴 or 𝐽 ⊆ (𝐴: ℳ), then 𝐴 is a 𝑠-𝑝𝑟-submodule [Al-Bahrani, 2017] and hence ℳ 

is a prime module.  

Proposition 2.7: Let ℳ be an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒. If the following statements are hold: 

i) 𝑍(ℳ) = ℳ. 

ii) All conditions in lemma 2.6 are hold;  

Then 𝐴 ≪𝛿 ℳ . 

Proof: Assume that condition (ii) is hold. We need to explain how 𝐴 is 𝑠-𝑝𝑟-submodule. Suppose that 𝐽 is a fractional ideal of 𝑅 

and 𝐵 is a fractional submodule of ℳ. It is clear 𝐴 is a prime submodule of ℳ. For 𝑏 ∈ 𝐹 and 𝑎 ∈ ℳ𝑇, 𝑏𝑎 ∈ 𝐴. If we put 𝑅𝑏 = 𝐽, so 

a fractional ideal of 𝑅 and 𝑅𝑎 = 𝐵 is a fractional submodule (𝐹𝑆) of ℳ. Then 𝐽𝐵 subset of 𝐴 and hence 𝑅𝑎 = 𝐵 subset of 𝐴 or 𝑅𝑏 =

𝐽 subset of (𝐴: ℳ). Hence 𝑎 ∈ 𝐴 or 𝑏 ∈ (𝐴: ℳ). So 𝐴 is a 𝑠-𝑝𝑟-submodule of ℳ (by definition of strongly prime submodule). 

Therefore ℳ is a prime module. But 𝑍(ℳ) = ℳ. Thus 𝐴 is a  𝛿-small of ℳ[Al-Bahrani, 2017]. 

Remark 2.8: The converse of lemma 2.6 is true in general because if 𝐴 is a 𝑠-𝑝𝑟-submodule of ℳ, 𝑎 ∈  𝐵 − 𝐴 and 𝑏 ∈ 𝐽, then 𝑏𝑎 ∈

𝐽𝐵. Also, since 𝐽𝐵 subset of 𝐴, a is an element of ℳ𝑇 − 𝐴 and 𝑏 ∈ 𝐹, then 𝑏 ∈ (𝐴: ℳ). Hence 𝐽 subset of (𝐴: ℳ).  

Proposition 2.9: Let ℳ be a singular 𝑅-module and let 𝐴 be a submodule of ℳ. If 𝐴 is a comparable to each (𝐹𝑆) of ℳ, then 

𝐴 ≪𝛿 ℳ.  

Proof: Suppose that an element 𝑏 in 𝐹; 𝑏 =  
𝑟

𝑧1
 and 𝑎 ∈ ℳ𝑇; 𝑎 =

𝐾

𝑍2
 . So  

𝑏𝑎 ∈ 𝐴, 𝑎 ∉ 𝐴 ⋀𝑏 ∉ (𝐴: ℳ) 

We know 𝑎 ∉ 𝐴 . But 𝐴 comparable to each (𝐹𝑆) of ℳ. Hence  

𝐴 ⊆ 𝑅𝑎⋀𝑎𝑏 ∈ 𝑅𝑎. So ∈ 𝑅 .  

 Also, 𝑏 ∉ (𝐴: ℳ), Therefore: 

𝐴 ⊆ 𝑏ℳ and 𝑎𝑏 ∈ 𝑏ℳ. So 𝑎 ∈ ℳ 

∀𝑏 ∈ 𝑅 and 𝑎 ∈ ℳ, then 𝑏𝑎 ∈ 𝐴 ∋ 𝐴 satisfies all conditions of prime submodule. Then  

𝑎 ∈ 𝐴 or 𝑏 ∈ (𝐴: ℳ). 

But this contradiction. Hence 𝐴 is a 𝑠-𝑝𝑟-submodule, so ℳ is a prime module with singular property implies by proposition 2.7; 

𝐴 ≪𝛿 ℳ. 

Remark 2.10: A 𝑠-𝑝𝑟-submodule not imply 𝐴 is comparable to each (𝐹𝑆) of ℳ. 

Note that, the best example to satisfies Remark 2.10 is the following: 
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Example 2.11: Suppose that 𝑅 = ℝ where ℝ is Euclidian space So ℳ = ℝ⨁ℝ and 𝐴 = ℝ⨁(0) is 𝑠-𝑝𝑟-submodule, but when 𝑎 =

(0,1), then 𝑅𝑎 ⊈ 𝐴 and 𝐴 ⊈ 𝑅𝑎. 

Corollary 2.12: If for every 𝑏 is an element of 𝐹, 𝑏−1𝐴 subset of 𝐴 or 𝑏 ∈ (𝐴: ℳ) where 𝐴 is a prime submodule of singular module 

ℳ, then 𝐴 is a 𝛿-small of ℳ. 

Proof: Assume that 𝑏 ∈ 𝐹 and 𝑎 ∈ ℳ𝑇. So 𝑏𝑎 ∈ 𝐴. When 𝑏−1𝐴 subset of 𝐴, this means  

𝑎 = 𝑏−1(𝑏𝑎) ∈ 𝐴 

Otherwise 𝑏 ∈ (𝐴: ℳ). Hence 𝐴 is a 𝑠-𝑝𝑟-submodule of ℳ. Then ℳ is a prime module with singularty, So 𝐴 ≪𝛿 ℳ. 

Note that there is a relationship between 𝛿-small submodule and another concept namely pseudo valuation module. Therefore, 

we need to study and present pseudo valuation module with some examples. 

Definition 2.13: [Moghaderi, 2011] Let ℳ be an 𝑅-module and let 𝐴 be a prime submodule of ℳ. We say ℳ is a pseudo valuation 

module if 𝐴 is a 𝑠-𝑝𝑟-submodule. 

Remarks and Examples 2.14: 

1- A module of rational numbers 𝑄 over the ring 𝑍 is pseudo valuation and hence any prime submodule 𝐴 of 𝑄 = ℳ is 𝑠-

𝑝𝑟-submodule. So ℳ is a prime module. 

2- The module 𝑍 as a 𝑍-module is not pseudo valuation module.  

Proposition 2.15: Let ℳ be a singular divisible 𝑅-module. Then any submodule 𝐴 of ℳ is 𝛿-small.  

Proof: Assume that 𝐴 is a prime submodule in ℳ and let 𝑏 =
𝑐

𝑑
∈ 𝐾 where 𝐾 is a field with 𝑎 ∈ 𝐴. Put 𝑏 = 0 (

𝑐

𝑑
= 0). So b belongs 

to the ideal (𝐴: ℳ). Suppose that 𝑏 ≠ 0 (
𝑐

𝑑
≠ 0). So 𝑥ℳ = ℳ. Hence 

∃ℎ ∈ ℳ ∋ 𝑎 = 𝑐ℎ. 

But 𝑎 ∈ 𝐴 with 𝐴 is prime submodule, then ℎ ∈ 𝐴 or 𝑐 ∈ (𝐴: ℳ). If 𝑐 ∈ (𝐴: ℳ) this implies that ℳ = 𝑐ℳ ⊆ 𝐴, but this contradiction. 

Therefore ℎ ∈ 𝐴 with  

𝑏−1𝑎 =
𝑑

𝑐
𝑎 

=
𝑑

𝑐
𝑎ℎ 

= 𝑑ℎ ∈ 𝐴 

Then 𝑏−1𝐴 ⊆ 𝐴 and 𝐴 is 𝑠-𝑝𝑟-submodule and hence ℳ is a prime module. But 𝑍(ℳ) = ℳ, thus 𝐴 ≪𝛿 ℳ. 

Corollary 2.16: Every injective 𝑅-module ℳ with 𝑍(ℳ) = ℳ is a divisible module and hence any submodule 𝐴 of ℳ is 𝛿-small. 

Proof: By proposition 2.15.  

Corollary 2.17: Every singular uniform module ℳ over serial Noetherian ring 𝑅 with 𝐽 is prime ideal of 𝑅 has 𝐴 ≪𝛿 ℳ. 

Proof: Assume ℳ is a uniform module. Suppose that 𝑥, 𝑦 ∈ ℳ with 0 → ker(𝐹) → 𝑅⨁𝑅 → 𝑎𝑅 + 𝑏𝑅 → 0 is exact sequence. We 

have 𝑅 is Noetherian module ( 𝑎𝑅 + 𝑏𝑅 is uniserial), because every uniform module is indecomposable. Hence  

𝑎𝑅 ⊆ 𝑏𝑅 or 𝑏𝑅 ⊆ 𝑎𝑅  

Then ℳ is uniserial 𝑅-module. But ℳ = 𝑍(ℳ), so ℳ is pseudo valuation module (𝐴 ≤ ℳ is 𝑠-𝑝𝑟-submodule). Then ℳ is prime 

module. Now ℳ is prime module with 𝑍(ℳ) = ℳ, implies that 𝐴 ≪𝛿 ℳ. 

Corollary 2.18: Every submodule 𝐴 of Bezout module ℳ over local ring 𝑅 is 𝛿-small in ℳ. 

Proof: Assume that 𝑥, 𝑦 ∈ ℳ. We must prove that 𝑥 ∈ 𝑦ℳ or 𝑦 ∈ 𝑥ℳ. There exists 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅𝑥(1 − 𝑎𝑐) = 𝑦𝑏𝑐 and 𝑦(1 − 𝑏𝑑). But 

𝑅 has a unique maximal ideal (local ring). Then 1 − 𝑎𝑐 ∈ 𝑈(𝑅) or 𝑎𝑐 ∈ 𝑈(𝑅) where 𝑈(𝑅) is a unit element. If 𝑥 = 𝑦𝑏𝑐(1 − 𝑎𝑐)−1𝑦𝑅 

and 
𝑎,𝑐𝑅

𝐽(𝑅)
 with 𝑅 local ring, then 𝑎, 𝑐 ∈ 𝑈(𝑅). Put 𝑑 ∈ 𝑈(𝑅). So 𝑎𝑑 ∈ 𝑈(𝑅) and 𝑥 = 𝑦(1 − 𝑏𝑑)(𝑎𝑑)−1 ∈ 𝑦𝑅, 𝑑 ∈

𝑅

𝑈(𝑅)
= 𝐽(𝑅), 1 − 𝑏𝑑 ∈

𝑈(𝑅) and 𝑦 = 𝑦, 𝑑(1 − 𝑏𝑑)−1 ∈ 𝑦𝑅. Hence ℳ is serial module. So ℳ is pseudo valuation module (𝐴 ≤ ℳis 𝑠-𝑝𝑟-submodule). Then 

ℳ is prime module with 𝑍(ℳ) = ℳ, implies that 𝐴 ≪𝛿 ℳ.  
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Corollary 2.19: Every distributed artinain module ℳ over the ring 𝑅 with 𝑍(ℳ) = ℳ has submodule 𝐴 is 𝛿-small of ℳ. 

Proof: Clear ; Every distributive artinian module is Bezout module with 𝑍(ℳ) = ℳ implies that ℳ has 𝐴 submodule is 𝛿-small. 

3- C-prime module : 

In this section, we discuss completely prime modules and their interrelations with small property of some submodules. 

Definition 3.1: [Ssevviiri, 2011] An 𝑅-module ℳ is called prime if 𝑟𝑅𝑚 = 0, so 𝑟𝑚 = 0 or 𝑎 = 0 ∀𝑟 ∈ 𝑅, 𝑚 ∈ ℳ. 

Definition 3.2: [Ssevviiri, 2013] An 𝑅-module ℳ is called completely prime module (𝑐-𝑝𝑟-module) if 𝑟𝑚 = 0, so 𝑟 ∈ 𝑎𝑛𝑛𝑅(ℳ) or 

𝑚 = 0 ∀𝑟 ∈ 𝑅, 𝑚 ∈ ℳ.  

Remark 3.3: If the ring 𝑅 is commutative, so the two definitions 3.1 and 3.2 are same. 

Proposition 3.4: Let ℳ be a 𝑐-𝑝𝑟-module. Then ℳ is a 𝑝𝑟-module. 

Proof: Assume that ℳ is a 𝑐-𝑝𝑟-module. Suppose that 𝑟 belongs to 𝑅 and 𝑚 belongs to ℳ such that 𝑟𝑅𝑚 = 0. So 𝑟𝑚 = 0. Hence 

𝑟𝑚 = 0. Thus ℳ is a 𝑝𝑟-module. Now it is very important to study the strong and clear relationship between 𝑐-𝑝𝑟-module and 𝑐-

𝑝𝑟-submodule. So that we can use new concepts such as torision-free-module in order to obtain prime module and thus 𝛿-small 

of any submodule of ℳ. Therefore, we need to present 𝑐-𝑝𝑟-module by another method. See the following definition.  

Definition 3.5: Any 𝑅-module ℳ is called 𝑐-𝑝𝑟-module if 0 ≠ 𝐴 ≤ ℳ is a 𝑐-𝑝𝑟-submodule where 𝑐-𝑝𝑟-submodule means: 

Any submodule 𝐴 of ℳ with 𝑅𝑚 ⊆ 𝐴 is 𝑐-𝑝𝑟-submodule if :  

∀𝑟 ∈ 𝑅, 𝑚 ∈ ℳ ∋ 𝑟𝑚 ∈ 𝐴, then 𝑚 ∈ 𝐴 or 𝑟ℳ ⊆ 𝐴. 

Remark 3.6: If 𝐴 ≤ ℳ is 𝑐-𝑝𝑟-submodule, so 
ℳ

𝐴
 is 𝑐-𝑝𝑟-module. 

Lemma 3.7: Let ℳ be an 𝑅-module. If ℳ is torsion free module, then it is a 𝑐-𝑝𝑟-module. 

Proof: Assume that 𝑟𝑚 = 0 ∀𝑟 ∈ 𝑅, 𝑚 ∈ ℳ. If 𝑚 = 0; there are nothing. Suppose 𝑚 ≠ 0. So from definition of torsion-free-module, 

𝑟 = 0 and 𝑟𝑚 = 0. Thus ℳ is 𝑐-𝑝𝑟-module (ℳ is 𝑝𝑟-module). 

Lemma 3.8: Let ℳ be an 𝑅-module. If ℳ is simple module with reduced property, then it is 𝑐-𝑝𝑟-module. 

Proof: Assume that 𝑟𝑚 = 0. If 𝑚 = 0 there are nothing. If 𝑚 ≠ 0, so 0 = 𝑟𝑚 ∩< 𝑚 >= 𝑟ℳ ∩ ℳ = 𝑟ℳ. Thus ℳ is 𝑐-𝑝𝑟-module. 

Remark 3.9: Let 𝑅 be a ring with 1 and let 𝐼 be an ideal of 𝑅. If 𝐼 is 𝑐-𝑝𝑟-ideal of 𝑅, then 𝐼 is 𝑐-𝑝𝑟-submodule [Ssevviiri, 2013]. 

Proposition 3.10: Let ℳ be a singular 𝑅-module and let 𝐴 be submodule of ℳ. If the ideal (𝐴: ℳ) = (𝐴: 𝑚), 𝑚 ∈ ℳ − 𝐴, then 𝐴 

is a 𝑐-𝑝𝑟-submodule of 𝑀 and hence ℳ is 𝑐-𝑝𝑟-module (𝐴 ≪𝛿 ℳ). 

Proof: Assume that 𝑟𝑚 ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑚 ∈ ℳ. So 𝑟 ∈ (𝐴: 𝑚). If 𝑚 ∈ 𝐴 there are nothing. Let 𝑚 ∉ 𝐴. So 𝑟 ∈ (𝐴: ℳ) ∋ 𝑟ℳ ⊆ 𝐴. Hence 𝐴 

is 𝑐-𝑝𝑟-submodule. Thus ℳ is 𝑐-𝑝𝑟-module and then it is prime module. Therefore 𝐴 ≪𝛿 ℳ. 

Corollary 3.11: Let ℳ be a singular 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 and let 𝐴 ≤ ℳ. If for all 𝑟 ∈ 𝑅, 𝑚 ∈ ℳ with (𝑟𝑚) ⊆ 𝐴, then (ℳ) ⊆ 𝐴 or < 𝑟ℳ >

⊆ 𝐴 and so A is a δ-small in ℳ. 

Proof: Assume that 𝑟 ∈ (𝐴: ℳ). Suppose that 𝑚 ∈ ℳ − 𝐴. So 𝑟ℳ ⊆ 𝐴. Hence 𝑟𝑚 ∈ 𝐴 with 𝑟 ∈ (𝐴: ℳ). If 𝑟 ∈ (𝐴: ℳ) and 𝑚 ∈ ℳ −

𝐴, then 𝑟𝑚 ∈ 𝐴 and < 𝑟𝑚 >⊆ 𝐴. But 𝑟ℳ ⊆< 𝑟ℳ >⊆ 𝐴; because < ℳ >⊈ 𝐴, 𝑚 ∉ 𝐴. Then 𝑟 ∈ (𝐴: ℳ). Hence, by proposition 3.10; 

𝐴 is a 𝑐-𝑝𝑟-submodule and then ℳ is 𝑐-𝑝𝑟-module. Therefore ℳ is a prime module with 𝑍(ℳ) = ℳ implies that 𝐴 ≪𝛿 ℳ. 

Remark 3.12: By the same method of proof proposition 3.10, we can say; if 𝐴1 = (𝐴: ℳ) is a 𝑐-𝑝𝑟-ideal of R with (𝐴: ℳ) = ( 0
−:  )𝑚

− =

𝐴1 ∀𝑚 ∈ ℳ − 𝐴, so 𝐴 is 𝑐-𝑝𝑟-submodule and hence ℳ is 𝑐-𝑝𝑟-module (ℳ is 𝑝𝑟-module). Therefore, in the next result, we present 

the following:  

Corollary 3.13: Let ℳ be a singular module. If the set {(𝐴: ℳ): 𝑚 ∈ ℳ − 𝐴} is a singular, the 𝐴 ≪𝛿 ℳ, ∀𝐴 ≤ ℳ. 

Proof: For all 𝑚 ∈ ℳ − 𝐴; 𝐴1 = (𝐴: ℳ) 

=∩ {(𝐴: ℳ): 𝑚 ∈ ℳ − 𝐴}  

= (𝐴: ℳ)   (by assumption)  
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But (𝐴: ℳ) = {𝑟 ∈ 𝑅: 𝑟𝑚 ∈ 𝐴} 

= {𝑟 ∈ 𝑅: 𝑟 =𝑚
−  0

−}  

= ( 0
−:  )𝑚

−   

Where =𝑚
− 𝑚 + 𝐴. Suppose that 𝑎1𝑎2 ∈ (𝐴: 𝑚), 𝑎1, 𝑎2 ∈ 𝑅, 𝑚 ∈ ℳ − 𝐴. So 𝑎1𝑎2 ∈ 𝐴. If 𝑎2 ∈ (𝐴: 𝑚), there is nothing. Assume that 

𝑎2 ∉ (𝐴: 𝑚), 𝑎2𝑚 ∉ 𝐴, so 𝑎1 ∈ (𝐴: 𝑎2𝑚) = (𝐴: 𝑚) and then 𝐴1 = (𝐴: 𝑚)∀𝑚 ∈ ℳ − 𝐴 is 𝑐-𝑝𝑟-ideal. Thus from Remark 3.12; ℳ is 𝑐-

𝑝𝑟-submodule (ℳ is 𝑐-𝑝𝑟-module) and hence is a prime module. But ℳ = 𝑍(ℳ). Then 𝐴 ≪𝛿 ℳ. 

Remark 3.14: Let (𝐴: 𝐹) = (𝐴: ℳ) where 𝐹 ⊆ ℳ − 𝐴. If we take 𝐹 = {𝑚}, 𝑚 ∈ ℳ − 𝐴 with 𝑍(ℳ) = ℳ then by pro.3.10; A is 𝛿-

small of ℳ. 

Proposition 3.15: Let 𝑅 be a ring and ℳ be singular 𝑅-module such that 𝐴1 ≠ 𝑅. If 𝐴1 is 𝑐-𝑝𝑟-ideal of 𝑅, then 𝐴 is 𝛿-small 

submodule of ℳ. 

Proof: Suppose that 𝐴 is a 𝑐-𝑝𝑟-ideal and suppose ℳ =
𝑅

𝐴
. Assume that 𝑎 ∈ 𝐴1, 𝑏 ∈ 𝑅. Then 𝑎(𝑏 + 𝐴1) = 𝑎𝑏 + 𝐴1 = 𝐴1; Hence 

𝐴 ⊆ (0: ℳ)𝑅. 

If 𝑐 ∈ (0: ℳ)𝑅, then 𝑐(𝑟 + 𝐴1) = 𝐴1, 𝑟 ∈ 𝑅. So 𝑐𝑅 ⊆ 𝐴1. Since 𝐴1is 𝑐-𝑝𝑟-ideal, then 𝑐 ∈ 𝐴1.Hence (0: ℳ)𝑅 = 𝐴1.then ℳ is 𝑐-𝑝𝑟-

module if 𝑐 ∈ 𝑅 and 𝑚 ∈ ℳ =
𝑅

𝐴1
such that 𝑐𝑚 =  0

− then 𝑚 = 𝑚1 + 𝐴1and 𝑐𝑚1 ∈ 𝐴1. Since 𝑐-𝑝𝑟-submodule, 𝑐 ∈ 𝐴1or 𝑚1 ∈ 𝐴1and 

hence 𝑐𝑚 =  0
− or 𝑚 =  0

− .(ℳ is 𝑐-𝑝𝑟-module) with 𝑍(ℳ) = ℳ, so 𝐴 ≪𝛿 ℳ. 

Definition 3.16: [Singh, 2001] An ideal 𝐽 of the ring 𝑅 is called insertion of factor property (𝐼𝐹𝑃) is 𝑎𝑏 ∈ 𝐽, 𝑎, 𝑏 ∈ 𝑅, so 𝑎𝑅𝑏 ⊆ 𝐽. 

Therefore a submodule 𝐴 of ℳ is called (𝐼𝐹𝑃) if 𝑎𝑚 ∈ 𝐴, 𝑎 ∈ 𝑅, 𝑚 ∈ ℳ, so 𝑎𝑅𝑚 ⊆ 𝐴 and a module ℳ has (𝐼𝐹𝑃) if the zero 

submodule has (𝐼𝐹𝑃). 

Proposition 3.17: Let ℳ be an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 and let 𝐴 be a submodule of ℳ. If: 

i) 𝑍(ℳ) = ℳ. 

ii) 𝐴 has 𝐼𝐹𝑃 and 𝑝𝑟-submodule, 

Then 𝐴 ≪𝛿 ℳ. 

Proof: Suppose that 𝐴 ≤ ℳ is 𝑐-𝑝𝑟-submodule. So 𝐴 is prime and has 𝐼𝐹𝑃. Now we have 𝐴 ≤ ℳ is a prime with 𝐼𝐹𝑃. Suppose 

that 𝑟𝑚 ∈ 𝐴. But 𝐴 has 𝐼𝐹𝑃, 𝑟 < 𝑚 >⊆ 𝐴. Since 𝐴 is prime submodule, then 𝑚 ∈ 𝐴 or 𝑟𝑚 ⊆ 𝐴. Hence 𝐴 is c-𝑝𝑟 − 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒. Then 

ℳ is 𝑐-𝑝𝑟-module (ℳ is 𝑝𝑟-module). But 𝑍(ℳ) = ℳ. Thus 𝐴 ≤ ℳ. 

Lemma 3.18: Every maximal submodule with completely semi prime (𝑐-𝑠𝑒𝑚𝑖-prime) is completely prime submodule (𝑐-𝑝𝑟-

submodule) [Dauns, 1980]. 

Definition 3.19: [Bland, 2011] Let ℳ be an 𝑅-module and let ∅ ≠ ℳ1 ⊆ ℳ − {0} is called multiplicative system of ℳ is ∀𝑟 ∈

𝑅, 𝑚 ∈ ℳ, 𝐻 ≤ ℳ ∋ (𝐻+< 𝑚 >) ∩ ℳ1 ≠ ∅ and (𝐻+< 𝑟𝑚 >) ∩ ℳ1 ≠ ∅, so (𝐻+< 𝑟𝑚 >) ∩ ℳ1 ≠ ∅. 

Proposition 3.20: Let ℳ be a singular 𝑅-module. If 𝐴 is a submodule of ℳ such that ℳ − 𝐴 is a multiplication system of ℳ, then 

𝐴 ≪𝛿 ℳ. 

Proof: Suppose that 𝑟 ∈ 𝑅, 𝑚 ∈ ℳ ∋< 𝑟𝑚 >⊆ 𝐴. But < 𝑚 >⊈ 𝐴 with < 𝑟𝑚 >⊈ 𝐴. Hence < 𝑚 >∩ 𝐾 = ℳ − 𝐴 ≠ ∅. Also, < 𝑟𝑚 >∩

𝐾 ≠ ∅. But ℳ − 𝐴 is multiplication system, then < 𝑟𝑚 >∩ 𝐾 ≠ ∅ ∋< 𝑟𝑚 >⊈ 𝐴, contradiction. So 𝐴 is 𝑐-𝑝𝑟-submodule. Then ℳ is 

𝑐-𝑝𝑟-module (ℳ is prime module) with 𝑍(ℳ) = ℳ implies 𝐴 ≪𝛿 ℳ.  

Corollary 3.21: Let ℳ be a singular 𝑅-module and let 𝐾 ⊆ ℳ is a multiplicative system of ℳ such that 𝐴 ≤ ℳ is a maximal with 

respect 𝐴 ∩ 𝐾 = ∅. Then 𝐴 ≪𝛿 ℳ. 

Proof: Assume that 𝑟 ∈ 𝑅, 𝑚 ∈ ℳ ∋< 𝑟𝑚 >⊆ 𝐴. If < 𝑚 >⊈ 𝐴 and < 𝑟𝑚 >⊈ 𝐴, so  

(< 𝑚 > +𝐴) ∩ 𝐾 ≠ ∅ and (< 𝑟𝑚 > +𝐴) ∩ 𝐾 ≠ ∅. 

But 𝐾 is a multiplicative system of ℳ. So (< 𝑟𝑚 > +𝐴) ∩ 𝐾 ≠ ∅. If < 𝑟𝑚 >⊆ 𝐴 imply 𝐴 ∩ 𝐾 ≠ ∅, a contradiction. Therefore 𝐴 is 𝑐-

𝑝𝑟-submodule of ℳ. Hence ℳ is 𝑐-𝑝𝑟-module. Thus ℳ is a prime module. But ℳ is singular module. Then 𝐴 ≪𝛿 ℳ. 

Corollary 3.22: Let ℳ be an 𝑅-module. If: 
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i) 𝑍(ℳ) = ℳ. 

ii) 𝐴 ≤ ℳ ∋ 𝐴 is 𝑐-𝑝𝑟-ideal of 𝑅. 

iii) 𝐴 ≠ 𝑅. 

Then 𝐴 ≪𝛿 ℳ. 

Proof: Suppose that 𝐴 is 𝑐-𝑝𝑟-idael and let ℳ =
𝑅

𝐴
 . Clear that ℳ is an 𝑅-module. If 𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅, so 𝑎(𝑟 + 𝐴) = 𝑎𝑟 + 𝐴 = 𝐴. Then 

𝐴 ⊆ (0: ℳ)𝑅. Since 𝑎1 ∈ (0: ℳ)𝑅 , then 𝑎1(𝑟1 + 𝐴) = 𝐴, 𝑟1 ∈ 𝑅. Hence 𝑎, 𝑅 ⊆ 𝐴. But 𝐴 is 𝑐-𝑝𝑟-module and hence is prime module. 

But 𝑍(ℳ) = ℳ. So 𝐴 ≪𝛿 ℳ. 

Proposition 3.23: Let ℳ be a singular module. If ℳ is contained in every non-zero invariant submodule of ℳ1where ℳ1 is injective 

hull of ℳ. then any submodule 𝐴 of ℳ is 𝛿-small. 

Proof: Assume that 0 ≠ 𝐴 ≤ ℳ. Clear that 𝑎𝑛𝑛𝑅(ℳ) ⊆ 𝑎𝑛𝑛𝑅(𝐴). To prove that 𝑎𝑛𝑛𝑅(𝐴) ⊆ 𝑎𝑛𝑛𝑅(ℳ). Suppose that there exists 

𝑚 ∈ ℳ, 𝑟𝑚 ≠ 0. If 0 ≠ 𝐴, ∃0 ≠ 𝑏 ∈ 𝐴. 𝜋(𝑅𝑏, ℳ1) = ∑ ∅(𝑅𝑏) , ∅ ∈ 𝐻𝑜𝑚(𝑅𝑏, ℳ1). Since 𝑅𝑏 ⊆ ℳ ⊆ ℳ1, then 𝜋(𝑅𝑏, ℳ1) is a non-zero 

submodule of ℳ1. So 𝜋(𝑅𝑏, ℳ1) is an invariant non-zero submodule of ℳ1. Thus by assumption ℳ ⊆ 𝜋(𝑅𝑏, ℳ1). Hence 

∃𝑟1, 𝑟2, … . , 𝑟𝑘 ∈ 𝑅 ∋ 𝑄1, 𝑄2, … . , 𝑄𝑘 ∈ 𝐻𝑜𝑚(𝑅𝑏, ℳ1) 

∋ 𝑟𝑚 = ∑ 𝑄𝑖(𝑟𝑖𝑏).Thus 

    𝑟𝑚 = ∑ 𝑟𝑄𝑖(𝑟𝑖𝑏) 

= ∑ 𝑄𝑖(𝑟𝑟𝑖  𝑏) 

= 0 

This contradiction. Then 𝑎𝑛𝑛𝑅(𝐴) ⊆ 𝑎𝑛𝑛𝑅(ℳ). Therefore ℳ is a prime module. But 𝑍(ℳ) = ℳ. Thus 𝐴 ≪𝛿 ℳ. 

4. Conclusion 

In this manuscript, we study 𝛿-small submodules based on prime modules. We showed the relationship between some 

submodules, such as singular submodule with completely prime modules, to get a small concept. It is observed that if ℳ is a 

singular 𝑅-module have a completely prime ideal then it is a 𝛿-small submodule of ℳ. Moreover, we introduce that every 

submodule 𝐴 of Bezout module ℳ over local ring 𝑅 is 𝛿-small in ℳ. 
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