| RESEARCH ARTICLE

$\boldsymbol{\delta}$-Small Submodule and Prime Modules

Bashaer Ahmad Salih ${ }^{1} \boxtimes$ and Majid Mohammed Abed ${ }^{2}$
${ }^{12}$ Department of mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
Corresponding Author: Bashaer Ahmad Salih, E-mail: bas21u2005@uoanbar.edu.iq

Abstract

| ABSTRACT In this paper, we introduced and studied δ-small submodule over prime module. Two concepts are very important namely strongly prime submodule and completely prime submodule. Multiple results led to obtaining a δ-small submodule of a singular, divisible and Bezout module with R is local. Important terms that appeared in this article, together with some terms, produced the submodule that we were interested in.

| KEYWORDS

Completely prime submodule, fractional submodule, δ-small submodule and strongly prime submodule

| ARTICLE INFORMATION

ACCEPTED: 11 April 2023
PUBLISHED: 20 April 2023
DOI: 10.32996/jmss.2023.4.2.5

1. Introduction

All rings in this paper are commutative with 1 and all modules with unitary. An R-module \mathcal{M} is called multiplication if every submodule A of \mathcal{M}, there exists an ideal J such that $A=J \mathcal{M}$ [Singh, 2001]. The prime ideal was extended to module by several researchers. Any proper submodule A of \mathcal{M} is called prime submodule of \mathcal{M} if for each ideals J of R and $A_{1} \leq \mathcal{M}$ such that $J A_{1} \subseteq$ A, so $A_{1} \subseteq A$ or $J \mathcal{M} \subseteq A$. A definition of prime module [Ssevviiri, 2011]. Any submodule A of \mathcal{M} is called a completely prime submodule if for every $r \in R, m \in \mathcal{M}$ such that $r m \in A$, so $m \in A$ module in [Ssevviiri, 2013]. A module \mathcal{M} is called pseudo valuation module if $A \leq \mathcal{M}$ is a strongly prime submodule of \mathcal{M}. Note that the strongly prime submodule ($s-p r$-submodule) in [Moghaderi, 2011]. Fractional ideal and fractional submodule with more details in [Abed, 2019]. Any module \mathcal{M} is called singular if $Z(\mathcal{M})=\mathcal{M}$ and non-singular $Z(\mathcal{M})=0$ where $Z(\mathcal{M})=\left\{x \in \mathcal{M}\right.$: $\left.a n n_{T}(x) \leq_{\text {ess }} T\right\}$ [Kasch, 1982]. Any submodule A of \mathcal{M} is called small $(A \ll$ \mathcal{M}) if there exists another submodule B in \mathcal{M} such that $A+B \neq \mathcal{M}$ [Leonard, 1966]. Also, A is called δ-small if there exists a nonzero submodule B of \mathcal{M} such that $A+B \neq \mathcal{M}$ with \mathcal{M} / B is a singular module ($A \ll_{\delta} \mathcal{M}$) [Wang, 2007]. Torsion module in and simple module in [Kasch, 1982]. A module \mathcal{M} is called indecomposable if $\mathcal{M}=\{0\}+\mathcal{M}$ [Janusz, 1968]. The module \mathcal{M} is called uniform if every submodule A of \mathcal{M} is essential in \mathcal{M} [Dauns, 1980].

2- S-pr-submodule:

Definition 2.1: [Ssevviiri, 2011] Any submodule A of an R-module \mathcal{M} is called prime if:
i) $\quad A \neq \mathcal{M}$.
ii) $\quad r \in R, m \in \mathcal{M}, r m \in A \Rightarrow m \in A$ or $r \in(A: \mathcal{M})$ such that $(A: \mathcal{M})=\{r m \subseteq A ; r \in R\}$.

Remark 2.2: If A is a prime submodule of \mathcal{M}, so ($A: \mathcal{M}$) is a prime ideal of R.
Definition 2.3: [Kasch, 1982] Let \mathcal{M} be an R-module over integral domain R with quotient field. Then \mathcal{M} is said to be torision free module if $T(\mathcal{M})=0$ where $T(\mathcal{M})$ refere to any torsion elements in \mathcal{M}.
Remark 2.4: From [Al-Bahrani, 2017]; $\mathcal{M}_{T}=\left\{\frac{x}{t}: x \in \mathcal{M}, t \in T\right\}$ where $T=R-\{0\}$. Therefore, suppose R has no zero divisors with a quotient field F and $0=T(\mathcal{M})$;

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

$$
\forall A \leq \mathcal{M} \wedge y=\frac{r}{k} \in F, b=\frac{x}{t} \in \mathcal{M}_{T}
$$

Implies $y b \in A$ if $\exists a \in A \ni r x=s t a$.
Now all the tools became available to present new definition named strongly prime submodule (s - $p r$-submodule).
Definition 2.5: [Moghaderi, 2011] For all non-zero elements $a, b \in R$ such that $a b \neq 0$ with qutiont field F and $T(\mathcal{M})=0$, we say A is a s-pr-submodule of \mathcal{M}, if $y \in F, x \in \mathcal{M}, y x \in A$ implies that $x \in A$ or $y \in(A: \mathcal{M})$.

From [Abed, 2019], fractional ideal (FI) means an ideal I of a finitely generated Z-module Z with I is the principal ideal over the ring $R i$; where i represent every maximal ideal in Z.

And from [Al-Bahrani, 2017]; any submodule A of \mathcal{M} over the integral domain R is called a fractional submodule if $r A$ is a subset of \mathcal{M}. On the other hand; if A is a s-pr-submodule, so \mathcal{M} is a prime module. In the next proposition; we utilize two concepts are fractional ideal and fractional submodule A in order to get A is a δ-small in \mathcal{M}. But before that, we need to state the following lemma:

Lemma 2.6: Let \mathcal{M} be an R-module and let A be a proper submodule of \mathcal{M}. If J is a fractional ideal of R and B is a fractional submodule ($F S$) of \mathcal{M} such that $J B \subseteq A$; implies $B \subseteq A$ or $J \subseteq(A: \mathcal{M})$, then A is a s-pr-submodule [Al-Bahrani, 2017] and hence \mathcal{M} is a prime module.

Proposition 2.7: Let \mathcal{M} be an R - module. If the following statements are hold:
i) $\quad Z(\mathcal{M})=\mathcal{M}$.
ii) All conditions in lemma 2.6 are hold;

Then $A \ll_{\delta} \mathcal{M}$.
Proof: Assume that condition (ii) is hold. We need to explain how A is s - $p r$-submodule. Suppose that J is a fractional ideal of R and B is a fractional submodule of \mathcal{M}. It is clear A is a prime submodule of \mathcal{M}. For $b \in F$ and $a \in \mathcal{M}_{T}, b a \in A$. If we put $R b=J$, so a fractional ideal of R and $R a=B$ is a fractional submodule $(F S)$ of \mathcal{M}. Then $J B$ subset of A and hence $R a=B$ subset of A or $R b=$ J subset of $(A: \mathcal{M})$. Hence $a \in A$ or $b \in(A: \mathcal{M})$. So A is a s - $p r$-submodule of \mathcal{M} (by definition of strongly prime submodule). Therefore \mathcal{M} is a prime module. But $Z(\mathcal{M})=\mathcal{M}$. Thus A is a δ-small of \mathcal{M} [Al-Bahrani, 2017].

Remark 2.8: The converse of lemma 2.6 is true in general because if A is a s-pr-submodule of $\mathcal{M}, a \in B-A$ and $b \in J$, then $b a \in$ $J B$. Also, since $J B$ subset of A, a is an element of $\mathcal{M}_{T}-A$ and $b \in F$, then $b \in(A: \mathcal{M})$. Hence J subset of $(A: \mathcal{M})$.

Proposition 2.9: Let \mathcal{M} be a singular R-module and let A be a submodule of \mathcal{M}. If A is a comparable to each ($F S$) of \mathcal{M}, then $A \ll_{\delta} \mathcal{M}$.

Proof: Suppose that an element b in $F ; b=\frac{r}{z_{1}}$ and $a \in \mathcal{M}_{T} ; a=\frac{K}{z_{2}}$. So

$$
b a \in A, a \notin A \wedge b \notin(A: \mathcal{M})
$$

We know $a \notin A$. But A comparable to each (FS) of \mathcal{M}. Hence

$$
A \subseteq R a \wedge a b \in R a . S o \in R
$$

Also, $b \notin(A: \mathcal{M})$, Therefore:

$$
A \subseteq b \mathcal{M} \text { and } a b \in b \mathcal{M} \text {. So } a \in \mathcal{M}
$$

$\forall b \in R$ and $a \in \mathcal{M}$, then $b a \in A \ni A$ satisfies all conditions of prime submodule. Then

$$
a \in A \text { or } b \in(A: \mathcal{M})
$$

But this contradiction. Hence A is a $s-p r$-submodule, so \mathcal{M} is a prime module with singular property implies by proposition 2.7; $A \ll_{\delta} \mathcal{M}$.

Remark 2.10: A s-pr-submodule not imply A is comparable to each $(F S)$ of \mathcal{M}.
Note that, the best example to satisfies Remark 2.10 is the following:

Example 2.11: Suppose that $R=\mathbb{R}$ where \mathbb{R} is Euclidian space So $\mathcal{M}=\mathbb{R} \oplus \mathbb{R}$ and $A=\mathbb{R} \oplus(0)$ is s-pr-submodule, but when $a=$ (0,1), then $R a \nsubseteq A$ and $A \nsubseteq R a$.

Corollary 2.12: If for every b is an element of $F, b^{-1} A$ subset of A or $b \in(A: \mathcal{M})$ where A is a prime submodule of singular module \mathcal{M}, then A is a δ-small of \mathcal{M}.

Proof: Assume that $b \in F$ and $a \in \mathcal{M}_{T}$. So $b a \in A$. When $b^{-1} A$ subset of A, this means

$$
a=b^{-1}(b a) \in A
$$

Otherwise $b \in(A: \mathcal{M})$. Hence A is a s-pr-submodule of \mathcal{M}. Then \mathcal{M} is a prime module with singularty, So $A \ll_{\delta} \mathcal{M}$.
Note that there is a relationship between δ-small submodule and another concept namely pseudo valuation module. Therefore, we need to study and present pseudo valuation module with some examples.

Definition 2.13: [Moghaderi, 2011] Let \mathcal{M} be an R-module and let A be a prime submodule of \mathcal{M}. We say \mathcal{M} is a pseudo valuation module if A is a s - $p r$-submodule.

Remarks and Examples 2.14:

1- A module of rational numbers Q over the ring Z is pseudo valuation and hence any prime submodule A of $Q=\mathcal{M}$ is s $p r$-submodule. So \mathcal{M} is a prime module.
2- The module Z as a Z-module is not pseudo valuation module.
Proposition 2.15: Let \mathcal{M} be a singular divisible R-module. Then any submodule A of \mathcal{M} is δ-small.
Proof: Assume that A is a prime submodule in \mathcal{M} and let $b=\frac{c}{d} \in K$ where K is a field with $a \in A$. Put $b=0\left(\frac{c}{d}=0\right)$. So b belongs to the ideal $(A: \mathcal{M})$. Suppose that $b \neq 0\left(\frac{c}{d} \neq 0\right)$. So $x \mathcal{M}=\mathcal{M}$. Hence

$$
\exists h \in \mathcal{M} \ni a=c h
$$

But $a \in A$ with A is prime submodule, then $h \in A$ or $c \in(A: \mathcal{M})$. If $c \in(A: \mathcal{M})$ this implies that $\mathcal{M}=c \mathcal{M} \subseteq A$, but this contradiction. Therefore $h \in A$ with

$$
\begin{aligned}
b^{-1} a= & \frac{d}{c} a \\
& =\frac{d}{c} a h \\
& =d h \in A
\end{aligned}
$$

Then $b^{-1} A \subseteq A$ and A is s-pr-submodule and hence \mathcal{M} is a prime module. But $Z(\mathcal{M})=\mathcal{M}$, thus $A \ll{ }_{\delta} \mathcal{M}$.
Corollary 2.16: Every injective R-module \mathcal{M} with $Z(\mathcal{M})=\mathcal{M}$ is a divisible module and hence any submodule A of \mathcal{M} is δ-small.
Proof: By proposition 2.15.
Corollary 2.17: Every singular uniform module \mathcal{M} over serial Noetherian ring R with J is prime ideal of R has $A \ll_{\delta} \mathcal{M}$.
Proof: Assume \mathcal{M} is a uniform module. Suppose that $x, y \in \mathcal{M}$ with $0 \rightarrow \operatorname{ker}(F) \rightarrow R \oplus R \rightarrow a R+b R \rightarrow 0$ is exact sequence. We have R is Noetherian module ($a R+b R$ is uniserial), because every uniform module is indecomposable. Hence

$$
a R \subseteq b R \text { or } b R \subseteq a R
$$

Then \mathcal{M} is uniserial R-module. But $\mathcal{M}=Z(\mathcal{M})$, so \mathcal{M} is pseudo valuation module ($A \leq \mathcal{M}$ is s - $p r$-submodule). Then \mathcal{M} is prime module. Now \mathcal{M} is prime module with $Z(\mathcal{M})=\mathcal{M}$, implies that $A \ll_{\delta} \mathcal{M}$.

Corollary 2.18: Every submodule A of Bezout module \mathcal{M} over local ring R is δ-small in \mathcal{M}.
Proof: Assume that $x, y \in \mathcal{M}$. We must prove that $x \in y \mathcal{M}$ or $y \in x \mathcal{M}$. There exists $a, b, c, d \in R x(1-a c)=y b c$ and $y(1-b d)$. But R has a unique maximal ideal (local ring). Then $1-a c \in U(R)$ or $a c \in U(R)$ where $U(R)$ is a unit element. If $x=y b c(1-a c)^{-1} y R$ and $\frac{a, c R}{J(R)}$ with R local ring, then $a, c \in U(R)$. Put $d \in U(R)$. So $a d \in U(R)$ and $x=y(1-b d)(a d)^{-1} \in y R, d \in \frac{R}{U(R)}=J(R), 1-b d \in$ $U(R)$ and $y=y, d(1-b d)^{-1} \in y R$. Hence \mathcal{M} is serial module. So \mathcal{M} is pseudo valuation module ($A \leq \mathcal{M}$ is s - $p r$-submodule). Then \mathcal{M} is prime module with $Z(\mathcal{M})=\mathcal{M}$, implies that $A \ll_{\delta} \mathcal{M}$.

Corollary 2.19: Every distributed artinain module \mathcal{M} over the ring R with $Z(\mathcal{M})=\mathcal{M}$ has submodule A is δ-small of \mathcal{M}.
Proof: Clear ; Every distributive artinian module is Bezout module with $Z(\mathcal{M})=\mathcal{M}$ implies that \mathcal{M} has A submodule is δ-small.

3- C-prime module :

In this section, we discuss completely prime modules and their interrelations with small property of some submodules.
Definition 3.1: [Ssevviiri, 2011] An R-module \mathcal{M} is called prime if $r R m=0$, so $r m=0$ or $a=0 \forall r \in R, m \in \mathcal{M}$.
Definition 3.2: [Ssevviiri, 2013] An R-module \mathcal{M} is called completely prime module (c-pr-module) if $r m=0$, so $r \in \operatorname{ann} n_{R}(\mathcal{M})$ or $m=0 \forall r \in R, m \in \mathcal{M}$.

Remark 3.3: If the ring R is commutative, so the two definitions 3.1 and 3.2 are same.
Proposition 3.4: Let \mathcal{M} be a c - $p r$-module. Then \mathcal{M} is a $p r$-module.
Proof: Assume that \mathcal{M} is a $c-p r$-module. Suppose that r belongs to R and m belongs to \mathcal{M} such that $r R m=0$. So $r m=0$. Hence $r m=0$. Thus \mathcal{M} is a $p r$-module. Now it is very important to study the strong and clear relationship between c - $p r$-module and c $p r$-submodule. So that we can use new concepts such as torision-free-module in order to obtain prime module and thus δ-small of any submodule of \mathcal{M}. Therefore, we need to present c - $p r$-module by another method. See the following definition.

Definition 3.5: Any R-module \mathcal{M} is called c - $p r$-module if $0 \neq A \leq \mathcal{M}$ is a c - $p r$-submodule where c - $p r$-submodule means:
Any submodule A of \mathcal{M} with $R m \subseteq A$ is c-pr-submodule if :

$$
\forall r \in R, m \in \mathcal{M} \ni r m \in A \text {, then } m \in A \text { or } r \mathcal{M} \subseteq A \text {. }
$$

Remark 3.6: If $A \leq \mathcal{M}$ is c - $p r$-submodule, so $\frac{\mathcal{M}}{A}$ is c - $p r$-module.
Lemma 3.7: Let \mathcal{M} be an R-module. If \mathcal{M} is torsion free module, then it is a c - $p r$-module.
Proof: Assume that $r m=0 \forall r \in R, m \in \mathcal{M}$. If $m=0$; there are nothing. Suppose $m \neq 0$. So from definition of torsion-free-module, $r=0$ and $r m=0$. Thus \mathcal{M} is $c-p r$-module (\mathcal{M} is $p r$-module).

Lemma 3.8: Let \mathcal{M} be an R-module. If \mathcal{M} is simple module with reduced property, then it is c - $p r$-module.
Proof: Assume that $r m=0$. If $m=0$ there are nothing. If $m \neq 0$, so $0=r m \cap<m>=r \mathcal{M} \cap \mathcal{M}=r \mathcal{M}$. Thus \mathcal{M} is c-pr-module.
Remark 3.9: Let R be a ring with 1 and let I be an ideal of R. If I is c - $p r$-ideal of R, then I is c-pr-submodule [Ssevviiri, 2013].
Proposition 3.10: Let \mathcal{M} be a singular R-module and let A be submodule of \mathcal{M}. If the ideal $(A: \mathcal{M})=(A: m), m \in \mathcal{M}-A$, then A is a c-pr-submodule of M and hence \mathcal{M} is c - $p r$-module $\left(A \ll_{\delta} \mathcal{M}\right)$.

Proof: Assume that $r m \in A, r \in R, m \in \mathcal{M}$. So $r \in(A: m)$. If $m \in A$ there are nothing. Let $m \notin A$. So $r \in(A: \mathcal{M}) \ni r \mathcal{M} \subseteq A$. Hence A is c-pr-submodule. Thus \mathcal{M} is c-pr-module and then it is prime module. Therefore $A \ll_{\delta} \mathcal{M}$.

Corollary 3.11: Let \mathcal{M} be a singular R - module and let $A \leq \mathcal{M}$. If for all $r \in R, m \in \mathcal{M}$ with $(r m) \subseteq A$, then $(\mathcal{M}) \subseteq A$ or $<r \mathcal{M}>$ $\subseteq A$ and so A is a δ-small in \mathcal{M}.

Proof: Assume that $r \in(A: \mathcal{M})$. Suppose that $m \in \mathcal{M}-A$. So $r \mathcal{M} \subseteq A$. Hence $r m \in A$ with $r \in(A: \mathcal{M})$. If $r \in(A: \mathcal{M})$ and $m \in \mathcal{M}-$ A, then $r m \in A$ and $<r m>\subseteq A$. But $r \mathcal{M} \subseteq<r \mathcal{M}>\subseteq A$; because $<\mathcal{M}>\nsubseteq A, m \notin A$. Then $r \in(A: \mathcal{M})$. Hence, by proposition 3.10; A is a c-pr-submodule and then \mathcal{M} is c-pr-module. Therefore \mathcal{M} is a prime module with $Z(\mathcal{M})=\mathcal{M}$ implies that $A \ll_{\delta} \mathcal{M}$.

Remark 3.12: By the same method of proof proposition 3.10, we can say; if $A_{1}=(A: \mathcal{M})$ is a c-pr-ideal of R with $(A: \mathcal{M})=(\overline{0}: \bar{m})=$ $A_{1} \forall m \in \mathcal{M}-A$, so A is c-pr-submodule and hence \mathcal{M} is c - $p r$-module (\mathcal{M} is $p r$-module). Therefore, in the next result, we present the following:

Corollary 3.13: Let \mathcal{M} be a singular module. If the set $\{(A: \mathcal{M}): m \in \mathcal{M}-A\}$ is a singular, the $A<{ }_{\delta} \mathcal{M}, \forall A \leq \mathcal{M}$.
Proof: For all $m \in \mathcal{M}-A ; A_{1}=(A: \mathcal{M})$

$$
\begin{aligned}
& =\cap\{(A: \mathcal{M}): m \in \mathcal{M}-A\} \\
& =(A: \mathcal{M}) \quad \text { (by assumption) }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{But}(A: \mathcal{M})=\{r & \in R: r m \in A\} \\
& =\{r \in R: r \bar{m}=\overline{0}\} \\
& =(\overline{0}: \bar{m})
\end{aligned}
$$

Where $\bar{m}=m+A$. Suppose that $a_{1} a_{2} \in(A: m), a_{1}, a_{2} \in R, m \in \mathcal{M}-A$. So $a_{1} a_{2} \in A$. If $a_{2} \in(A: m)$, there is nothing. Assume that $a_{2} \notin(A: m), a_{2} m \notin A$, so $a_{1} \in\left(A: a_{2} m\right)=(A: m)$ and then $A_{1}=(A: m) \forall m \in \mathcal{M}-A$ is c-pr-ideal. Thus from Remark 3.12; \mathcal{M} is $c-$ $p r$-submodule (\mathcal{M} is c-pr-module) and hence is a prime module. But $\mathcal{M}=Z(\mathcal{M})$. Then $A \ll_{\delta} \mathcal{M}$.

Remark 3.14: Let $(A: F)=(A: \mathcal{M})$ where $F \subseteq \mathcal{M}-A$. If we take $F=\{m\}, m \in \mathcal{M}-A$ with $Z(\mathcal{M})=\mathcal{M}$ then by pro.3.10; A is δ small of \mathcal{M}.

Proposition 3.15: Let R be a ring and \mathcal{M} be singular R-module such that $A_{1} \neq R$. If A_{1} is c - $p r$-ideal of R, then A is δ-small submodule of \mathcal{M}.

Proof: Suppose that A is a c - $p r$-ideal and suppose $\mathcal{M}=\frac{R}{A}$. Assume that $a \in A_{1}, b \in R$. Then $a\left(b+A_{1}\right)=a b+A_{1}=A_{1}$; Hence

$$
A \subseteq(0: \mathcal{M})_{R}
$$

If $c \in(0: \mathcal{M})_{R}$, then $c\left(r+A_{1}\right)=A_{1}, r \in R$. So $c R \subseteq A_{1}$. Since A_{1} is c - $p r$-ideal, then $c \in A_{1}$.Hence $(0: \mathcal{M})_{R}=A_{1}$. then \mathcal{M} is c-prmodule if $c \in R$ and $m \in \mathcal{M}=\frac{R}{A_{1}}$ such that $c m={ }_{0}^{-}$then $m=m_{1}+A_{1}$ and $c m_{1} \in A_{1}$. Since c-pr-submodule, $c \in A_{1}$ or $m_{1} \in A_{1}$ and hence $c m={ }_{0}$ or $m={ }_{0}$. $\left(\mathcal{M}\right.$ is c-pr-module) with $Z(\mathcal{M})=\mathcal{M}$, so $A \ll_{\delta} \mathcal{M}$.

Definition 3.16: [Singh, 2001] An ideal J of the ring R is called insertion of factor property (IFP) is $a b \in J, a, b \in R$, so $a R b \subseteq J$. Therefore a submodule A of \mathcal{M} is called (IFP) if $a m \in A, a \in R, m \in \mathcal{M}$, so $a R m \subseteq A$ and a module \mathcal{M} has (IFP) if the zero submodule has (IFP).

Proposition 3.17: Let \mathcal{M} be an R - module and let A be a submodule of \mathcal{M}. If:
i) $\quad Z(\mathcal{M})=\mathcal{M}$.
ii) $\quad A$ has $I F P$ and $p r$-submodule,

Then $A \ll_{\delta} \mathcal{M}$.
Proof: Suppose that $A \leq \mathcal{M}$ is c-pr-submodule. So A is prime and has $I F P$. Now we have $A \leq \mathcal{M}$ is a prime with $I F P$. Suppose that $r m \in A$. But A has $I F P, r<m>\subseteq A$. Since A is prime submodule, then $m \in A$ or $r m \subseteq A$. Hence A is $c-p r-s u b m o d u l e$. Then \mathcal{M} is c-pr-module (\mathcal{M} is $p r$-module). But $Z(\mathcal{M})=\mathcal{M}$. Thus $A \leq \mathcal{M}$.

Lemma 3.18: Every maximal submodule with completely semi prime (c-semi-prime) is completely prime submodule (c-prsubmodule) [Dauns, 1980].

Definition 3.19: [Bland, 2011] Let \mathcal{M} be an R-module and let $\emptyset \neq \mathcal{M}_{1} \subseteq \mathcal{M}-\{0\}$ is called multiplicative system of \mathcal{M} is $\forall r \in$ $R, m \in \mathcal{M}, H \leq \mathcal{M} \ni(H+<m>) \cap \mathcal{M}_{1} \neq \emptyset$ and $(H+<r m>) \cap \mathcal{M}_{1} \neq \emptyset$, so $(H+<r m>) \cap \mathcal{M}_{1} \neq \emptyset$.

Proposition 3.20: Let \mathcal{M} be a singular R-module. If A is a submodule of \mathcal{M} such that $\mathcal{M}-A$ is a multiplication system of \mathcal{M}, then $A \ll_{\delta} \mathcal{M}$.

Proof: Suppose that $r \in R, m \in \mathcal{M} \ni<r m>\subseteq A$. But $<m>\nsubseteq A$ with $<r m>\nsubseteq A$. Hence $<m>\cap K=\mathcal{M}-A \neq \emptyset$. Also, $<r m>\cap$ $K \neq \emptyset$. But $\mathcal{M}-A$ is multiplication system, then $<r m>\cap K \neq \emptyset \ni<r m>\nsubseteq A$, contradiction. So A is $c-p r$-submodule. Then \mathcal{M} is c-pr-module (\mathcal{M} is prime module) with $Z(\mathcal{M})=\mathcal{M}$ implies $A \ll_{\delta} \mathcal{M}$.

Corollary 3.21: Let \mathcal{M} be a singular R-module and let $K \subseteq \mathcal{M}$ is a multiplicative system of \mathcal{M} such that $A \leq \mathcal{M}$ is a maximal with respect $A \cap K=\varnothing$. Then $A \ll_{\delta} \mathcal{M}$.

Proof: Assume that $r \in R, m \in \mathcal{M} \ni<r m>\subseteq A$. If $<m>\nsubseteq A$ and $<r m>\nsubseteq A$, so

$$
(<m>+A) \cap K \neq \emptyset \text { and }(<r m>+A) \cap K \neq \emptyset
$$

But K is a multiplicative system of \mathcal{M}. So $(<r m>+A) \cap K \neq \emptyset$. If $<r m>\subseteq A$ imply $A \cap K \neq \emptyset$, a contradiction. Therefore A is c $p r$-submodule of \mathcal{M}. Hence \mathcal{M} is c-pr-module. Thus \mathcal{M} is a prime module. But \mathcal{M} is singular module. Then $A \ll_{\delta} \mathcal{M}$.

Corollary 3.22: Let \mathcal{M} be an R-module. If:
i) $\quad Z(\mathcal{M})=\mathcal{M}$.
ii) $\quad A \leq \mathcal{M} \ni A$ is c-pr-ideal of R.
iii) $\quad A \neq R$.

Then $A \ll_{\delta} \mathcal{M}$.
Proof: Suppose that A is c - $p r$-idael and let $\mathcal{M}=\frac{R}{A}$. Clear that \mathcal{M} is an R-module. If $a \in A, r \in R$, so $a(r+A)=a r+A=A$. Then $A \subseteq(0: \mathcal{M})_{R}$. Since $a_{1} \in(0: \mathcal{M})_{R}$, then $a_{1}\left(r_{1}+A\right)=A, r_{1} \in R$. Hence $a, R \subseteq A$. But A is c-pr-module and hence is prime module. But $Z(\mathcal{M})=\mathcal{M}$. So $A \ll_{\delta} \mathcal{M}$.

Proposition 3.23: Let \mathcal{M} be a singular module. If \mathcal{M} is contained in every non-zero invariant submodule of \mathcal{M}_{1} where \mathcal{M}_{1} is injective hull of \mathcal{M}. then any submodule A of \mathcal{M} is δ-small.

Proof: Assume that $0 \neq A \leq \mathcal{M}$. Clear that $\operatorname{ann}_{R}(\mathcal{M}) \subseteq a n n_{R}(A)$. To prove that $a n n_{R}(A) \subseteq a n n_{R}(\mathcal{M})$. Suppose that there exists $m \in \mathcal{M}, r m \neq 0$. If $0 \neq A, \exists 0 \neq b \in A . \pi\left(R b, \mathcal{M}_{1}\right)=\sum \emptyset(R b), \emptyset \in \operatorname{Hom}\left(R b, \mathcal{M}_{1}\right)$. Since $R b \subseteq \mathcal{M} \subseteq \mathcal{M}_{1}$, then $\pi\left(R b, \mathcal{M}_{1}\right)$ is a non-zero submodule of \mathcal{M}_{1}. So $\pi\left(R b, \mathcal{M}_{1}\right)$ is an invariant non-zero submodule of \mathcal{M}_{1}. Thus by assumption $\mathcal{M} \subseteq \pi\left(R b, \mathcal{M}_{1}\right)$. Hence

$$
\begin{aligned}
& \qquad \exists r_{1}, r_{2}, \ldots ., r_{k} \in R \ni Q_{1}, Q_{2}, \ldots ., Q_{k} \in \operatorname{Hom}\left(R b, \mathcal{M}_{1}\right) \\
& \ni r m=\sum Q_{i}\left(r_{i} b\right) . \text { Thus } \\
& r m=\sum r Q_{i}\left(r_{i} b\right) \\
& \quad=\sum Q_{i}\left(r r_{i} b\right) \\
& \quad=0
\end{aligned}
$$

This contradiction. Then $\operatorname{ann}_{R}(A) \subseteq \operatorname{ann}_{R}(\mathcal{M})$. Therefore \mathcal{M} is a prime module. But $Z(\mathcal{M})=\mathcal{M}$. Thus $A \ll_{\delta} \mathcal{M}$.

4. Conclusion

In this manuscript, we study δ-small submodules based on prime modules. We showed the relationship between some submodules, such as singular submodule with completely prime modules, to get a small concept. It is observed that if \mathcal{M} is a singular R-module have a completely prime ideal then it is a δ-small submodule of \mathcal{M}. Moreover, we introduce that every submodule A of Bezout module \mathcal{M} over local ring R is δ-small in \mathcal{M}.

Statements and Declarations

Funding: This research received no external funding.
Conflicts of Interest: No conflict of interest.
Acknowledgments: I would like to extend my gratitude and thanks to your esteemed journal and the blessed efforts that you provide to students of science and everyone who contributes to its development.

References

[1] Abed, M. M., Al-Sharqi, F. G., \& Mhassin, A. A. (2019, August). Study fractional ideals over some domains. In AIP Conference Proceedings, AIP Publishing LLC, 2138(1), 030001.
[2] Al-Bahrani, B. H., \& Al-Redeeni, H. S. (2017). Hollow Modules With Respect to an Arbitrary Submodule. Iraqi Journal of Science, 58(2), 694-698.
[3] Bataineh, M., Abu-Dawwas, R. \& Bdarneh, K. (2016). On almost strongly prime submodules. Global Journal of Pure and Applied Mathematics, 12(4), 3357-3366.
[4] Bland, P. E. (2011). Rings and their modules. In Rings and Their Modules. de Gruyter, doi.org/10.1515/9783110250237.
[5] Dauns, J. (1980). Uniform modules and complements. Houston J. Math, 6(1), 31-40.
[6] Groenewald, N. J., \& Ssevviiri, D. (2013). Completely prime submodules. International Electronic Journal of Algebra, 13(13), 1-14.
[7] Hwang, S. U., Jeon, Y. C., \& Park, K. S. (2007). A generalization of insertion-of-factors-property. Bulletin of the Korean Mathematical Society, 44(1), 87-94.
[8] Janusz, G. J. (1969). Indecomposable modules for finite groups. Annals of Mathematics, 209-241.
[9] Kasch. F., (1982), Modules and rings, academic press, 17.
[10] Leonard, W. W.(1966). Small modules. Proceedings of the American Mathematical Society, 17(2), 527-531.
[11] Moghaderi, J., \& Nekooei, R. (2011). Strongly prime submodules and pseudo-valuation modules. International Electronic Journal of Algebra, 10(10), 65-75.
[12] Singh, S., \& AI-Shaniafi, Y. (2001). Multiplication modules. Communications in Algebra, Taylor \& Francis, 29(6), 2597-2609. doi.org/10.1081/AGB-100002410.
[13] Ssevviiri, D. (2011). On Prime modules and radicals of modules. Nelson Mandela Metropolitan University, South Africa.
[14] Ssevviiri, D. (2013). A contribution to the theory of prime modules (Doctoral dissertation, Nelson Mandela Metropolitan University).
[15] Wang, Y. (2007). δ-small submodules and δ-supplemented modules. International Journal of Mathematics and Mathematical Sciences. doi:10.1155/2007/58132.

