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| ABSTRACT 

In (Moutassim, n.d), we have proven that if A is an absolute valued algebra containing a nonzero central algebraic element, then 

A is a pre-Hilbert algebra. Here we show that  A is finite dimensional in the following cases:  

1) A satisfies (𝑥2, 𝑥, 𝑥) =  0 or (𝑥, 𝑥, 𝑥2) = 0 

2) A satisfies (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0.  

In these cases A is isomorphic to ℝ, ℂ, H or O. 
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1. Introduction 

Absolute valued algebras are those real or complex algebras A satisfying ||𝑥𝑦||  =  ||𝑥||. ||𝑦|| for a given norm ||. || on A, and 𝑥, 𝑦 ∈

𝐴. It it well known that any familiar identity in an absolute valued algebras as commutativity [Urbanik, 1960] or power associativity 

[Wright, 1953; El-Mallah, 1980] carry away finite dimensionality. Albert’s paper [1947] contains a fundamental result asserting that 

any finite dimensional absolute valued algebras has dimension n = 1, 2,4 or 8 and is isotopic to one of classical (unital) absolute 

valued algebras ℝ, ℂ, H or O. El-Mallah and Micali showed that any flexible absolute valued algebras is finite dimensional [El-Mallah, 

1981]. Next, El-Mallah showed that for a finite dimensional absolute valued algebra 𝐴, flexibility and identity (𝑥, 𝑥, 𝑥)  =  0 (where 

(. , . , . ) means associator) coincide [El-Mallah, 1987]. Recently the study of absolute valued algebras with weakly identities as 

(𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) = 0, (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0, becomes of actuality. It is shown that any absolute valued algebras 

with a central idempotent and satisfying (𝑥2, 𝑥, 𝑥) =  0 or (𝑥, 𝑥, 𝑥2) = 0 is finite dimensional and isomorphic to ℝ, ℂ, H or O [El-

Mallah, 2001]. Urbanik and Wright proved in 1960 that all unital absolute valued algebras are classified by ℝ, ℂ, H and O [10]. It is 

easily seen that the one-dimensional absolute valued algebras are classified by ℝ, and it is well-known that the two-dimensional 

absolute valued algebras are classified by ℂ, ℂ∗, *ℂ or ℂ
∗

 (the real algebras obtained by endowing the space ℂ with the product x ∗

y = x̅y, x ∗ y = xy̅, and  x ∗ y = x̅ y̅  respectively) [Rodriguez, 1994]. It is natural to study those absolute valued algebras by replacing 

the original assumption central idempotent by a weaker one central algebraic element, we prove that, if A is an absolute valued 

real algebra containing a central algebraic element 𝑎 and satisfying one of the following identities (𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) =

0, (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0. Then A is finite dimensional and isomorphic to ℝ, ℂ, H or O (theorems 3.1, 3.2, 3.3, 3.4, 3.5 and 

3.6) this result is an important generalization of a results given in [Chandid, 2008] and [El-Mallah, 2001].  

 

In section 2 we introduce the basic tools for the study of absolute valued algebras containing a central algebraic element. We also 

give some properties related to central algebraic element satisfying some restrictions on commutativity (proposition 2.6 and lemma 

2.7). Moreover, the section 3 is devoted to classify all absolute valued algebras with a central algebraic element and satisfying one 

of the following identities  (𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) = 0, (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0.                                                                                           
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The paper ends with the following main results:                                              

Theorem.  Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are 

equivalent

1) A satisfies (𝑥2, 𝑥, 𝑥) =  0 or (𝑥, 𝑥, 𝑥2) = 0,                                                                                                                                                                        

2) A satisfies (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0,                                                                                                                                              

3) A is finite dimensional and isomorphic to ℝ, ℂ, H or O.                                                                                                                              

2. Notation and Preliminaries Results  

In this paper all the algebras are considered over the real numbers field ℝ.  

Definition 2.1 Let B be an arbitrary algebra.                                                                                                                                             

i) B is called a division algebra if the operators Lx and Rx of left and right multiplication by x are bijective for all x ∈ B ∖ {0}.                                                                                                                                                                                                                       

ii) We say that B is algebraic, if for every x in B, the subalgebra B(𝑥) of B generated by x is finite dimensional. 

iii) We mean by a nonzero central element in B, a nonzero element which commute with all elements of the algebra B.                                                                                                                                        

iv) B is called a normed algebra (respectively, absolute valued algebra) if it is endowed with a space norm: ‖ . ‖ such that ‖𝑥𝑦‖ ≤

‖𝑥‖‖𝑦‖ (respectively, ‖𝑥𝑦‖ = ‖𝑥‖‖𝑦‖, for all x, y ∈ B).                                                                                                                                                                                                                      

v) B is called a pre-Hilbert algebra if it is endowed with a space norm comes from an inner product (./.) such that 

                        (./. ) ∶  B × B ⟶  ℝ 

                                    (x, y) ⟼  
1

4
(‖x + y‖2 − ‖x − y‖2) 

The most natural examples of absolute valued algebras are ℝ, ℂ, H (the algebra of Hamilton quaternion) and O (the algebra of 

Cayley numbers) with norms equal to their usual absolute values [El-Mallah, 2001] and [Urbanik, 1960]. 

                                                                                                                                                                                                          

We need the following relevant results: 

 

Theorem 2.2 [Moutassim, n.d] The norm of any absolute valued algebra containing a nonzero central algebraic element comes 

from an inner product.                                                                                        

 

Theorem 2.3 [Chandid, 2001]  Any absolute valued algebra 𝐴 with a central idempotent satisfying (𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) =

0, (𝑥2, 𝑥2, 𝑥)  =  0 or (𝑥, 𝑥2, 𝑥2) = 0 for all 𝑥 ∈ 𝐴 is finite dimensional and is isomorphic to ℝ, ℂ, H or O.                                                                                

 

Theorem 2.4 [Urbanik, 1960] A commutative absolute valued algebra is isomorphic to ℝ, ℂ or  ℂ
∗

   

  

Theorem 2.5 [Rodriguez, 1994] The norm of any absolute valued algebra 𝐴 with left unit 𝐴 comes from an inner product and 

satisfying             (𝑎𝑏/𝑐)  =  −(𝑏/𝑎𝑐) and 𝑎(𝑎𝑏)  = −||𝑎||2𝑏 for all 𝑎, 𝑏, 𝑐 ∈  𝐴  with 𝑎 orthogonal to 𝑒.   

    

we give some conditions imply that A is an inner product space. 

Proposition 2.6 [8] Let 𝐴 be an absolute valued algebra containing a central element 𝑎 and let 𝑥 be a element in 𝐴. If 𝑥 is orthogonal 

to 𝑎 in the inner product space [𝑎, 𝑥], then the following are equivalent: 

1) 𝑥2𝑎2 = 𝑎2𝑥2, 

2) 𝑥2 = −||𝑥||2𝑎2,  

3) 𝐴 is an inner product space. 

 

Lemma 2.7 Let A be an absolute valued algebra containing a nonzero central algebraic element 𝑎. Then                                         

𝑥𝑦 + 𝑦𝑥 = 2(𝑥|𝑦)𝑎2 for all 𝑥, 𝑦 ∈ {𝑎}⊥.   

Proof. By theorem 2.2, 𝐴 is an inner product space. We have   𝑥, 𝑦 ∈ {𝑎}⊥, then (𝑥 + 𝑦)2 = −||𝑥 + 𝑦||2𝑎2 (proposition 2.6), hence 

𝑥𝑦 + 𝑦𝑥 = −2(𝑥|𝑦)𝑎2.  

  

3. Main Results                                                                                                                                                                                     

3.1. Absolute Valued Algebras Satisfying (𝒙𝟐, 𝒙, 𝒙) =  𝟎 𝒐𝒓 (𝒙, 𝒙, 𝒙𝟐) 

In this section we prove that if 𝐴 is an absolute valued algebra with a central element 𝑎 and satisfying (𝑥2, 𝑥, 𝑥) = 0 or (𝑥, 𝑥, 𝑥2) =

0. Then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O.                                                                                                                                   

 

Theorem 3.1 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥2, 𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐴. 

If 𝑎 and 𝑎2 are linearly independent, then 𝐴(𝑎, 𝑎2) is isomorphic to ℂ. 

Proof. By theorem 2.2, 𝐴 is an inner product space. Let  𝑑 =  𝑎2 − (𝑎/𝑎2)𝑎, we have (𝑑/𝑎)  =  0, by lemma 2.7 

𝑑2  =  −||𝑑||2𝑎2 =  −(1 −  (𝑎/𝑎2)2)𝑎2 

That is                                     −(1 − (𝑎/𝑎2)2)𝑎2  =  (𝑎2 − (𝑎/𝑎2)𝑎)2 
                                                                               =  (𝑎2)2 − 2(𝑎/𝑎2)𝑎𝑎2  + (𝑎/𝑎2)2𝑎2                                                                                                  



JMSS 4(2): 49-53 

Page | 51  

                                                                               =  (𝑎2𝑎)𝑎 − 2(𝑎/𝑎2)𝑎𝑎2  + (𝑎/𝑎2)2𝑎2 
                                                                               =  (𝑎2𝑎 − 2(𝑎/𝑎2)𝑎2  + (𝑎/𝑎2)2𝑎)𝑎 

This gives                                 −(1 −  (𝑎/𝑎2)2)𝑎 =  𝑎2𝑎 − 2(𝑎/𝑎2)𝑎2  + (𝑎/𝑎2)2𝑎 

So                                                                    𝑎2𝑎 = 2(𝑎/𝑎2)𝑎2 − 𝑎 

Hence 𝐴(𝑎, 𝑎2) is a two-dimensional commutative sub-algebra of 𝐴, thus 𝐴(𝑎, 𝑎2) is isomorphic to ℂ or  ℂ
∗

 (theorem 2.4). If 

𝐴(𝑎, 𝑎2) is isomorphic to ℂ
∗

, then there exist a basis  {𝑓, 𝑗} of 𝐴(𝑎, 𝑎2) such that 𝑓2 = 𝑓, 𝑗2 = −𝑓  𝑎𝑛𝑑 𝑗𝑓 = 𝑓𝑗 = −𝑗. Since                 

(𝑗2, 𝑗, 𝑗) = −(𝑓, 𝑗, 𝑗) = −(𝑓𝑗)𝑗 + 𝑓𝑗2 = −𝑓 − 𝑓 = −2𝑓 ≠ 0 

Which absurd, therefore 𝐴(𝑎, 𝑎2) is isomorphic to ℂ.                                                                                                                                                                   

 

From the last result we conclude there exists a nonzero idempotent 𝑒 ∈ 𝐴 and a nonzero element 𝑖 ∈ 𝐴 such that                    

𝑒2 = 𝑒, 𝑖𝑒 =  𝑒𝑖 𝑎𝑛𝑑 𝑖2 = −𝑒. We put 𝑎 = 𝛼𝑒 + 𝛽𝑖  with  𝛼, 𝛽 ∈ ℝ (𝛼2 + 𝛽2 = 1). Then we get the following result: 

Theorem 3.2 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥2, 𝑥, 𝑥) = 0 for all 𝑥 ∈

𝐴, then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O. 

 

Proof. By theorem 2.2, 𝐴 is an inner product space. Let 𝑥 ∈ {𝑎, 𝑎2}⊥ be a norm one element, we have the following two cases:                                                                               

1) If 𝑎 and 𝑎2 are linearly independent, then 𝐴(𝑎, 𝑎2) is isomorphic to ℂ (theorem 2.4). We put 𝑎 = 𝛼𝑒 + 𝛽𝑖  (notation above) and 

led  𝑑 = 𝑖𝑎 = 𝛼𝑖 − 𝛽𝑒, we have (𝑑/𝑎)  = (𝑖𝑎/𝑎) = (𝑖/𝑒) =  0, then 𝑑𝑥 =  −𝑥𝑑 (Lemma 2.7). Since   𝑎𝑥 =  𝑥𝑎, we obtain                     

𝛼𝑒𝑥 + 𝛽𝑖𝑥 = 𝛼𝑥𝑒 + 𝛽𝑥𝑖   𝑎𝑛𝑑  − 𝛽𝑒𝑥 +  𝛼 𝑖𝑥 =  −𝛽𝑥𝑒 + 𝛼𝑥𝑖 

From these equalities, we get                              𝛽𝛼𝑒𝑥 + 𝛽2𝑖𝑥 = 𝛽𝛼𝑥𝑒 + 𝛽2𝑥𝑖                                                                  (1) 

and                                                                  −𝛼𝛽𝑒𝑥 +  𝛼2𝑖𝑥 =  −𝛼𝛽𝑥𝑒 + 𝛼2𝑥𝑖                                                               (2) 

 

Adding the two equalities (1) and (2), we obtain  𝑖𝑥 = 𝑥𝑖   (𝛼2 + 𝛽2 = 1). According to proposition 2.6  𝑥2 = −𝑖2 = 𝑒.   Since 𝑥 ∈

{𝑎, 𝑎2}⊥  and  𝑎𝑥 = 𝑥𝑎, then  𝑒 = 𝑥2 = −𝑎2. That is,  𝑒 = −(𝛼2 − 𝛽2)𝑒 − 2𝛼𝛽𝑖, this implies   𝛼 = 0 or 𝛽 = 0.  

𝑎 and 𝑎2 are linearly independent, thus 𝛽 ≠ 0, therefore  𝛼 = 0. Which means that (𝑎/𝑎2) = (𝑎/𝑒) = 0.   

On the other hand,           0 =  ((𝑒 + 𝑥)2, 𝑒 + 𝑥, 𝑒 + 𝑥) 

                                             =  (2𝑒, 𝑒 + 𝑥, 𝑒 + 𝑥) 

                                             =  (𝑒, 𝑒, 𝑥) + (𝑒, 𝑥, 𝑒) + (𝑒, 𝑥, 𝑥)  

                                             =  (𝑒, 𝑒, 𝑥) + (𝑒, 𝑥, 𝑒)                    ((𝑒, 𝑥, 𝑥) = (𝑥2, 𝑥, 𝑥) = 0) 

                                             =  𝑒𝑥 − 𝑒(𝑒𝑥) + (𝑒𝑥)𝑒 − 𝑒(𝑥𝑒)  

                                             =  −𝑥𝑒 − 𝑒(𝑒𝑥) + (𝑒𝑥)𝑒 + 𝑒(𝑒𝑥)           (by lemma 2.7,  𝑒𝑥 + 𝑥𝑒 = 0)   

This implies  (𝑒𝑥)𝑒 = 𝑥𝑒, thus  𝑒𝑥 = 𝑥. Since  𝑒𝑣 =  𝑣𝑒 =  𝑣  for all  𝑣 ∈  𝐴(𝑎, 𝑎2), then 𝑒𝑦 =  𝑦 for all 𝑦 ∈  𝐴. Hence 𝑒 is a left unit 

of 𝐴. Moreover                                                             0 =  ((𝑎 + 𝑥)2, 𝑎 + 𝑥, 𝑎 + 𝑥) 

                                                                                         =  (𝑎𝑥, 𝑎 + 𝑥, 𝑎 + 𝑥) 

                                                                                         =  (𝑎𝑥, 𝑎, 𝑎) + (𝑎𝑥, 𝑎, 𝑥) + (𝑎𝑥, 𝑥, 𝑎) + (𝑎𝑥, 𝑥, 𝑥)  

We replace 𝑥 by −𝑥, we get            (𝑎𝑥, 𝑎, 𝑎) + (𝑎𝑥, 𝑥, 𝑥) = 0                                                                                            (3)                                                                                                          

and                                                  (𝑎𝑥, 𝑎, 𝑥) + (𝑎𝑥, 𝑥, 𝑎) = 0                                                                                            (4)                                           

So  (4) gives         ((𝑎𝑥)𝑎)𝑥 − (𝑎𝑥)2 + ((𝑎𝑥)𝑥)𝑎 − (𝑎𝑥)2 = 0  

That is                                             (𝑎(𝑎𝑥))𝑥 + ((𝑎𝑥)𝑥)𝑎 = 2(𝑎𝑥)2                                                                                                                                   

As  (𝑎/𝑒) = 0 and theorem 2.5, we get  −𝑥2 + ((𝑎𝑥)𝑥)𝑎 = 2(𝑎𝑥)2                                                                                   (5) 

We have                                                  (𝑎𝑥/𝑎) = (𝑥/𝑒) = 0,    then   (𝑎𝑥)2 = −𝑎2 = 𝑒,                                                                       

So (5) gives                                                         ((𝑎𝑥)𝑥)𝑎 = −3𝑒                                                                                                                                                     

Which absurd, ||((𝑎𝑥)𝑥)𝑎|| = 1  and  ||−3𝑒|| = 3. Therefore 𝑥 = 0, in this case 𝐴 = 𝐴(𝑎, 𝑎2) is isomorphic to ℂ.  

2) If 𝑎 and 𝑎2 are linearly dependent, then 𝑎 is a nonzero central idempotent and the theorem 2.3 completes the proof. 

 

Similarly, we can get all preceding results if 𝐴 satisfies (𝑥, 𝑥, 𝑥2) 

Theorem 3.3 Let 𝐴  be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥, 𝑥, 𝑥2) for all 𝑥 ∈ 𝐴, 

then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O. 

 

3.2 Absolute Valued Algebras Satisfying (𝒙𝟐, 𝒙𝟐, 𝒙) = 𝟎 𝒐𝒓  (𝒙, 𝒙𝟐, 𝒙𝟐) = 𝟎 

In this section we prove that if 𝐴 is an absolute valued algebra containing a central element 𝑎 and satisfying (𝑥2, 𝑥2, 𝑥) = 0 or 

(𝑥, 𝑥2, 𝑥2) = 0. Then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O.                                                                                                                                                                                                                                                                  

 

Theorem 3.4 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥2, 𝑥2, 𝑥) = 0 for all 𝑥 ∈

𝐴. If 𝑎 and 𝑎2 are linearly independent, then 𝐴(𝑎, 𝑎2) is isomorphic to ℂ. 

Proof. By theorem 2.2, 𝐴 is an inner product space. Let   𝑑 =  𝑎2 − (𝑎/𝑎2)𝑎, (𝑑 ≠ 0), we have (𝑑/𝑎)  =  0, by proposition 2.6                  

                                                                         𝑑2  =  −||𝑑||2𝑎2 =  −(1 −  (𝑎/𝑎2)2)𝑎2 

That is                                     −(1 − (𝑎/𝑎2)2)𝑎2  =  (𝑎2 − (𝑎/𝑎2)𝑎)2 
                                                   −𝑎2 + (𝑎/𝑎2)2𝑎2 =  (𝑎2)2 − 2(𝑎/𝑎2)𝑎𝑎2  + (𝑎/𝑎2)2𝑎2                                                                                                  
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This gives                                                      (𝑎2)2 = 2(𝑎/𝑎2)𝑎𝑎2  − 𝑎2                                                                             (6)                                                                                                               

• If (𝑎/𝑎2) = 0, then (𝑎2)2 = −𝑎2 and    (𝑎2)2𝑎 = −𝑎2𝑎                                                                                                                      

                                                                           𝑎2(𝑎2𝑎) = −𝑎2 = (𝑎2)2  

Hence 𝑎𝑎2 = 𝑎, which means that 𝐴(𝑎, 𝑎2) is a two dimensional commutative sub-algebra of A.                                                        

Let   𝑐 =  𝑎𝑎2 − (𝑎/𝑎𝑎2)𝑎, we have   (𝑐/𝑎)  =  0, by proposition 2.6,                                                                                                    

                                                                                  𝑐2  =  −||𝑐||2𝑎2 =  −(1 −  (𝑎/𝑎𝑎2)2)𝑎2 

• If ||𝑐|| = 0, then  𝑎𝑎2 =  ±𝑎. That is       (𝑎2)2 = 2(𝑎/𝑎2)𝑎𝑎2  − 𝑎2 = ±2(𝑎/𝑎2)𝑎 − 𝑎2 

This implies that 𝐴(𝑎, 𝑎2) is a two dimensional commutative sub-algebra of A. 

Assuming that (𝑎/𝑎2) ≠ 0 and   ||𝑐|| ≠ 0. Since  (𝑑2, 𝑑2, 𝑑) = 0, then (𝑎2, 𝑎2, 𝑎2) = 0 thus (𝑎2)2𝑎2 = 𝑎2(𝑎2)2 

So (6) gives (𝑎𝑎2)𝑎2 = 𝑎2(𝑎𝑎2), moreover              𝑑𝑐 =  (𝑎2  −  (𝑎/𝑎2)𝑎)(𝑎𝑎2  −  (𝑎/𝑎𝑎2)𝑎) 

                                                                                       =  𝑎2(𝑎𝑎2)  − (𝑎/𝑎2)𝑎(𝑎𝑎2)  − (𝑎/𝑎𝑎2)𝑎𝑎2  +  (𝑎/𝑎2)(𝑎/𝑎𝑎2)𝑎2 

                                                                                       =  (𝑎𝑎2)𝑎2  −  (𝑎/𝑎2)𝑎(𝑎𝑎2)  − (𝑎/𝑎𝑎2)𝑎𝑎2  +  (𝑎/𝑎2)(𝑎/𝑎𝑎2)𝑎2 
                                                                                       =  𝑐𝑑                                                                                                           

And since ||𝑐||2𝑑2 = ||𝑑||2𝑐2, then ||𝑐||𝑑 =  ||𝑑||𝑐 or ||𝑐||𝑑 =  −||𝑑||𝑐. We conclude that 

                                                                        ||𝑑||𝑎𝑎2 =  ||𝑐||𝑎2 + ((𝑎/𝑎𝑎2)||𝑑||  − (𝑎/𝑎2)||𝑐||)𝑎 

Or 

                                                                        ||𝑑||𝑎𝑎2 =  ||𝑐||𝑎2 + ((𝑎/𝑎𝑎2)||𝑑||  − (𝑎/𝑎2)||𝑐||)𝑎 

Therefore 𝐴(𝑎, 𝑎2) is a two-dimensional commutative sub-algebra of 𝐴, thus 𝐴(𝑎, 𝑎2) is isomorphic to ℂ or  ℂ
∗

 (theorem 2.4). If 

𝐴(𝑎, 𝑎2) is isomorphic to ℂ
∗

,that is, there exist a basis  {𝑓, 𝑗} of 𝐴(𝑎, 𝑎2) such that 𝑓2 = 𝑓, 𝑗2 = −𝑓  𝑎𝑛𝑑 𝑗𝑓 = 𝑓𝑗 = −𝑗. Since                 

(𝑗2, 𝑗2, 𝑗) = (𝑓, 𝑓, 𝑗) = 𝑓𝑗 − 𝑓(𝑓𝑗) = −𝑗 − 𝑗 = −2𝑗 ≠ 0 

Which absurd, therefore 𝐴(𝑎, 𝑎2) is isomorphic to ℂ.                                                                                                                                                                   

 

From the last result we conclude there exists a nonzero idempotent 𝑒 ∈ 𝐴 and a nonzero element 𝑖 ∈ 𝐴 such that                    

𝑒2 = 𝑒, 𝑖𝑒 =  𝑒𝑖 𝑎𝑛𝑑 𝑖2 = −𝑒. We put 𝑎 = 𝛼𝑒 + 𝛽𝑖  with   𝛼, 𝛽 ∈ ℝ (𝛼2 + 𝛽2 = 1). Then we get the following result: 

Theorem 3.5 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥2, 𝑥2, 𝑥) = 0 for all 𝑥 ∈

𝐴, then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O. 

 

Proof. By theorem 2.2, 𝐴 is an inner product space. Let 𝑥 ∈ {𝑎, 𝑎2}⊥ be a norm one element, we have the following two cases:                                                                               

1) If 𝑎 and 𝑎2 are linearly independent, then 𝐴(𝑎, 𝑎2) is isomorphic to ℂ (theorem 2.4). We put 𝑎 = 𝛼𝑒 + 𝛽𝑖  (notation above) and 

𝑑 = 𝑖𝑎 = 𝛼𝑖 − 𝛽𝑒, we have (𝑑/𝑎)  = (𝑖𝑎/𝑎) = (𝑖/𝑒) =  0, then 𝑑𝑥 =  −𝑥𝑑 (Lemma 2.7). Since   𝑎𝑥 =  𝑥𝑎, we obtain                     

𝛼𝑒𝑥 + 𝛽𝑖𝑥 = 𝛼𝑥𝑒 + 𝛽𝑥𝑖   𝑎𝑛𝑑  − 𝛽𝑒𝑥 +  𝛼 𝑖𝑥 =  −𝛽𝑥𝑒 + 𝛼𝑥𝑖 

From these equalities, we get                              𝛽𝛼𝑒𝑥 + 𝛽2𝑖𝑥 = 𝛽𝛼𝑥𝑒 + 𝛽2𝑥𝑖                                                                 (7) 

and                                                                  −𝛼𝛽𝑒𝑥 +  𝛼2𝑖𝑥 =  −𝛼𝛽𝑥𝑒 + 𝛼2𝑥𝑖                                                              (8) 

Adding the two equalities (7) and (8), we obtain  𝑖𝑥 = 𝑥𝑖   (𝛼2 + 𝛽2 = 1). According to proposition 2.6  𝑥2 = −𝑖2 = 𝑒.   Since 𝑥 ∈

{𝑎, 𝑎2}⊥  and  𝑎𝑥 = 𝑥𝑎, then  𝑒 = 𝑥2 = −𝑎2. That is, 𝑒 = −(𝛼2 − 𝛽2)𝑒 − 2𝛼𝛽𝑖, this implies   𝛼 = 0 or 𝛽 = 0.  

But we have, 𝑎 and 𝑎2 are linearly independent, thus  𝛽 ≠ 0, therefore  𝛼 = 0. Which means that  (𝑎/𝑎2) = (𝑎/𝑒) = 0.   

On the other hand, using lemma 2.7, 𝑒𝑥 + 𝑥𝑒 = 0. So                                                                                                                                     

                                         0 =  ((𝑒 + 𝑥)2, (𝑒 + 𝑥)2, 𝑒 + 𝑥) 

                                             =  (2𝑒, 2𝑒, 𝑒 + 𝑥) 
                                             =  (𝑒, 𝑒, 𝑥)  

                                             =  𝑒𝑥 − 𝑒(𝑒𝑥)  

this implies  𝑒𝑥 = 𝑥. Since  𝑒𝑣 =  𝑣𝑒 =  𝑣  for all  𝑣 ∈  𝐴(𝑎, 𝑎2), then 𝑒𝑦 =  𝑦 for all 𝑦 ∈  𝐴. Hence 𝑒 is a left unit of 𝐴.       

Moreover                          0 =  ((𝑎 + 𝑥)2, (𝑎 + 𝑥)2, 𝑎 + 𝑥) 

                                             =  (𝑎𝑥, 𝑎𝑥, 𝑎 + 𝑥)                                 (𝑥2 = −𝑎2)                
                                             =  (𝑎𝑥, 𝑎𝑥, 𝑎) + (𝑎𝑥, 𝑎𝑥, 𝑥)  

We replace 𝑥 by −𝑥, we get            (𝑎𝑥, 𝑎, 𝑎) = 0                                                                                                              (9)                                                                                                          

and                                                  (𝑎𝑥, 𝑎, 𝑥) = 0                                                                                                              (10)                                           

So  (10) gives         (𝑎𝑥)2 − ((𝑎𝑥)𝑎)𝑥 = 0  

That is                                             (𝑎(𝑎𝑥))𝑥 = (𝑎𝑥)2                                                                                                                                   

As  (𝑎𝑥/𝑎) = (𝑥/𝑒) = 0, thus  (𝑎𝑥)2 = −𝑎2 = 𝑒. And by theorem 2.5, we get  −𝑥2 = (𝑎𝑥)2 = 𝑒 = 𝑥2                                                                                  

Therefore 𝑥 = 0, in this case 𝐴 = 𝐴(𝑎, 𝑎2) is isomorphic to ℂ.  

2) If 𝑎 and 𝑎2 are linearly dependent, then 𝑎 is a nonzero central idempotent and the theorem 2.3 completes the proof. 

 

Similarly, we can get all preceding results if 𝐴 satisfies (𝑥, 𝑥2, 𝑥2) 

Theorem 3.6 Let 𝐴  be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥, 𝑥2, 𝑥2) for all 𝑥 ∈ 𝐴, 

then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H or O. 

 

4. Conclusion  
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We have the following classical results:                                                                                                                                             

Theorem.  Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are 

equivalent

1) 𝐴 satisfies (𝑥2, 𝑥, 𝑥)  =  0,                                                                                                                                                                     

2) A satisfies (𝑥, 𝑥,  𝑥2)  =  0,                                                                                                                                                                

3) A satisfies (𝑥2, 𝑥2, 𝑥)  =  0,                                                                                                                                                             

4) A satisfies (𝑥, 𝑥2,  𝑥2)  =  0,                                                                                                                                                              

5) A is finite dimensional and isomorphic to ℝ, ℂ, H or O.                                                                                                                            

Based on the findings of this article, the following conclusions can be drawn:                                                                                  

1) In general, if A is a real absolute valued algebra containing a nonzero central algebraic element, then, A is a pre-Hilbert 

algebra. It may be conjectured that every absolute valued algebra containing a nonzero central element is pre-Hilbert algebra.                                                                                                                                                              

2) Note that, central idempotent is a central element. The reciprocal case does not hold in general, and the counter example is 

given [Benslimane, 2011].                                                                                                                                                                                                

3) We classify all real absolute valued algebra containing a nonzero central algebraic element and satisfying                         

(𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) =  0, (𝑥2, 𝑥2, 𝑥) =  0 𝑜𝑟 (𝑥, 𝑥2, 𝑥2)  =  0. In future work, it is intended to study the finite dimensional real 

algebras containing a nonzero central element. 
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