| RESEARCH ARTICLE

On Absolute Valued Algebras with a Central Algebraic Element and Satisfying Some Identities

Abdelhadi Moutassim
Centre Régional des Métier de l'Education et de la Formation, Casablanca-Settat Annexe Provinciale Settat, Morocco
Corresponding Author: Abdelhadi Moutassim, E-mail: moutassim-1972@hotmail.fr

Abstract

| ABSTRACT In (Moutassim, n.d), we have proven that if A is an absolute valued algebra containing a nonzero central algebraic element, then A is a pre-Hilbert algebra. Here we show that A is finite dimensional in the following cases: 1) A satisfies $\left(x^{2}, x, x\right)=0$ or $\left(x, x, x^{2}\right)=0$ 2) A satisfies $\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$.

In these cases A is isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

| KEYWORDS

Absolute valued algebra, pre-Hilbert algebra, algebraic element, central element

| ARTICLE INFORMATION

ACCEPTED: 11 April 2023
PUBLISHED: 20 April 2023
DOI: 10.32996/jmss.2023.4.2.6

1. Introduction

Absolute valued algebras are those real or complex algebras A satisfying $\|x y\|=\|x\| .\|y\|$ for a given norm $\|$.$\| on \mathrm{A}$, and $x, y \in$ A. It it well known that any familiar identity in an absolute valued algebras as commutativity [Urbanik, 1960] or power associativity [Wright, 1953; El-Mallah, 1980] carry away finite dimensionality. Albert's paper [1947] contains a fundamental result asserting that any finite dimensional absolute valued algebras has dimension $n=1,2,4$ or 8 and is isotopic to one of classical (unital) absolute valued algebras $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or 0 . El-Mallah and Micali showed that any flexible absolute valued algebras is finite dimensional [El-Mallah, 1981]. Next, El-Mallah showed that for a finite dimensional absolute valued algebra A, flexibility and identity $(x, x, x)=0$ (where (.,...) means associator) coincide [El-Mallah, 1987]. Recently the study of absolute valued algebras with weakly identities as $\left(x^{2}, x, x\right)=0,\left(x, x, x^{2}\right)=0,\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$, becomes of actuality. It is shown that any absolute valued algebras with a central idempotent and satisfying $\left(x^{2}, x, x\right)=0$ or $\left(x, x, x^{2}\right)=0$ is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O [ElMallah, 2001]. Urbanik and Wright proved in 1960 that all unital absolute valued algebras are classified by $\mathbb{R}, \mathbb{C}, \mathrm{H}$ and 0 [10]. It is easily seen that the one-dimensional absolute valued algebras are classified by \mathbb{R}, and it is well-known that the two-dimensional absolute valued algebras are classified by $\mathbb{C}, \mathbb{C}^{*}, * \mathbb{C}$ or $\stackrel{*}{\mathbb{C}}$ (the real algebras obtained by endowing the space \mathbb{C} with the product $\mathrm{x} *$ $y=\bar{x} y, x * y=x \bar{y}$, and $x * y=\bar{x} \bar{y}$ respectively) [Rodriguez, 1994]. It is natural to study those absolute valued algebras by replacing the original assumption central idempotent by a weaker one central algebraic element, we prove that, if A is an absolute valued real algebra containing a central algebraic element a and satisfying one of the following identities $\left(x^{2}, x, x\right)=0,\left(x, x, x^{2}\right)=$ $0,\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$. Then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O (theorems $3.1,3.2,3.3,3.4,3.5$ and 3.6) this result is an important generalization of a results given in [Chandid, 2008] and [El-Mallah, 2001].

In section 2 we introduce the basic tools for the study of absolute valued algebras containing a central algebraic element. We also give some properties related to central algebraic element satisfying some restrictions on commutativity (proposition 2.6 and lemma 2.7). Moreover, the section 3 is devoted to classify all absolute valued algebras with a central algebraic element and satisfying one of the following identities $\left(x^{2}, x, x\right)=0,\left(x, x, x^{2}\right)=0,\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$.

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

The paper ends with the following main results:
Theorem. Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are equivalent:

1) A satisfies $\left(x^{2}, x, x\right)=0$ or $\left(x, x, x^{2}\right)=0$,
2) A satisfies $\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$,
3) A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

2. Notation and Preliminaries Results

In this paper all the algebras are considered over the real numbers field \mathbb{R}.
Definition 2.1 Let B be an arbitrary algebra.
i) B is called a division algebra if the operators L_{x} and R_{x} of left and right multiplication by x are bijective for all $\mathrm{x} \in \mathrm{B} \backslash\{0\}$.
ii) We say that B is algebraic, if for every x in B, the subalgebra $B(x)$ of B generated by x is finite dimensional.
iii) We mean by a nonzero central element in B , a nonzero element which commute with all elements of the algebra B .
iv) B is called a normed algebra (respectively, absolute valued algebra) if it is endowed with a space norm: \|. \| such that $\|x y\| \leq$ $\|x\|\|y\|$ (respectively, $\|x y\|=\|x\|\|y\|$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{B}$).
v) B is called a pre-Hilbert algebra if it is endowed with a space norm comes from an inner product (./.) such that

$$
\begin{aligned}
(\%): B \times B & \rightarrow \mathbb{R} \\
(x, y) & \mapsto \frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
\end{aligned}
$$

The most natural examples of absolute valued algebras are $\mathbb{R}, \mathbb{C}, \mathrm{H}$ (the algebra of Hamilton quaternion) and 0 (the algebra of Cayley numbers) with norms equal to their usual absolute values [EI-Mallah, 2001] and [Urbanik, 1960].

We need the following relevant results:
Theorem 2.2 [Moutassim, n.d] The norm of any absolute valued algebra containing a nonzero central algebraic element comes from an inner product.

Theorem 2.3 [Chandid, 2001] Any absolute valued algebra A with a central idempotent satisfying $\left(x^{2}, x, x\right)=0,\left(x, x, x^{2}\right)=$ $0,\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$ for all $x \in A$ is finite dimensional and is isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or 0 .

Theorem 2.4 [Urbanik, 1960] A commutative absolute valued algebra is isomorphic to \mathbb{R}, \mathbb{C} or $\stackrel{*}{\mathbb{C}}$
Theorem 2.5 [Rodriguez, 1994] The norm of any absolute valued algebra A with left unit A comes from an inner product and satisfying $\quad(a b / c)=-(b / a c)$ and $a(a b)=-\|a\|^{2} b$ for all $a, b, c \in A$ with a orthogonal to e.
we give some conditions imply that A is an inner product space.
Proposition 2.6 [8] Let A be an absolute valued algebra containing a central element a and let x be a element in A. If x is orthogonal to a in the inner product space $[a, x]$, then the following are equivalent:

1) $x^{2} a^{2}=a^{2} x^{2}$,
2) $x^{2}=-\|x\|^{2} a^{2}$,
3) A is an inner product space.

Lemma 2.7 Let A be an absolute valued algebra containing a nonzero central algebraic element a. Then
$x y+y x=2(x \mid y) a^{2}$ for all $x, y \in\{a\}^{\perp}$.
Proof. By theorem 2.2, A is an inner product space. We have $x, y \in\{a\}^{\perp}$, then $(x+y)^{2}=-\|x+y\|^{2} a^{2}$ (proposition 2.6), hence $x y+y x=-2(x \mid y) a^{2}$.

3. Main Results

3.1. Absolute Valued Algebras Satisfying $\left(x^{2}, x, x\right)=0$ or $\left(x, x, x^{2}\right)$

In this section we prove that if A is an absolute valued algebra with a central element a and satisfying $\left(x^{2}, x, x\right)=0$ or $\left(x, x, x^{2}\right)=$ 0 . Then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

Theorem 3.1 Let A be an absolute valued algebra containing a central algebraic element a and satisfying $\left(x^{2}, x, x\right)=0$ for all $x \in A$. If a and a^{2} are linearly independent, then $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.
Proof. By theorem 2.2, A is an inner product space. Let $d=a^{2}-\left(a / a^{2}\right) a$, we have $(d / a)=0$, by lemma 2.7

$$
d^{2}=-\|d\|^{2} a^{2}=-\left(1-\left(a / a^{2}\right)^{2}\right) a^{2}
$$

That is

$$
\begin{aligned}
-\left(1-\left(a / a^{2}\right)^{2}\right) a^{2} & =\left(a^{2}-\left(a / a^{2}\right) a\right)^{2} \\
& =\left(a^{2}\right)^{2}-2\left(a / a^{2}\right) a a^{2}+\left(a / a^{2}\right)^{2} a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a^{2} a\right) a-2\left(a / a^{2}\right) a a^{2}+\left(a / a^{2}\right)^{2} a^{2} \\
& =\left(a^{2} a-2\left(a / a^{2}\right) a^{2}+\left(a / a^{2}\right)^{2} a\right) a
\end{aligned}
$$

This gives
So

$$
\begin{aligned}
-\left(1-\left(a / a^{2}\right)^{2}\right) a & =a^{2} a-2\left(a / a^{2}\right) a^{2}+\left(a / a^{2}\right)^{2} a \\
a^{2} a & =2\left(a / a^{2}\right) a^{2}-a
\end{aligned}
$$

Hence $A\left(a, a^{2}\right)$ is a two-dimensional commutative sub-algebra of A, thus $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C} or $\stackrel{*}{\mathbb{C}}$ (theorem 2.4). If $A\left(a, a^{2}\right)$ is isomorphic to $\stackrel{*}{\mathbb{C}}$, then there exist a basis $\{f, j\}$ of $A\left(a, a^{2}\right)$ such that $f^{2}=f, j^{2}=-f$ and $j f=f j=-j$. Since

$$
\left(j^{2}, j, j\right)=-(f, j, j)=-(f j) j+f j^{2}=-f-f=-2 f \neq 0
$$

Which absurd, therefore $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.
From the last result we conclude there exists a nonzero idempotent $e \in A$ and a nonzero element $i \in A$ such that $e^{2}=e$, ie $=e i$ and $i^{2}=-e$. We put $a=\alpha e+\beta i$ with $\alpha, \beta \in \mathbb{R}\left(\alpha^{2}+\beta^{2}=1\right)$. Then we get the following result:
Theorem 3.2 Let A be an absolute valued algebra containing a central algebraic element a and satisfying $\left(x^{2}, x, x\right)=0$ for all $x \in$ A, then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

Proof. By theorem 2.2, A is an inner product space. Let $x \in\left\{a, a^{2}\right\}^{\perp}$ be a norm one element, we have the following two cases:

1) If a and a^{2} are linearly independent, then $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C} (theorem 2.4). We put $a=\alpha e+\beta i$ (notation above) and led $d=i a=\alpha i-\beta e$, we have $(d / a)=(i a / a)=(i / e)=0$, then $d x=-x d$ (Lemma 2.7). Since $a x=x a$, we obtain

$$
\begin{gather*}
\alpha e x+\beta i x=\alpha x e+\beta x i \text { and }-\beta e x+\alpha i x=-\beta x e+\alpha x i \\
\beta \alpha e x+\beta^{2} i x=\beta \alpha x e+\beta^{2} x i \tag{1}\\
-\alpha \beta e x+\alpha^{2} i x=-\alpha \beta x e+\alpha^{2} x i \tag{2}
\end{gather*}
$$

Adding the two equalities (1) and (2), we obtain $i x=x i \quad\left(\alpha^{2}+\beta^{2}=1\right)$. According to proposition $2.6 x^{2}=-i^{2}=e$. Since $x \in$ $\left\{a, a^{2}\right\}^{\perp}$ and $a x=x a$, then $e=x^{2}=-a^{2}$. That is, $e=-\left(\alpha^{2}-\beta^{2}\right) e-2 \alpha \beta i$, this implies $\alpha=0$ or $\beta=0$.
a and a^{2} are linearly independent, thus $\beta \neq 0$, therefore $\alpha=0$. Which means that (a / a^{2}) $=(a / e)=0$.
On the other hand, $\quad 0=\left((e+x)^{2}, e+x, e+x\right)$

$$
=(2 e, e+x, e+x)
$$

$$
=(e, e, x)+(e, x, e)+(e, x, x)
$$

$$
=(e, e, x)+(e, x, e) \quad\left((e, x, x)=\left(x^{2}, x, x\right)=0\right)
$$

$$
=e x-e(e x)+(e x) e-e(x e)
$$

$$
=-x e-e(e x)+(e x) e+e(e x) \quad(\text { by lemma 2.7, } e x+x e=0)
$$

This implies $(e x) e=x e$, thus $e x=x$. Since $e v=v e=v$ for all $v \in A\left(a, a^{2}\right)$, then $e y=y$ for all $y \in A$. Hence e is a left unit of A. Moreover

$$
\begin{align*}
0 & =\left((a+x)^{2}, a+x, a+x\right) \\
& =(a x, a+x, a+x) \\
& =(a x, a, a)+(a x, a, x)+(a x, x, a)+(a x, x, x) \tag{4}
\end{align*}
$$

We replace x by $-x$, we get
$(a x, a, a)+(a x, x, x)=0$
and

$$
\begin{equation*}
(a x, a, x)+(a x, x, a)=0 \tag{3}
\end{equation*}
$$

So (4) gives $\quad((a x) a) x-(a x)^{2}+((a x) x) a-(a x)^{2}=0$
That is $\quad(a(a x)) x+((a x) x) a=2(a x)^{2}$
As $(a / e)=0$ and theorem 2.5, we get $-x^{2}+((a x) x) a=2(a x)^{2}$
We have $\quad(a x / a)=(x / e)=0$, then $(a x)^{2}=-a^{2}=e$,
So (5) gives

$$
\begin{equation*}
((a x) x) a=-3 e \tag{5}
\end{equation*}
$$

Which absurd, $\|((a x) x) a\|=1$ and $\|-3 e\|=3$. Therefore $x=0$, in this case $A=A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.
2) If a and a^{2} are linearly dependent, then a is a nonzero central idempotent and the theorem 2.3 completes the proof.

Similarly, we can get all preceding results if A satisfies (x, x, x^{2})
Theorem 3.3 Let A be an absolute valued algebra containing a central algebraic element a and satisfying $\left(x, x, x^{2}\right)$ for all $x \in A$, then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .
3.2 Absolute Valued Algebras Satisfying $\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$

In this section we prove that if A is an absolute valued algebra containing a central element a and satisfying $\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$. Then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or 0 .

Theorem 3.4 Let A be an absolute valued algebra containing a central algebraic element a and satisfying $\left(x^{2}, x^{2}, x\right)=0$ for all $x \in$ A. If a and a^{2} are linearly independent, then $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.
Proof. By theorem 2.2, A is an inner product space. Let $d=a^{2}-\left(a / a^{2}\right) a,(d \neq 0)$, we have $(d / a)=0$, by proposition 2.6
$d^{2}=-\|d\|^{2} a^{2}=-\left(1-\left(a / a^{2}\right)^{2}\right) a^{2}$
That is

$$
\begin{aligned}
-\left(1-\left(a / a^{2}\right)^{2}\right) a^{2} & =\left(a^{2}-\left(a / a^{2}\right) a\right)^{2} \\
-a^{2}+\left(a / a^{2}\right)^{2} a^{2} & =\left(a^{2}\right)^{2}-2\left(a / a^{2}\right) a a^{2}+\left(a / a^{2}\right)^{2} a^{2}
\end{aligned}
$$

This gives

$$
\begin{equation*}
\left(a^{2}\right)^{2}=2\left(a / a^{2}\right) a a^{2}-a^{2} \tag{6}
\end{equation*}
$$

- If $\left(a / a^{2}\right)=0$, then $\left(a^{2}\right)^{2}=-a^{2}$ and $\left(a^{2}\right)^{2} a=-a^{2} a$

$$
a^{2}\left(a^{2} a\right)=-a^{2}=\left(a^{2}\right)^{2}
$$

Hence $a a^{2}=a$, which means that $A\left(a, a^{2}\right)$ is a two dimensional commutative sub-algebra of A .
Let $c=a a^{2}-\left(a / a a^{2}\right) a$, we have $(c / a)=0$, by proposition 2.6,

$$
c^{2}=-\|c\|^{2} a^{2}=-\left(1-\left(a / a a^{2}\right)^{2}\right) a^{2}
$$

- If $\|c\|=0$, then $a a^{2}= \pm a$. That is $\quad\left(a^{2}\right)^{2}=2\left(a / a^{2}\right) a a^{2}-a^{2}= \pm 2\left(a / a^{2}\right) a-a^{2}$

This implies that $A\left(a, a^{2}\right)$ is a two dimensional commutative sub-algebra of A .
Assuming that $\left(a / a^{2}\right) \neq 0$ and $\|c\| \neq 0$. Since $\left(d^{2}, d^{2}, d\right)=0$, then $\left(a^{2}, a^{2}, a^{2}\right)=0$ thus $\left(a^{2}\right)^{2} a^{2}=a^{2}\left(a^{2}\right)^{2}$
So (6) gives $\left(a a^{2}\right) a^{2}=a^{2}\left(a a^{2}\right)$, moreover $\quad d c=\left(a^{2}-\left(a / a^{2}\right) a\right)\left(a a^{2}-\left(a / a a^{2}\right) a\right)$

$$
\begin{aligned}
& =a^{2}\left(a a^{2}\right)-\left(a / a^{2}\right) a\left(a a^{2}\right)-\left(a / a a^{2}\right) a a^{2}+\left(a / a^{2}\right)\left(a / a a^{2}\right) a^{2} \\
& =\left(a a^{2}\right) a^{2}-\left(a / a^{2}\right) a\left(a a^{2}\right)-\left(a / a a^{2}\right) a a^{2}+\left(a / a^{2}\right)\left(a / a a^{2}\right) a^{2} \\
& =c d
\end{aligned}
$$

And since $\|c\|^{2} d^{2}=\|d\|^{2} c^{2}$, then $\|c\| d=\|d\| c$ or $\|c\| d=-\|d\| c$. We conclude that

$$
\|d\| a a^{2}=\|c\| a^{2}+\left(\left(a / a a^{2}\right)\|d\|-\left(a / a^{2}\right)\|c\|\right) a
$$

Or

$$
\|d\| a a^{2}=\|c\| a^{2}+\left(\left(a / a a^{2}\right)\|d\|-\left(a / a^{2}\right)\|c\|\right) a
$$

Therefore $A\left(a, a^{2}\right)$ is a two-dimensional commutative sub-algebra of A, thus $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C} or \mathbb{C} (theorem 2.4). If $A\left(a, a^{2}\right)$ is isomorphic to ${ }_{\mathbb{C}}^{\mathbb{C}}$, that is, there exist a basis $\{f, j\}$ of $A\left(a, a^{2}\right)$ such that $f^{2}=f, j^{2}=-f$ and $j f=f j=-j$. Since

$$
\left(j^{2}, j^{2}, j\right)=(f, f, j)=f j-f(f j)=-j-j=-2 j \neq 0
$$

Which absurd, therefore $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.

From the last result we conclude there exists a nonzero idempotent $e \in A$ and a nonzero element $i \in A$ such that $e^{2}=e$, ie $=e i$ and $i^{2}=-e$. We put $a=\alpha e+\beta i$ with $\alpha, \beta \in \mathbb{R}\left(\alpha^{2}+\beta^{2}=1\right)$. Then we get the following result: Theorem 3.5 Let A be an absolute valued algebra containing a central algebraic element a and satisfying $\left(x^{2}, x^{2}, x\right)=0$ for all $x \in$ A, then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

Proof. By theorem 2.2, A is an inner product space. Let $x \in\left\{a, a^{2}\right\}^{\perp}$ be a norm one element, we have the following two cases:

1) If a and a^{2} are linearly independent, then $A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C} (theorem 2.4). We put $a=\alpha e+\beta i$ (notation above) and $d=i a=\alpha i-\beta e$, we have $(d / a)=(i a / a)=(i / e)=0$, then $d x=-x d$ (Lemma 2.7). Since $a x=x a$, we obtain $\alpha e x+\beta i x=\alpha x e+\beta x i$ and $-\beta e x+\alpha i x=-\beta x e+\alpha x i$
From these equalities, we get

$$
\begin{align*}
\beta \alpha e x+\beta^{2} i x & =\beta \alpha x e+\beta^{2} x i \tag{7}\\
-\alpha \beta e x+\alpha^{2} i x & =-\alpha \beta x e+\alpha^{2} x i \tag{8}
\end{align*}
$$

Adding the two equalities (7) and (8), we obtain $i x=x i \quad\left(\alpha^{2}+\beta^{2}=1\right)$. According to proposition $2.6 x^{2}=-i^{2}=e$. Since $x \in$ $\left\{a, a^{2}\right\}^{\perp}$ and $a x=x a$, then $e=x^{2}=-a^{2}$. That is, $e=-\left(\alpha^{2}-\beta^{2}\right) e-2 \alpha \beta i$, this implies $\alpha=0$ or $\beta=0$.
But we have, a and a^{2} are linearly independent, thus $\beta \neq 0$, therefore $\alpha=0$. Which means that $\left(a / a^{2}\right)=(a / e)=0$.
On the other hand, using lemma 2.7, $e x+x e=0$. So

$$
\begin{aligned}
0 & =\left((e+x)^{2},(e+x)^{2}, e+x\right) \\
& =(2 e, 2 e, e+x) \\
& =(e, e, x) \\
& =e x-e(e x)
\end{aligned}
$$

this implies $e x=x$. Since $e v=v e=v$ for all $v \in A\left(a, a^{2}\right)$, then $e y=y$ for all $y \in A$. Hence e is a left unit of A.
Moreover $\quad 0=\left((a+x)^{2},(a+x)^{2}, a+x\right)$

$$
=(a x, a x, a+x) \quad\left(x^{2}=-a^{2}\right)
$$

$$
\begin{equation*}
=(a x, a x, a)+(a x, a x, x) \tag{9}
\end{equation*}
$$

We replace x by $-x$, we get $(a x, a, a)=0$ $(a x, a, x)=0$
So (10) gives
$(a x)^{2}-((a x) a) x=0$
That is
$(a(a x)) x=(a x)^{2}$
As $(a x / a)=(x / e)=0$, thus $(a x)^{2}=-a^{2}=e$. And by theorem 2.5, we get $-x^{2}=(a x)^{2}=e=x^{2}$
Therefore $x=0$, in this case $A=A\left(a, a^{2}\right)$ is isomorphic to \mathbb{C}.
2) If a and a^{2} are linearly dependent, then a is a nonzero central idempotent and the theorem 2.3 completes the proof.

Similarly, we can get all preceding results if A satisfies $\left(x, x^{2}, x^{2}\right)$
Theorem 3.6 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x, x^{2}, x^{2}) for all $x \in A$, then A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or 0 .

4. Conclusion

We have the following classical results:
Theorem. Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are equivalent:

1) A satisfies $\left(x^{2}, x, x\right)=0$,
2) A satisfies $\left(x, x, x^{2}\right)=0$,
3) A satisfies $\left(x^{2}, x^{2}, x\right)=0$,
4) A satisfies $\left(x, x^{2}, x^{2}\right)=0$,
5) A is finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C}, \mathrm{H}$ or O .

Based on the findings of this article, the following conclusions can be drawn:

1) In general, if A is a real absolute valued algebra containing a nonzero central algebraic element, then, A is a pre-Hilbert algebra. It may be conjectured that every absolute valued algebra containing a nonzero central element is pre-Hilbert algebra. 2) Note that, central idempotent is a central element. The reciprocal case does not hold in general, and the counter example is given [Benslimane, 2011].
2) We classify all real absolute valued algebra containing a nonzero central algebraic element and satisfying $\left(x^{2}, x, x\right)=0,\left(x, x, x^{2}\right)=0,\left(x^{2}, x^{2}, x\right)=0$ or $\left(x, x^{2}, x^{2}\right)=0$. In future work, it is intended to study the finite dimensional real algebras containing a nonzero central element.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Acknowledgments: The authors express their deep gratitude to the referee for the carefully reading of the manuscript and the valuables comments that have improved the final version of the same.

References

[1] Albert, A.A. (1947). Absolute valued real algebras, Ann. Math, 48, 405-501.
[2] Benslimane M and Moutassim, A. (2011). Some New Classes Of Absolute Valued Algebras With Left Unit. Advances in Applied Clifford Algebras 21, 31-40.
[3] Chandid A and Rochdi, A. (2008). A Survey on Absolute Valued Algebras Satisfying (x^{i}, x^{j}, x^{k}) $=0$. International Journal of Algebra, 17, 837 - 852
[4] El-Mallah, M.L. (1987). On finite dimensional absolute valued algebras satisfying (x, x, x) $=0$. Arch. Math. 49, 16-22.
[5] El-Mallah M.L. (2001)., Absolute valued algebras satisfying $\left(x, x, x^{2}\right)=0$. Arch. Math. 77, 378-382.
[6] El-Mallah M.L and Micali, A. (1980). Sur les algèbres normées sans diviseurs topologiques de zéro. Bol. Soc. Mat. Mexicana 25, 23-28.
[7] El-Mallah M.L and Micali, A. (1981). Sur les dimensions des algèbres absolument valuées. J. Algebra 68, 237-246.
[8] Moutassim, A. (n.d). On Absolute Valued Algebras Containing a Central Algebraic Element to appear in Journal of Mathematics and Statistics Studies
[9] Rodriguez, A. (1994). Absolute valued algebras of degree two. In Non-associative Algebra and its applications (Ed. S. Gonzalez), Kluwer Academic Publishers, Dordrecht-Boston-London, 350-356.
[10] Urbanik K and Wright, F.B. (1960). Absolute valued algebras. Proc. Amer. Math. Soc. 11, 861-866.
[11] Wright, F.B. (1953) Absolute valued algebras. Proc. Nat. Acad. Sci. USA. 39, 330-332.

