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| ABSTRACT 

Landau’s conjecture and Shanks’ conjecture state that there are infinitely many prime numbers of the forms 𝑥2 + 1 and 𝑥4 + 1 

for some nonzero integer 𝑥, respectively. In this paper, we present a technique for studying whether or not there are infinitely 

many prime numbers of the form 𝑥2 + 1 or 𝑥4 + 1 derived from some Lucas sequences of the first kind 

{𝑈𝑛(𝑃, 𝑄)} (𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦, {𝑈𝑛}) or the second kind {𝑉𝑛(𝑃, 𝑄)} (𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦, {𝑉𝑛}) , where 𝑃 ≥ 1 and 𝑄 ∈ {−1,1}. Furthermore, as 

applications, we represent the procedure of this technique in the case of 𝑥 ∈ 𝑍, 𝑥 ∈ {𝑈𝑛} 𝑜𝑟 𝑥 ∈ {𝑉𝑛} with 𝑥 ≥ 1 and 1 ≤ 𝑃 ≤ 20. 
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1. Introduction 

In 1912, Edmund Landau [1913] (see also [Landau, 1985]) listed four unsolvable problems related to prime numbers during his talk 

at the International Congress of Mathematicians at Cambridge University. Indeed, these problems are still unattackable conjectures 

in number theory, and they are as follows:  

 

Goldbach’s conjecture: If x is an even integer greater than 2, can every x be written as 𝑝 + 𝑞 such that p and q are prime 

numbers? 

Twin prime conjecture: If q is a prime number, are there infinitely many q′s such that 𝑞 + 2 is a prime number? 

Legendre’s conjecture: If a and b are consecutive perfect squares, is there always a prime number q between a and b?  

Landau’s conjecture (Near-square primes): If p is a prime number, are there infinitely many p′s such that 𝑝 − 1 is a 

prefect square? 

 

In fact, the latter conjecture can be rephrased as ”are there infinitely many primes p such that 𝑝 = 𝑥2 + 1 for some integer x? 

However, many authors have attempted to prove these conjectures, but no complete proofs have been produced for all of them” 

until 2020 when Vega [n.d] proposed a proof for Landau’s conjecture to be true. Such attempts or studies related to Landau’s 

conjecture can be found in, e.g. [Shanks, 1959] or [Shanks, 1960]. Similar conjectures regarding infinite numbers of special types 

of primes were also proposed, such as 𝑝 = 𝑥4 + 1 that was conjectured in 1961 by Shanks [22]. For simplicity or later use, we call 

it the  Shanks’ conjecture. In fact, many authors have tried to find the number of such primes under certain ranges of intervals. For 

example, in 1967, Lal [1967] reported 172 primes in the case of 1 ≤  𝑥 ≤  4004. Later in 1973, Bohman [1973] extended this range 

to report all the possible primes with 4002 ≤  𝑥 ≤  10000. Here, the number of actual primes is 790. Other popular open problems 

in number theory are related to the prime numbers in some types of linear recurrence sequences. For instance,   

 

Fibonacci and Lucas primes conjecture: Are there infinitely many primes in the Fibonacci sequence {𝐹𝑛} or Lucas sequence {𝐿𝑛}?  

 

These sequences are given by the recurrence relations 
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                                                             𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 𝑓𝑜𝑟 𝑛 ≥ 2,                                            (1) 

and 

                                                               𝐿0 = 2, 𝐿1 = 1, 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 𝑓𝑜𝑟 𝑛 ≥ 2.                                              (2) 

However, this conjecture has remained open, and authors have determined the Fibonacci and Lucas primes under certain values 

of 𝑛. In fact, up to now, many Fibonacci and Lucas primes that are formed with thousands of digits have been obtained. For more 

details, see, for instance, [Dubner 1999], and the references are given there. Indeed, this latter conjecture is also extended by 

Lawrence and Michal [25] in the case of more general sequences that are respectively called the Lucas sequences of the first kind 

{𝑈𝑛(𝑃, 𝑄)} or the second kind {𝑉𝑛(𝑃, 𝑄)} which are defined by the relations: 

                 𝑈0(𝑃, 𝑄) = 0, 𝑈1(𝑃, 𝑄) = 1, 𝑈𝑛(𝑃, 𝑄) = 𝑃𝑈𝑛−1(𝑃, 𝑄) − 𝑄𝑈𝑛−2(𝑃, 𝑄),                    (3) 

                 𝑉0(𝑃, 𝑄) =  2, 𝑉1(𝑃, 𝑄) = 𝑃, 𝑉𝑛(𝑃, 𝑄) = 𝑃𝑉𝑛−1(𝑃, 𝑄) − 𝑄𝑉𝑛−2(𝑃, 𝑄),                       (4) 

for 𝑛 ≥ 2 where the parameters 𝑃 and 𝑄 are nonzero relatively prime integers. In fact, it is also known that the Lucas sequences of 

the first and second kind are connected in the identity  

                                                                                𝑉𝑛
2(𝑃, 𝑄) = 𝐷𝑈𝑛

2(𝑃, 𝑄) + 4𝑄𝑛,                                               (5) 

where 𝐷 = 𝑃2 − 4𝑄. For simplicity, these sequences are also called Lucas sequences, and their numbers are known as the 

generalized Lucas numbers. Concerning these sequences, we have their characteristics; polynomial is defined by 

𝑋2 − 𝑃𝑋 + 𝑄 = 0, 

where 

𝛼 =
𝑃 + √𝐷

2
 𝑎𝑛𝑑  𝛽 =

𝑃 − √𝐷

2
 

  

are the roots of the latter polynomial. Hence, these sequences can also be defined by 

𝑈𝑛(𝑃, 𝑄) =
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
 , 𝑉𝑛(𝑃, 𝑄) = 𝛼𝑛 + 𝛽𝑛  𝑓𝑜𝑟 𝑛 ≥ 0. 

Thus, if 𝛼/𝛽 is not a root of unity, then these sequences are said to be nondegenerate and degenerate otherwise. As a result, they 

degenerate only with (𝑃, 𝑄) ∈ {(±1, 1), (±2, 1)}, for more details, see, e.g. [13] or [19]. Moreover, such results concerning primes in 

the Lucas sequences, we recommend, e.g. [Leyendekkers, 2015], [Trojovsk´y, 2019 or [Sun, 2010]. In fact, we call this extension by 

the generalized Lucas primes conjecture.  

 

In this paper, we answer the following question that is derived from combining all of the above mentioned conjectures: Question: 

Are there also infinitely many generalized Lucas primes of the form 𝑝 = 𝑥2 + 1 or 𝑥4 + 1? 

 

In other words, we investigate the nonnegative integer solutions (𝑥, 𝑛) of the Diophantine equation 

                                                                                            𝑝 = 𝑥2 + 1                                                               (6) 

or 

                                                                                              𝑝 = 𝑥4 + 1,                                                            (7) 

where the prime number 𝑝 = 𝑈𝑛 = 𝑈𝑛(𝑃, 𝑄) 𝑜𝑟  𝑉𝑛 = 𝑉𝑛(𝑃, 𝑄). Clearly, here we have that 𝑥 ≥ 1 and 𝑛 ≥ 2 or 𝑛 ≥ 0 with 𝑝 = 𝑈𝑛 

or 𝑝 = 𝑉𝑛, respectively. Furthermore, for the simplicity of presenting our results, we assume these sequences are nondegenerate 

with 𝑃 ≥ 1 and 𝑄 = ±1. We indeed answer this question negatively by showing this equation has only finitely many solutions. As 

applications, we solve these equations completely where 𝑃 ≤ 20 under the following cases: 𝑥 ∈ 𝑍+, 𝑥 ∈ {𝑈𝑛}  𝑜𝑟 𝑥 ∈ {𝑉𝑛}. 
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In the literature, Diophantine equations connected to linear recurrence sequences have been studied by many authors. For 

instance, by using the congruence argument techniques with some identities related to Lucas sequences, Keskin and Yosma [2011] 

studied the solutions (𝑥, 𝑛) of some equations of the form 

𝑉𝑛(𝑃, −1) = 𝑘𝑥2, 

Where P is odd, and the integer k divides P. They also determined the solutions (𝑥, 𝑛) of the equations  

𝑉𝑛(𝑃, −1) = 3𝑉𝑚(𝑃, −1)𝑥2  𝑎𝑛𝑑  𝑉𝑛(𝑃, −1) = 6𝑉𝑚(𝑃, −1)𝑥2, 

Where P is also an odd integer. Furthermore, if P is even, they also determine the solutions of the equations 

𝑉𝑛(𝑃, −1) = 3𝑥2  𝑎𝑛𝑑  𝑉𝑛(𝑃, −1) = 3𝑉𝑚(𝑃, −1)𝑥2. 

In the case of the Lucas sequences of the first kind, under different assumptions on the values of P, Karaatli and Keskin [10] studied 

the solutions of the equations 

𝑈𝑛(𝑃, −1) = 5𝑥2  𝑎𝑛𝑑  𝑈𝑛(𝑃, −1) = 5𝑈𝑚(𝑃, −1)𝑥2. 

Another interesting result related to such equations was introduced by Alekseyev and Tengely [2014], in which they described an 

argument for finding the generalized Lucas numbers, under some conditions, of the form 𝑎𝑚2 + 𝑏 with some fixed integers 𝑎 ≠ 0 

and 𝑏. Their argument is based on reducing such equations to a finite number of Thue equations that have a finite number of 

solutions. However, this result can answer the question about the generalized Lucas primes in Landau’s conjecture negatively; in 

this paper, we use a straight forward approach, described in Section 2, that proves the finiteness result of equation (6) or equation 

(7) and solves it completely with the help of the Magma software [5]. Other results related to the solutions of such equations 

connected to some sequences can be found in, e.g. [Ait-Amrane, 2017], [S¸iar] 2016, [Duman, 2018] and [Kiss, 1993]. 

 

2. Main Approach  

Our main approach is simply based on combining equation (6) or equation (7) with identity (5) to obtain elliptic curves of the form 

                                                                                     𝑦2 = 𝑎𝑥4 + 𝑏𝑥2 + 𝑐,                                                     (8) 

where 𝑎, 𝑏, 𝑐 ∈ 𝑍 and 𝛥 = 16𝑎𝑐(𝑏2 − 4𝑎𝑐)2 ≠ 0 defines the discriminant of the curve. Hence, the integral points of such curves can 

be obtained by either using the Magma software [Bosma, 1963] with the algorithm SIntegralLjunggrenPoints(), which is 

implemented based on Tzanakis’ results in [Tzanakis, 1996] or by following an argument described by Tengely and Alekseyev in 

[Alekseyev, 2014]. Indeed, by the result of Baker [Baker, 1969] (or its refinement in [Hajdu, 1998]) in which upper bounds for the 

solutions of elliptic curves of the form 

𝑦2 = 𝑏0𝑥𝑚 + 𝑏1𝑥𝑚−1+ . . . + 𝑏𝑚, 

where 𝑚 ≥ 3 and 𝑏0 ≠ 0, 𝑏1, . . . , 𝑏𝑚 ∈ 𝑍 are given, we conclude the finiteness for the number of solutions of equation (6) or (7).  

Remark 1. In general, our described approach can be applied to show the finiteness result for the solutions of the equations 

𝑈𝑛(𝑃, ±1) = 𝑥2 + 1  𝑎𝑛𝑑  𝑉𝑛(𝑃, ±1) = 𝑥2 + 1 

or 

𝑈𝑛(𝑃, ±1) = 𝑥4 + 1  𝑎𝑛𝑑  𝑉𝑛(𝑃, ±1) = 𝑥4 + 1, 

but in this paper, we only focus on Landau’s and Shanks’ problems assuming that the general terms of the nondegenerate Lucas 

sequences 𝑈𝑛(𝑃, ±1) and 𝑉𝑛(𝑃, ±1) are prime numbers with 𝑃 ≥ 1. 

 

 

3. Main Results 

Theorem 1. Suppose that {𝑈𝑛(𝑃, 𝑄)} and {𝑉𝑛(𝑃, 𝑄)} are nondegenerate Lucas sequences with 𝑃 ≥ 1 and 𝑄 ∈ {−1, 1}. If p is a prime 

number such that 𝑝 = 𝑈𝑛(𝑃, 𝑄) or 𝑉𝑛(𝑃, 𝑄), then equation (6) (or equation (7)) has finitely many solutions (𝑥, 𝑛) that can be 

determined effectively. 
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Proof. Note that in the following, we only focus on proving the finiteness result in the case of equation (6) since this result can be 

applied similarly for equation (7) as it can be written in the form (6), namely 𝑝 = 𝑥4 + 1 = (𝑥2)2 + 1. Moreover, as mentioned earlier 

that we deal here with 𝑥 ≥ 1 and 𝑛 ≥ 2 or 𝑛 ≥ 0 in the case of 𝑝 = 𝑈𝑛(𝑃, 𝑄) or 𝑝 = 𝑉𝑛(𝑃, 𝑄), respectively. We split the proof into 

two cases regarding the Lucas sequences of the first kind or the second kind: 

 

 Case 1: If 𝑝 = 𝑈𝑛(𝑃, 𝑄). Here, equation (6) gives 

𝑈𝑛(𝑃, 𝑄) = 𝑥2 + 1. 

Combining the latter equation with identity (5) leads to the equation 

                                         𝑦2 = 𝐷𝑥4 + 2𝐷𝑥2 + (𝐷 + 4𝑄𝑛),                                    (9) 

with 𝑦 = 𝑉𝑛 and 𝐷 = 𝑃2 − 4𝑄 such that 𝑃 ≥ 1 and 𝑄 = ±1. Indeed, we claim that the latter equation presents an elliptic curve. 

Therefore, in order to prove this claim, we have to show this equation has nonzero discriminants. As mentioned earlier that 

the elliptic curve of the form (8) has the discriminant 

𝛥 = 16𝑎𝑐(𝑏2 − 4𝑎𝑐)2. 

Hence, the discriminant of equation (9) is presented by 

𝛥𝑈 = 4096𝐷3𝑄2𝑛(𝐷 + 4𝑄𝑛). 

If 𝑄 = 1, then 𝐷 = 𝑃2 − 4 > 0 as (𝑃, 𝑄) ∉ {(±1, 1), (±2, 1)} since we assumed that the Lucas sequences are nondegenerate. 

Furthermore, we have that 𝐷 + 4𝑄𝑛 = 𝑃2 − 4 + 4 = 𝑃2 > 0 as 𝑃 ≥ 1. As a result, we obtain that 𝛥𝑈 > 0. On the other hand, if 

𝑄 = −1, then we get that 

𝛥𝑈 = 4096(𝑃2 + 4)3(𝑃2 + 4 ± 4), 

which is clearly greater than zero as 𝑃 ≥ 1. Hence, equation (9) presents an elliptic curve in the case of 𝑝 = 𝑈𝑛(𝑃, 𝑄), where 𝑛 ≥

2. 

 

 Case 2: If 𝑝 = 𝑉𝑛(𝑃, 𝑄). Similarly, equation (6) becomes 

𝑉𝑛(𝑃, 𝑄) = 𝑥2 + 1, 

which leads to the equation 

                                           𝑦2 = 𝐷𝑥4 + 2𝐷𝑥2 + (𝐷 − 4𝐷𝑄𝑛),                                 (10) 

where 𝑦 = 𝐷𝑈𝑛, 𝑃 ≥ 1 and 𝑄 = ±1. Indeed, the discriminant of equation (10) is defined by 

                                                                                                   𝛥𝑉 = 4096𝐷6𝑄2𝑛(1 − 4𝑄𝑛).            

Since the Lucas sequences of the second kind are assumed to be nondegenerate, then 𝐷 ≠ 0. Therefore, 𝛥𝑉 ≠ 0 with 𝑄 = −1 

or 1 for all 𝑛 ≥ 0. Again, we obtain that equation (10) represents an elliptic curve equation. 

 

Finally, as mentioned in Section 2 by the result of Alan Baker [3] and its best improvement by Hajdu and Herendi [9], we conclude 

that the elliptic curves (9) and (10) have a finite number of solutions. This completes the proof of Theorem 1. 

 

 

4. Applications  

Theorem 2. Let the sequence {𝑈𝑛(𝑃, 𝑄)} be nondegenerate with 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1}. If the prime number 𝑝 = 𝑈𝑛(𝑃, 𝑄), 

then the complete set of the solutions (𝑃, 𝑄, 𝑥, 𝑛) with 𝑥 ≥ 1 and 𝑛 ≥ 2 of equation (6) is given by 

(𝑃, 𝑄, 𝑥, 𝑛) ∈ {(5, 1, 2, 2), (17, 1, 4, 2), (1, −1, 1, 3), (1, −1, 2, 5), (2, −1,   
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                                                              2,3), (2, −1, 1, 2), (4, −1, 4, 3), (5, −1, 2, 2), (6, −1, 6, 3), (10, −1, 10, 3), 

                                                             (14, −1,14,3), (16, −1, 16, 3), (17, −1, 4, 2), (20, −1, 20, 3)}. 

Corollary 1. Suppose that {𝑈𝑛} is nondegenerate. If 𝑝 = 𝑈𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑈𝑘(𝑃2, 𝑄2) such that 𝑛 ≥ 2, 𝑘 ≥ 1, 1 ≤ 𝑃1, 𝑃2 ≤ 20 

and 𝑄1, 𝑄2 ∈ {−1, 1}, then the solutions of equation (6) are completely given by 

                                                        ((𝑃1, 𝑄1), (𝑃2, 𝑄2), 𝑛, 𝑘) ∈ {((5, 1), (1, −1), 2, 3), ((5, 1), (2, −1), 2,  

                                                         2), ((17, 1), (4, 1), 2, 2), ((17, 1), (4, −1), 2, 2), ((1, −1), (𝐴, 𝐵), 3, 1), 

                                                        ((1, −1), (1, −1), 5, 3), ((1, −1), (2, −1), 5, 2), ((2, −1), (𝐴, 𝐵), 2, 1), 

                                                        ((4, −1), (4, 1), 3, 2), ((4, −1), (4, −1), 3, 2), ((5, −1), (1, −1), 2, 3), 

                                                        ((5, −1), (2, −1), 2, 2), ((6, −1), (6, 1), 3, 2), ((6, −1), (6, −1), 3, 2), 

                                                         ((10, −1), (10, 1), 3, 2), ((10, −1), (10, −1), 3, 2), ((14, −1), (14, 1), 

                                                             3, 2), ((14, −1), (14, −1), 3, 2), ((16, −1), (16, 1), 3, 2), ((16, −1), 

                                                            −1), 3, 2), ((17, −1), (4, 1), 2, 2), ((17, −1), (4, −1), 2, 2), ((20, − 1),  

                                                 (20.1), 3, 2), ((20, −1), (20, −1), 3, 2)}. 

Corollary 2. Assume that {𝑈𝑛} and {𝑉𝑛} are nondegenerate. If 𝑝 = 𝑈𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑉𝑘(𝑃2, 𝑄2) such that 𝑛 ≥ 2, 𝑘 ≥ 0, 1 ≤ 𝑃1, 𝑃2 ≤

20 and 𝑄1, 𝑄2 ∈ {−1, 1}, then the set of solutions to equation (6) is as follows 

((𝑃1, 𝑄1), (𝑃2, 𝑄2), 𝑛, 𝑘) ∈ {((5, 1), (𝐴, 𝐵), 2, 0)((5, 1), (2, −1), 2,1),            

  ((17, 1), (4, 1), 1, 1), ((17, 1), (4, −1), 1, 1), ((1, −1), (1, −1), 3, 1),             

  ((1, −1), (1, −1), 5, 0), ((2, −1), (1, −1), 2, 1), ((2, −1), (𝐴, 𝐵), 3, 0),           

  ((2, −1), (2, −1), 3, 1), ((4, −1), (4, 1), 3, 1), ((4, −1), (4, −1), 3, 1),            

                                                             ((5, −1), (𝐴, 𝐵), 2, 0), ((5, −1), (2, 1), 2, 1), ((6, −1), (6, 1), 3, 1), 

  ((6, −1), (6, −1), 3, 1), ((10, −1), (10, 1), 3, 1), ((10, −1), (10, −1),             

3, 1), ((14, −1), (14, 1), 3, 1), ((14, −1), (14, −1), 3, 1), ((16, −1),            

(16, 1), 3, 1), ((16, −1), (16, −1), 3, 1), ((17, −1), (4, 1), 2, 1), ((17,          

 − 1), (1. − 1), 2, 3), ((17, −1), (4, −1), 2, 1), ((20, −1), (20, 1), 3, 1),          

                                                              ((20, −1), (20, −1), 3, 1)}, 

for all 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 

 

Theorem 3. Let {𝑉𝑛(𝑃, 𝑄)} be a nondegenerate with 𝑛 ≥ 0, 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1}. If p is a prime number such that 𝑝 =

𝑉𝑛(𝑃, 𝑄), then the complete list of solutions of equation (6) is as follows (assuming that 𝑥 ≥ 1) 

(𝑃, 𝑄, 𝑥, 𝑛) ∈ {(3, 1, 1, 0), (4, 1, 1, 0), (5, 1, 1, 0), (5, 1, 2, 1), (6, 1, 1, 0), 

(7, 1, 1, 0), (8, 1, 1, 0), (9, 1, 1, 0), (10, 1, 1, 0), (11, 1, 1, 0), (12, 1, 1, 0), 

 (13, 1, 1, 0), (14, 1, 1, 0), (15, 1, 1, 0), (16, 1, 1, 0), (17, 1, 1, 0), (17, 1, 4, 



The Generalized Lucas Primes in the Landau’s and Shanks’ Conjectures 

Page | 46  

1), (18, 1, 1, 0), (19, 1, 1, 0), (20, 1, 1, 0), (1, −1, 1, 0), (2, −1, 1, {0, 1}), 

                                                   (3, −1, 1, 0), (4, −1, 1, 0), (5, −1, 1, 0), (5, −1, 2, 1), (6, −1, 1, 0), (7, −1, 

1, 0), (8, −1, 1, 0), (9, −1, 1, 0), (10, −1, 1, 0), (11, −1, 1, 0), (12, −1, 1, 

0), (13, −1, 1, 0), (14, −1, 1, 0), (15, −1, 1, 0), (16, −1, 1, 0), (17, −1, 1, 

                                                               0), (17, −1, 4, 1), (18, −1, 1, 0), (19, −1, 1, 0), (20, −1, 1, 0)}. 

Corollary 3. Suppose that {𝑈𝑛} and {𝑉𝑛} are nondegenerate. If 𝑝 = 𝑉𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑈𝑘(𝑃2, 𝑄2) such that 𝑛 ≥ 0, 𝑘 ≥ 1, 1 ≤ 𝑃1, 𝑃2 ≤

20 and 𝑄1, 𝑄2 ∈ {−1, 1}, then the complete solutions to equation (6) are given in the following table: 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) 𝑛 𝑘  (𝑃1, 𝑄1) (𝑃2, 𝑄2) 𝑛 𝑘 

(3, 1) (A, B) 0 1 (2, -1) (1, -1) 0 2 

(3, 1) (1, -1) 0 2  (2, -1) (A, B) 1 1 

(4, 1) (A, B) 0 1 (2, -1) (1, -1) 1 2 

(4, 1) (1, -1) 0 2 (3,-1) (A, B) 0 1 

(5, 1) (A, B) 0 1 (3,-1) (1, -1) 0 2 

(5, 1) (1, -1) 0 2 (4, -1) (A, B) 0 1 

(5, 1) (2, -1) 1 2 (4, -1) (1, -1) 0 2 

(6, 1) (A, B) 0 1 (5, -1) (A, B) 0 1 

(6, 1) (1, -1) 0 2 (5, -1) (1, -1) 0 2 

(7, 1) (A, B) 0 1 (5, -1) (2, -1) 1 2 

(7, 1) (1, -1) 0 2 (6, -1) (A, B) 0 1 

(8, 1) (A, B) 0 1 (6, -1) (1, -1) 0 2 

(8, 1) (1, -1) 0 2 (7, -1) (A, B) 0 1 

(9, 1) (A, B) 0 1 (7, -1) (1, -1) 0 2 

(9, 1) (1, -1) 0 2 (8, -1) (A, B) 0 1 

(10, 1) (A, B) 0 1 (8, -1) (1, -1) 0 2 

(10, 1) (1, -1) 0 2 (9, -1) (A, B) 0 1 

(11, 1) (A, B) 0 1 (9, -1) (1, -1) 0 2 

(11, 1) (1, -1) 0 2 (10, -1) (A, B) 0 1 

(12, 1) (A, B) 0 1 (10, -1) (1, -1) 0 2 

(12, 1) (1, -1) 0 2 (11, -1) (A, B) 0 1 

(13, 1) (A, B) 0 1 (11, -1) (1, -1) 0 2 

(13, 1) (1, -1) 0 2 (12, -1) (A, B) 0 1 

(14, 1) (A, B) 0 1 (12, -1) (1, -1) 0 2 

(14, 1) (1, -1) 0 2 (13, -1) (A, B) 0 1 

(15, 1) (A, B) 0 1 (13, -1) (1, -1) 0 2 

(15, 1) (1, -1) 0 2 (14, -1) (A, B) 0 1 

(16, 1) (A, B) 0 1 (14, -1) (1, -1) 0 2 
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(16, 1) (1, -1) 0 2 (15, -1) (A, B) 0 1 

(17, 1) (A, B) 0 1 (15, -1) (1, -1) 0 2 

(17, 1) (1, -1) 0 2 (16, -1) (A, B) 0 1 

(17, 1) (4, 1) 1 2 (16, -1) (1, -1) 0 2 

(17, 1) (4, -1) 1 2 (17, -1) (A, B) 0 1 

(18, 1) (A, B) 0 1 (17, -1) (1, -1) 0 2 

(18, 1) (1, -1) 0 2 (17, -1) (4, 1) 1 2 

(19, 1) (A, B) 0 1 (17, -1) (4, -1) 1 2 

(19, 1) (1, -1) 0 2 (18, -1) (A, B) 0 1 

(20, 1) (A, B) 0 1 (18, -1) (1, -1) 0 2 

(20, 1) (1, -1) 0 2 (19, -1) (A, B) 0 1 

(1, -1) (A, B) 0 1 (19, -1) (1, -1) 0 2 

(1, -1) (1, -1) 0 2 (20, -1) (A, B) 0 1 

(2, -1) (A, B) 0 1 (20, -1) (1, -1) 0 2 

 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 

 

Corollary 4. Assume that {𝑉𝑛} is nondegenerate. If 𝑝 = 𝑉𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑉𝑘(𝑃2, 𝑄2) such that 𝑛, 𝑘 ≥ 0, 1 ≤ 𝑃1, 𝑃2 ≤ 20 and 𝑄1, 𝑄2 ∈

{−1, 1}, then the solutions to equation (6) are fully given by the following table: 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) n k  (𝑃1, 𝑄1) (𝑃2, 𝑄2) n k 

(3, 1)  (1, -1) 0 1 (2, -1) (1, -1) {0, 1} 1 

(4, 1) (1, -1) 0 1 (3, -1) (1, -1) 0 1 

(5, 1) (1, -1) 0 1 (4, -1) (1, -1) 0 1 

(5, 1) (A, B) 1 0 (5, -1) (1, -1) 0 1 

(5, 1) (2, -1) 1 1 (5, -1) (A, B) 1 0 

(6, 1) (1, -1) 0 1 (5, -1) (2, -1) 1 1 

(7, 1) (1, -1) 0 1 (6, -1) (1, -1) 0 1 

(8, 1) (1, -1) 2 1 (7, -1) (1, -1) 0 1 

(9, 1) (1, -1) 0 1 (8, -1) (1, -1) 0 1 

(10, 1) (1, -1) 0 1 (9, -1) (1, -1) 0 1 

(11, 1) (1, -1) 0 1 (10, -1) (1, -1) 0 1 

(12, 1) (1, -1) 0 1 (11, -1) (1, -1) 0 1 

(13, 1) (1, -1) 0 1 (12, -1) (1, -1) 0 1 

(14, 1) (1, -1) 0 1 (13, -1) (1, -1) 0 1 

(15, 1) (1, -1) 0 1 (14, -1) (1, -1) 0 1 

(16, 1) (1, -1) 0 1 (15, -1) (1, -1) 0 1 

(17, 1) (4, 1) 1 1 (16, -1) (1, -1) 0 1 

(17, 1) (1, -1) 0 1 (17, -1) (1, -1) 0 1 
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(17, 1) (1, -1) 1 3 (17, -1) (4, 1) 1 1 

(17, 1) (4, -1) 1 1 (17, -1) (1, -1) 1 3 

(18, 1) (1, -1) 0 1 (17, -1) (4, -1) 1 1 

(19, 1) (1, -1) 0 1 (18, -1) (1, -1) 0 1 

(20, 1) (1, -1) 0 1 (19, -1) (1, -1) 0 1 

(1, -1) (1, -1) 0 1 (20, -1) (1, -1) 0 1 

 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 

 

Theorem 4. Let the sequence {𝑈𝑛(𝑃, 𝑄)} be nondegenerate with 1 ≤ 𝑃 ≤ 20 and 𝑄 = ±1. If p is a prime number such that 𝑝 =

𝑈𝑛(𝑃, 𝑄), then the set of the solutions (𝑃, 𝑄, 𝑥, 𝑛) with 𝑥 ≥ 1 and 𝑛 ≥ 2 of equation (7) is given by 

 (𝑃, 𝑄, 𝑥, 𝑛) ∈ {(17, 1, 2, 2), (1, −1, 1, 3), (2, −1, 1, 2), (4, −1, 2, 3), (16, −1, 4, 3),  

                                                       (17, −1, 2, 2)}. 

Corollary 5. Suppose that {𝑈𝑛} is nondegenerate. If 𝑝 = 𝑈𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑈𝑘(𝑃2, 𝑄2) such that 𝑛 ≥ 2, 𝑘 ≥ 1, 1 ≤ 𝑃1, 𝑃2 ≤ 20 

and 𝑄1, 𝑄2 ∈ {−1, 1}, then the solutions of equation (7) are completely given by 

   ((𝑃1, 𝑄1), (𝑃2, 𝑄2), 𝑛, 𝑘) ∈ {((17, 1), (1, −1), 2, 3), ((17, 1), (2, −1), 2, 2), 

 ((1, −1), (𝐴, 𝐵), 3, 1), ((1, −1), (1, −1), 3, 2), ((2, −1), (𝐴, 𝐵), 2, 1), ((4, 

− 1), (1, −1), 3, 3), ((4, −1), (2, −1), 3, 2), ((16, −1), (4, 1), 3, 2), ((16, 

                                                               − 1), (4, −1), 3, 2), ((17, −1), (1, −1), 2, 3), ((17, −1), (2, −1), 2, 2)} 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 

 

Corollary 6. Assume that {𝑈𝑛} and {𝑉𝑛} are nondegenerate. If p is a prime number and x is a positive integer such that 𝑝 =

𝑈𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑉𝑘(𝑃2, 𝑄2), where 𝑛 ≥ 2, 𝑘 ≥ 0, 1 ≤ 𝑃1, 𝑃2 ≤ 20 and 𝑄1, 𝑄2 ∈ {−1, 1}, then the set of solutions to equation (7) is 

as follows 

((𝑃1, 𝑄1), (𝑃2, 𝑄2), 𝑛, 𝑘) ∈ {((17, 1), (𝐴, 𝐵), 2, 0)((17, 1), (2, −1), 2, 1), 

   ((1, −1), (1, −1), 3, 1), ((2, −1), (1, −1), 2, 1), ((4, −1), (𝐴, 𝐵), 3, 0), ((4, 

   − 1), (2, −1), 3, 1), ((16, −1), (4, 1), 3, 1), ((16, −1), (1, −1), 3, 3), ((16, 

                                                               − 1), (4, −1), 3, 1), ((17, −1), (𝐴, 𝐵), 2, 0), ((17, −1), (2, −1), 2, 1)}. 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1.  

 

Theorem 5. Let {𝑉𝑛(𝑃, 𝑄)} be a nondegenerate with 𝑛 ≥ 0, 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1}. If p is a prime number such that 𝑝 =

𝑉𝑛(𝑃, 𝑄), then the complete list of solutions of equation (7) is as follows (assuming that 𝑥 ≥ 1): 

(𝑃, 𝑄, 𝑥, 𝑛) ∈ {(3, 1, 1, 0), (4, 1, 1, 0), (5, 1, 1, 0), (6, 1, 1, 0), (7, 1, 1, 0), 

  (8, 1, 1, 0), (9, 1, 1, 0), (10, 1, 1, 0), (11, 1, 1, 0), (12, 1, 1, 0), (13, 1, 1, 0), 

 (14, 1, 1, 0), (15, 1, 1, 0), (16, 1, 1, 0), (17, 1, 1, 0), (17, 1, 2, 1), (18, 1, 1, 

0), (19, 1, 1, 0), (20, 1, 1, 0), (1, −1, 1, 0), (2, −1, 1, 0), (2, −1, 1, 1), (3, 

− 1, 1, 0), (4, −1, 1, 0), (5, −1, 1, 0), (6, −1, 1, 0), (7, −1, 1, 0), (8, −1, 
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   1, 0), (9, −1, 1, 0), (10, −1, 1, 0), (11, −1, 1, 0), (12, −1, 1, 0), (13, −1, 1, 

 0), (14, −1, 1, 0), (15, −1, 1, 0), (16, −1, 1, 0), (17, −1, 1, 0), (17, −1, 2, 

                                                               1), (18, −1, 1, 0), (19, −1, 1, 0), (20, −1, 1, 0)}. 

Corollary 7. Suppose that {𝑈𝑛} and {𝑉𝑛} are nondegenerate. If 𝑝 = 𝑉𝑛(𝑃1, 𝑄1)  and 𝑥 = 𝑈𝑘(𝑃2, 𝑄2) such that 𝑛 ≥ 0, 𝑘 ≥ 1, 1 ≤ 𝑃1, 𝑃2 ≤

20 and 𝑄1, 𝑄2 ∈ {−1, 1}, then all the solutions of equation (7) are given in the following table: 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) 𝑛 𝑘   (𝑃1, 𝑄1) (𝑃2, 𝑄2) 𝑛 𝑘 

(3, 1) (A, B) 0 1 (2, -1)  (A, B) 1 1 

(3, 1) (1, -1) 0 2 (2, -1) (1, -1) 0 2 

(4, 1) (A, B) 0 1 (2, -1) (1, -1) 1 2 

(4, 1) (1, -1) 0 2 (3,-1) (A, B) 0 1 

(5, 1)  (A, B) 0 1 (3,-1) (1, -1) 0 2 

(5, 1) (1, -1) 0 2 (4, -1) (A, B) 0 1 

(6, 1) (A, B) 0 1 (4, -1) (1, -1) 0 2 

(6, 1) (1, -1) 0 2 (5, -1) (A, B) 0 1 

(7, 1) (A, B) 0 1 (5, -1) (1, -1) 0 2 

(7, 1) (1, -1) 0 2 (6, -1) (A, B) 0 1 

(8, 1) (A, B) 0 1 (6, -1) (1, -1) 0 2 

(8, 1) (1, -1) 0 2 (7, -1) (A, B) 0 1 

(9, 1) (A, B) 0 1 (7, -1) (1, -1) 0 2 

(9, 1) (1, -1) 0 2 (8, -1) (A, B) 0 1 

(10. 1) (A, B) 0 1 (8, -1) (1, -1) 0 2 

(10, 1) (1, -1) 0 2 (9, -1) (A, B) 0 1 

(11, 1) (A, B) 0 1 (9, -1) (1, -1) 0 2 

(11, 1) (1, -1) 0 2 (10, -1) (A, B) 0 1 

(12, 1) (A, B) 0 1 (10, -1) (1, -1) 0 2 

(12, 1)  (1, -1) 0 2 (11, -1) (A, B) 0 1 

(13, 1) (A, B) 0 1 (11, -1)  (1, -1) 0 2 

(13, 1) (1, -1) 0 2 (12, -1) (A, B) 0 1 

(14, 1) (A, B) 0 1 (12, -1) (1, -1) 0 2 

(14, 1) (1, -1) 0 2 (13, -1) (A, B) 0 1 

(15, 1) (A, B) 0 1 (13, -1) (1, -1) 0 2 

(15, 1) (1, -1) 0 2 (14, -1) (A, B) 0 1 

(16, 1) (A, B) 0 1 (14, -1) (1, -1) 0 2 

(16, 1) (1, -1) 0 2 (15, -1) (A, B) 0 1 

(17, 1) (A, B) 0 1 (15, -1) (1, -1) 0 2 

(17, 1) (1, -1) 0 2 (16, -1) (A, B) 0 1 

(17, 1) (1, -1) 1 3 (16, -1) (1, -1) 0 2 

(17, 1) (2, -1) 1 2 (17, -1) (A, B) 0 1 
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(18, 1) (A, B) 0 1 (17, -1) (1, -1) 0 2 

(18, 1) (1, -1) 0 2 (17, -1) (1, -1) 1 3 

(19, 1) (A, B) 0 1 (17, -1) (2, -1) 1 2 

(19, 1) (1, -1) 0 2 (18, -1) (A, B) 0 1 

(20, 1) (A, B) 0 1 (18, -1) (1, -1) 0 2 

(20, 1) (1, -1) 0 2 (19, -1) (A, B) 0 1 

(1, -1) (A, B) 0 1 (19, -1) (1, -1) 0 2 

(1, -1) (1, -1) 0 2 (20, -1) (A, B) 0 1 

(2, -1) (A, B) 0 1 (20, -1) (1, -1) 0 2 

 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 

 

Corollary 8. Assume that {𝑉𝑛} is nondegenerate. If 𝑝 = 𝑉𝑛(𝑃1, 𝑄1) and 𝑥 = 𝑉𝑘(𝑃2, 𝑄2) such that 𝑛, 𝑘 ≥ 0, 1 ≤ 𝑃1, 𝑃2 ≤ 20 and 𝑄1, 𝑄2 ∈

{−1, 1}, then the solutions to equation (7) are fully given by the following table: 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) n k  (𝑃1, 𝑄1) (𝑃2, 𝑄2) n k 

(3, 1)  (1, -1) 0 1 (2, -1) (1, -1) 1 1 

(4, 1) (1, -1) 0 1 (3, -1) (1, -1) 0 1 

(5, 1) (1, -1) 0 1 (4, -1) (1, -1) 0 1 

(6, 1) (1, -1) 0 1 (5, -1) (1, -1) 0 1 

(7, 1) (1, -1) 0 1 (6, -1) (1, -1) 0 1 

(8, 1) (1, -1) 0 1 (7, -1) (1, -1) 0 1 

(9, 1) (1, -1) 0 1 (8, -1) (1, -1) 0 1 

(10, 1) (1, -1) 0 1 (9, -1) (1, -1) 0 1 

(11, 1) (1, -1) 0 1 (10, -1) (1, -1) 0 1 

(12, 1) (1, -1) 0 1 (11, -1) (1, -1) 0 1 

(13, 1) (1, -1) 0 1 (12, -1) (1, -1) 0 1 

(14, 1) (1, -1) 0 1 (13, -1) (1, -1) 0 1 

(15, 1) (1, -1) 0 1 (14, -1) (1, -1) 0 1 

(16, 1) (1, -1) 0 1 (15, -1) (1, -1) 0 1 

(17, 1) (1, -1) 0 1 (16, -1) (1, -1) 0 1 

(17, 1) (A, B) 1 0 (17, -1) (1, -1) 0 1 

(17, 1) (2, -1) 1 1 (17, -1) (A, B) 1 0 

(18, 1) (1, -1) 0 1 (17, -1) (2, -1) 1 1 

(19, 1) (1, -1) 0 1 (18, -1) (1, -1) 0 1 

(20, 1) (1, -1) 0 1 (19, -1) (1, -1) 0 1 

(1, -1) (1, -1) 0 1 (20, -1) (1, -1) 0 1 

(2, -1) (1, -1) 0 1 - - - - 

 

where 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. 
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5. Proofs of Results 

Proof of Theorem 2. Here, we directly follow the approach presented in the proof of Theorem 1. Since we are interested in the 

values of x and n satisfying equation (6) at every pair (𝑃, 𝑄) with 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1} such that the sequence {𝑈𝑛(𝑃, 𝑄)} is 

nondegenerate containing prime terms; the first step is determining the values of x derived from the integral points (𝑥, 𝑦) of the 

genus 1 curves presented by (9). In the following table, we provide the details of computations noting that the triples [𝐴, 𝐵, 𝐶] 

representing the coefficients of the elliptic curves 𝑦2 = 𝐴𝑥4 + 𝐵𝑥2 + 𝐶 corresponds to the curves in (9) for every pair (𝑃, 𝑄). 

 

 

(P, Q) [A, B, C] {x}  (P, Q) [A, B, C] {x} 

(3, 1) [5, 10, 9] {0} (2, -1) [8, 16, 4] 

[8, 16, 12] 

{-2, 0, 2} 

{-1, 1} 

(4, 1) [12, 24 16] {0} (3, -1) [13, 26, 9] 

[13, 26, 17] 

{-3, 0, 3} 

{} 

(5, 1) [21, 42, 25] {-2, 0, 2} (4, -1) [20, 40, 16] 

[20, 40, 24] 

{-4, 0, 4} 

{} 

(6, 1) [32, 64, 36] {0} (5, -1) [29, 58, 25] 

[29, 58, 33] 

{-5, 0, 5} 

{-2, 2} 

(7, 1) [45, 90, 49] {0} (6, -1) [40, 80, 36] 

[40, 80, 44] 

{-6, 0, 6} 

{} 

(8, 1) [60, 120, 64] {0}  (7, -1) [53, 106, 49] 

[53, 106, 57] 

{-7, 0, 7} 

{} 

(9, 1) [77, 154, 81] {0} (8, -1) [68, 136, 64] 

[68, 136, 72] 

{-8, 0, 8} 

{} 

(10, 1) [96, 192, 100] {-3, 0, 3} (9, -1) [85, 170, 81] 

[85, 170, 89] 

{-9, 0, 9} 

{} 

(11, 1) [117, 234, 121] {0} (10, -1) [104, 208, 100] 

[104, 208, 108] 

{-10, 0, 10} 

{-3, 3} 

(12, 1) [140, 280, 144] {0} (11, -1) [125, 250, 121] 

[125, 250, 129] 

{-11, 0, 11} 

{} 

(13, 1) [165, 330, 169] {0} (12, -1) [148, 296, 144] 

[148, 296, 152] 

{-12, 0, 12} 

{} 

(14, 1) [192, 384, 196] {0} (13, -1) [173, 346, 169] 

[173, 346, 177] 

{-13, 0, 13} 

{} 

(15, 1) [221, 442, 225] {0} (14, -1) [200, 400, 196] 

[200, 400, 204] 

{-14, 0, 14} 

{} 

(16, 1) [252, 504, 256] {0} (15, -1) [229, 458, 225] 

[229, 458, 233] 

{-15, 0, 15} 

{} 

(17, 1) [285, 570, 289] {-4, 0, 4} (16, -1) [260, 520, 256] 

[260, 520, 264] 

{-16, 0, 16} 

{} 

(18, 1) [320, 640, 324] {0} (17, -1) [293, 586, 289] {-17, 0, 17} 
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[293, 586, 297] {-4, 4} 

(19, 1) [357, 714, 361] {0} (18, -1) [328, 656, 324] 

[328, 656, 332] 

{-18, 0, 18} 

{} 

(20, 1) [396, 792, 400] {0} (19, -1) [365, 730, 361] 

[365, 730, 369] 

{-19, 0, 19} 

{} 

(1, -1) [5, 10, 1] 

[5,10, 9] 

{-2, -1, 0, 1, 2} 

{0} 

(20, -1) [404, 808, 400] 

[404, 808, 408] 

{-20, 0, 20} 

{} 

 

Next, we only consider the values of x in the above table (with 𝑥 ≥ 1), for which 𝑥2 + 1 = 𝑝 is a prime number and is a term in the 

sequence {𝑈𝑛(𝑃, 𝑄)} for every corresponding value of P and Q. Finally, for the obtained values of x satisfying the above conditions, 

we determine the values of n such that 𝑈𝑛(𝑃, 𝑄) = 𝑥2 + 1 = 𝑝. Again, we summarize the details of computations in the following 

table: 

 

(P, Q) x p n  (P, Q) x p n 

(5, 1) 2 5 2 (6, -1) 6 37 3 

(17, 1) 4 17 2 (10, -1) 10 101 3 

(1, -1) 1 

2 

2 

5 

3 

5 

(14, -1) 14 197 3 

(2, -1) 1 

2 

2 

5 

2 

3 

(16, -1) 16 257 3 

(4, -1) 4 17 3 (17, -1) 4 17 2 

(5, -1) 2 5 2 (20, -1) 20 401 3 

 

Hence, Theorem 2 is completely proven. 

 

Proof Corollary 1. From the result of Theorem 2, it is clear that (𝑃1, 𝑄1, 𝑛) ∈ {(5, 1, 2), (17, 1, 2), (1, −1, {3, 5}), (2, −1, {2, 3}), (4, −1,  

3), (5, −1, 2), (6, −1, 3), (10, −1, 3), (14, −1, 3), (16, −1, 3), (17, −1, 2), (20, −1, 3)}. Hence, it remains to find the values of 𝑘 ≥ 1 with 

which the corresponding values of x satisfy 

𝑈𝑘(𝑃2, 𝑄2) = 𝑥, 

where 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. For instance, let’s consider 𝑡ℎ𝑒 (𝑃1, 𝑄1, 𝑛) = (5, 1, 2). Here, we have 𝑈2(5, 1) = 𝑝 = 5 = 22 + 1 in 

which we are seeking the values of 𝑃2, 𝑄2 and k such that 𝑈𝑘(𝑃2, 𝑄2) = 2 holds with 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. This clearly implies 

that (𝑃2, 𝑄2, 𝑘) = (1, −1, 3) or (2, −1, 2). The remaining cases are handled similarly, and the results are summarized in the following 

table: 

 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) p n k  (𝑃1, 𝑄1) (𝑃2, 𝑄2) p n k 

(17, 1) (4, 1) 17 2 2 (6, -1) (6, -1) 37 3 2 

(17, 1) (4, -1) 17 2 2 (10, -1) (10, 1) 101 3 2 

(1, -1) (A, B) 2 3 1 (10, -1) (10, -1) 101 3 2 

(1, -1) (1, -1) 5 5 3 (14, -1) (14, 1) 17 3 2 

(1, -1) (2, -1) 5 5 2 (14, -1) (14, -1) 197 3 2 

(2, -1) (A, B) 2 2 1 (16, -1) (16, 1) 257 3 2 

(4, -1) (4, 1) 17 3 2 (16, -1) (16, -1) 257 3 2 
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(4, -1) (4, -1) 17 3 2 (17, -1) (4, 1) 17 2 2 

(5, -1) (1, -1) 5 2 3 (17, -1) (4, -1) 197 2 2 

(5, -1) (2, -1) 5 2 2 (20, -1) (20, 1) 401 3 2 

(6, -1) (6,1) 37 3 2 (20, -1) (20, -1) 401 3 2 

 

for all 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. The above table proves the result of Corollary 1. 

 

Proof Corollary 2. The proof of this corollary similarly follows from the result of Theorem 2, following the same approach used in 

the proof of Corollary 1. For instance, if we again consider (𝑃1, 𝑄1, 𝑥, 𝑛) = (5, 1, 2, 2). Here, we are looking for the values of 𝑘, 𝑃2, 𝑄2 

for which  

                                                           5 = 𝑝 = 𝑈2(5, 1) = 𝑥2 + 1 = 22 + 1 = 𝑉𝑘(𝑃2, 𝑄2)2 + 1, 

within 1 ≤ 𝑃2 ≤ 20, 𝑄2 = ±1 and 𝑘 ≥ 0. Since 𝑉0(𝑃2, 𝑄2) = 2 with all 1 ≤ 𝑃2 ≤ 20, 𝑄2 = ±1, thus the latter equation holds at all the 

values (𝑃2, 𝑄2, 𝑘) = (𝐴, 𝐵, 0) such that 𝐴 = 𝑃2 and 𝐵 = 𝑄2. Moreover, it holds when (𝑃2, 𝑄2, 𝑘) = (2, −1, 1). Hence, the first two 

solutions given in Corollary 2 are obtained, and the others can be found similarly. Therefore, we omit the details of computations 

in the proof. 

 

Proof of Theorem 3. The proof of this theorem is achieved by following the same approach used in the proof of Theorem 2 with 

the use of equation (10) in order to determine all the values of x with 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1}. Therefore, we omit the details 

of the proof. Indeed, in the end, we obtain the values of x and n with 𝑥 ≥ 1 and 𝑛 ≥ 0, for which 𝑉𝑛(𝑃, 𝑄) = 𝑥2 + 1 = 𝑝 as follows: 

 

(P, Q) x p n  (P, Q) x p n 

(3, 1) 1 2 0 (2, -1) 1 2 {0, 1} 

(4, 1) 1 2 0 (3, -1) 1 2 0 

(5, 1) 1 

2 

2 

5 

0 

1 

(4, -1) 1 2 0 

(6, 1) 1 2 0 (5, -1) 1 

2 

2 

5 

0 

1 

(7, 1) 1 2 0 (6, -1) 1 2 0 

(8, 1) 1 2 0 (7, -1) 1 2 0 

(9, 1) 1 2 0 (8, -1) 1 2 0 

(10, 1) 1 2 0 (9, -1) 1 2 0 

(11, 1) 1 2 0 (10, -1) 1 2 0 

(12, 1) 1 2 0 (11, -1) 1 2 0 

(13, 1) 1 2 0 (12, -1) 1 2 0 

(14, 1) 1 2 0 (13, -1) 1 2 0 

(15, 1) 1 2 0 (14, -1) 1 2 0 

(16, 1) 1 2 0 (15, -1) 1 2 0 

(17, 1) 1 

4 

2 

17 

0 

1 

(16, -1) 1 2 0 

(18, 1) 1 2 0 (17, -1) 1 

4 

2 

17 

0 

1 

(19, 1) 1 2 0 (18, -1) 1 2 0 
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(20, 1) 1 2 0 (19, -1) 1 2 0 

(1, -1) 1 2 0 (20, -1) 1 2 0 

 

Hence, the desired results are obtained, and the proof of Theorem 3 is completed. 

 

Proof Corollary 3. From the result of Theorem 3, it is clear that 

(𝑃1, 𝑄1, 𝑛) ∈ {(3, 1, 0), (4, 1, 0), (5, 1, {0, 1}), (6, 1, 0), (7, 1, 0), (8, 1, 0), (9, 

    1, 0), (10, 1, 0), (11, 1, 0), (12, 1, 0), (13, 1, 0), (14, 1, 0), (15, 1, 0), (16, 1, 0), 

(17, 1, {0, 1}), (18, 1, 0), (19, 1, 0), (20, 1, 0), (1, −1, 0), (2, −1, {0, 1}), (3, 

    − 1, 0), (4, −1, 0), (5, −1, {0, 1}), (6, −1, 0), (7, −1, 0), (8, −1, 0), (9, −1, 0), 

     (10, −1, 0), (11, −1, 0), (12, −1, 0), (13, −1, 0), (14, −1, 0), (15, −1, 0), (16, 

                                                     − 1, 0), (17, −1, {0, 1}), (18, −1, 0), (19, −1, 0), (20, −1, 0)}. 

 

Therefore, it remains to get the values of (𝑃2, 𝑄2, 𝑘) such that the corresponding values of x satisfy the equation 

𝑈𝑘(𝑃2, 𝑄2) = 𝑥, 

where 𝑘 ≥ 1, 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. We consider a couple of cases; the first case is when (𝑃1, 𝑄1, 𝑛) = (3, 1, 0) with 𝑥 = 1 

then 2 = 𝑉0(3, 1) = 𝑈𝑘
2(𝑃2, 𝑄2) + 1. The second case is when (𝑃1, 𝑄1, 𝑛) = (20, −1, 0) and 𝑥 = 1, which lead to the equation 2 =

𝑉0(20, −1) = 𝑈𝑘
2 (𝑃2, 𝑄2) + 1. These equations hold whenever (𝑃2, 𝑄2, 𝑘) = (1, −1, 2) and (𝐴, 𝐵, 1), where 1 ≤  𝐴 ≤ 20 and 𝐵 ∈

{−1, 1}. The same approach is applied to the rest of the cases. Hence, the proof of the result of Corollary 3 is achieved. 

 

Proof Corollary 4. The proof of this corollary also follows from the result of Theorem 3 and follows the same method used in the 

proof of Corollary 3. Therefore, we omit the details of the proof.  

 

Proof of Theorem 4. Since we are here seeking the values of 𝑃, 𝑄, 𝑥 and n that satisfy equation (7), namely 

𝑈𝑛(𝑃, 𝑄) = 𝑝 = 𝑥4 + 1 = (𝑥2)2 + 1 

with 𝑛 ≥ 2, 𝑥 ≥ 1, 1 ≤ 𝑃 ≤ 20 and 𝑄 ∈ {−1, 1}, the proof of this theorem can be followed directly from the result of Theorem 2 by 

determining the values of x that have a positive integer square root. Hence, the values of x satisfying the above conditions with 

the corresponding values of 𝑃, 𝑄 and n are summarized in the following table: 

 

(P, Q) x p n  (P, Q) x p n 

(17, 1) 2 17 2 (4, -1) 2 17 3 

(1, -1) 1 2 3 (16, -1) 4 257 3 

(2, -1) 1 2 2 (17, -1) 2 17 2 

 

 

Therefore, the results in the above table give the complete set of solutions to equation (7), and that completes the proof of 

Theorem 4. 

 

Proof Corollary 5. From the result of Theorem 4, it is clear that (𝑃1, 𝑄1, 𝑛) ∈ {(17, 1, 2), (1, −1, 3), (2, −1, 2), (4,-1, 3), (16, −1, 3), ( 

17, −1, 2)}. Therefore, it remains to find the values of 𝑘 ≥ 1 with which the corresponding values of x satisfy 

𝑈𝑘(𝑃2, 𝑄2) = 𝑥, 

where 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. For example, if we consider (𝑃1, 𝑄1, 𝑛) = (17, 1, 2). Here, we have 𝑈2(17, 1) = 𝑝 = 17 = 24 + 1, in 

which we are seeking the values of 𝑃2, 𝑄2 and k such that 𝑈𝑘(𝑃2, 𝑄2) = 2 holds with 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. This clearly implies 

that (𝑃2, 𝑄2, 𝑘) = (1, −1, 3) 𝑜𝑟 (2, −1, 2). In a similar way the remaining cases are handled similarly, and the results are as follows: 

 

(𝑃1, 𝑄1) (𝑃2, 𝑄2) p n k  (𝑃1, 𝑄1) (𝑃2, 𝑄2) p n k 

(1, -1) (A, B) 2 3 1 (16, -1) (4, 1) 257 3 2 

(1, -1) (1, -1) 2 3 2 (16, -1) (4, 1) 257 3 2 

(2, -1) (A, B) 2 2 1 (17, -1) (1, -1) 17 2 3 



JMSS 4(1): 41-57 

 

Page | 55  

(4, -1) (1, -1) 17 3 3 (17, -1) (2, -1) 17 2 2 

(4, -1) (2, -1) 17 3 2 - - - - - 

 

for all 1 ≤ 𝐴 ≤ 20 and 𝐵 = ±1. The above table proves the result of Corollary 5. 

 

Proof Corollary 6. Again, the proof of this corollary follows from the result of Theorem 4 by following the same approach used in 

the proof of Corollary 5. For example, let’s again consider (𝑃1, 𝑄1, 𝑥, 𝑛) = (17, 1, 2, 2). Here, we want to find the values of 𝑘, 𝑃2, 𝑄2 in 

which 

17 = 𝑝 = 𝑈2(17, 1) = 𝑥4 + 1 = 24 + 1 = 𝑉𝑘(𝑃2, 𝑄2)4 + 1, 

where 1 ≤ 𝑃2 ≤ 20, 𝑄2 = ±1 and 𝑘 ≥ 0. Since 𝑉0(𝑃2, 𝑄2) = 2 with all 1 ≤ 𝑃2 ≤ 20, 𝑄2 = ±1, thus the latter equation holds at all the 

values (𝑃2, 𝑄2, 𝑘) = (𝐴, 𝐵, 0) such that 𝐴 = 𝑃2 and 𝐵 = 𝑄2. Moreover, it holds in the case of (𝑃2, 𝑄2, 𝑘) = (2, −1, 1). Hence, the first 

two solutions given in Corollary 6 are found, and the others can be obtained similarly. Therefore, we omit the details of the 

computations. 

 

Proof of Theorem 5. Since we want to find the values of 𝑃, 𝑄, 𝑥 and n that satisfy the equation 

𝑉𝑛(𝑃, 𝑄)  = 𝑝 = 𝑥4 + 1 = (𝑥2)2 + 1, 

where 𝑛 ≥ 0, 𝑥 ≥ 1, 1 ≤ 𝑃 ≤ 20 and 𝑄 = ±1, the proof of this theorem can be achieved directly from the result of Theorem 3 by 

finding the values of x that have a positive integer square root. Such values with their corresponding values of 𝑃, 𝑄 and n are 

summarized in the following table: 

 

(P, Q) x p n  (P, Q) x p n 

(3, 1) 1 2 0 (2, -1) 1 2 1 

(4, 1) 1 2 0 (3, -1) 1 2 0 

(5, 1) 1 2 0 (4, -1) 1 2 0 

(6, 1) 1 2 0 (5, -1) 1 2 0 

(7, 1) 1 2 0 (6, -1) 1 2 0 

(8, 1) 1 2 0 (7, -1) 1 2 0 

(9, 1) 1 2 0 (8, -1) 1 2 0 

(10, 1) 1 2 0 (9, -1) 1 2 0 

(11, 1) 1 2 0 (10, -1) 1 2 0 

(12, 1) 1 2 0 (11, -1) 1 2 0 

(13, 1) 1 2 0 (12, -1) 1 2 0 

(14, 1) 1 2 0 (13, -1) 1 2 0 

(15, 1) 1 2 0 (14, -1) 1 2 0 

(16, 1) 1 2 0 (15, -1) 1 2 0 

(17, 1) 1 2 0 (16, -1) 1 2 0 

(17, 1) 2 17 1 (17, -1) 1 2 0 

(18, 1) 1 2 0 (17, -1) 2 17 1 

(19, 1) 1 2 0 (18, -1) 1 2 0 

(20, 1) 1 2 0 (19, -1) 1 2 0 

(1, -1) 1 2 0 (20, -1) 1 2 0 

(2, -1) 1 2 0 - - - - 
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So, the results in the above table provide the complete set of solutions to equation (7), and Theorem 5 is completely proven. 

 

Proof Corollary 7. From Theorem 5, we have that 

(𝑃1, 𝑄1, 𝑛) ∈ {(3, 1, 0), (4, 1, 0), (5, 1, 0, ), (6, 1, 0), (7, 1, 0), (8, 1, 0), (9, 1, 0), 

  (10, 1, 0), (11, 1, 0), (12, 1, 0), (13, 1, 0), (14, 1, 0), (15, 1, 0), (16, 1, 0), (17, 1,                

                                            {0, 1}), (18, 1, 0), (19, 1, 0), (20, 1, 0), (1, −1, 0), (2, −1, {0, 1}), (3, −1, 0), 

                                            (4, −1, 0), (5, −1, 0), (6, −1, 0), (7, −1, 0), (8, −1, 0), (9, −1, 0), (10, −1, 0), 

                                            (11, −1, 0), (12, −1, 0), (13, −1, 0), (14, −1, 0), (15, −1, 0), (16, −1, 0), (17, 

                                            − 1, {0, 1}), (18, −1, 0), (19, −1, 0), (20, −1, 0)}. 

Next, we determine the values of (𝑃2, 𝑄2, 𝑘) such that the corresponding values of x satisfy the equation 

𝑈𝑘(𝑃2, 𝑄2) = 𝑥, 

where 𝑘 ≥ 1, 1 ≤ 𝑃2 ≤ 20 and 𝑄2 = ±1. We may look at two cases; the first case is when (𝑃1, 𝑄1, 𝑛) = (4, 1, 0) with 𝑥 = 1. Then, we 

have that 2 = 𝑉0(4, 1) = 𝑈𝑘
4(𝑃2, 𝑄2) + 1, that is satisfied when (𝑃2, 𝑄2, 𝑘) = (1, −1, 2) and (𝐴, 𝐵, 1), where 1 ≤ 𝐴 ≤ 20 and 𝐵 ∈

{−1, 1}. The second case is when (𝑃1, 𝑄1, 𝑛) = (17, −1, {0, 1}). In case of 𝑛 = 0, we have 𝑥 = 1 = 𝑈𝑘(𝑃2, 𝑄2), which is satisfied if 

(𝑃2, 𝑄2, 𝑘) = (1, −1, 2) and (𝐴, 𝐵, 1) with 1 ≤ 𝐴 ≤ 20 and 𝐵 ∈ {−1, 1}. On the other hand, if 𝑛 = 1 then 𝑥 = 2 that implies that 

(𝑃2, 𝑄2, 𝑘) = (1, −1, 3) and (2, −1, 2). Indeed, the same approach is applied to the rest of the cases. So, the proof for Corollary 7 is 

completed. 

 

Proof Corollary 8. This Corollary is confirmed by the results of Theorem 5 by following the same technique used to prove 

Corollary 7. Therefore, we omit the details of the proof.   

 

5. Conclusion  

We conclude that the equations 𝑝 = 𝑥2 + 1 and 𝑝 = 𝑥4 + 1, which have infinitely many solutions over rational integers, have only 

finitely many solutions (𝑝, 𝑥) where 𝑝 and 𝑥 are Lucas numbers of the first or second kind.  
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