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| ABSTRACT 

This paper proposes a new goodness-of-fit for the two-parameter distribution. It is based on a function of squared distances 

between empirical and theoretical quantiles of a set of observations being hypothesized to have come from the gamma 

distribution. The critical values of the proposed statistic are evaluated through extensive simulations of the unit-scaled gamma 

distributions and computations. The empirical powers of the statistic are obtained and compared with some well-known tests for 

the gamma distribution, and the results show that the proposed statistic can be recommended as a test for the gamma 

distribution. 
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1. Introduction 

The gamma distribution is a two-parameter family of continuous probability distributions with two different parameterizations. Its 

first parameterization with   and   as the shape and scale parameters respectively gives rise to its probability function as 

 11

( )
( ) exp x

Xf x x



 




   while the second parameterization of   and   as the shape and rate parameters respectively 

gives rise to  1

( )
( ) exp ; , , , 0Xf x x x x

 


   


   , where X is the gamma random variable and 1/  . As a family of 

distributions, it collapses into different known probability distributions with different values of the parameters in the two 

parameterizations. For instance, if   equals 1, the gamma distribution becomes equal to the exponential distribution. Other 

distributions that belong to the family include the Erlang distribution and the chi-square distribution. 

 

Because of its role as parent distribution to many continuous probability distributions, it has a very wide application in probability 

theory as well as in statistics and engineering. For instance, it is used in life testing, waiting time modelling and generally in 

reliability studies. Also, it is used in Bayesian statistics as a conjugate prior distribution. Again, it is used extensively in 

communication engineering due to its property of distribution with maximum probability entropy. Due to this wide application of 

the gamma distribution in sciences, it is important to determine how good a dataset that is assumed to be gamma-distributed is 

in actuality to the gamma distribution before the intended use. This is because using a dataset that is not from a gamma 

distribution with the wrong assumption of the dataset being gamma-distributed may give rise to a wrong result with far dare 

consequences. 

 

Mitigating this type of problem so far raised has prompted a number of researchers to delve into the development of goodness-

of-fit statistics for testing whether or not a dataset comes from the gamma distribution by employing different theoretical 

properties of the gamma distribution. For instance, Kolmogorov (1933) and Anderson and Darling (1954) have used different 

distance functions between the theoretical and empirical distribution functions of the gamma distribution to develop some time- 
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honoured tests for the gamma distribution. Some other tests for the gamma distribution in the literature include Locke (1976); 

Romantsova (1996); Castillo and Puig (1997); Kallioras, Koutrouvelis and Canavos (2006); Wilding and Mudholkar (2008) and Henze, 

Meintanis and Ebner (2012). 

 

Generally, in goodness-of-fit tests, the various distance functions between theoretical and empirical unique functions have 

dominated the research area, obviously due to its tractability as well as high power performances. These functions include the 

distribution function, the characteristic function, the moment generating function, the Laplace function and the quantile function. 

Unfortunately, at least, to the best of the knowledge of the researcher, no test for gamma distribution has been proposed in the 

literature with the use of the quantile function despite its uniqueness property. This is the main thrust for this work. The rest of the 

paper is organized as follows: The statistic is proposed in section two, while the empirical critical values, as well as empirical 

comparison, is given in section three. The work is concluded in section four. 

2. The Test Statistic 

The population (theoretical) quantile function, ( ); (0,1)XQ p p , of a random variable X with distribution function, ( )XF x , and 

density function, ( )Xf x , is defined by: 

1( ) ( ); (0,1)X XQ p F x p                    (1) 

From (1), it is clear that it can be called the inverse distribution function. In fact, Jones (1992) uses it to present the quantile function 

as: 

    ( ) inf : ( ) ; (0,1)X XQ p x F x p p                                              (2) 

And states that it can be for both discrete and continuous random variables. For a continuous random variable, X, (2) becomes: 

    ( ) inf : ( ) ; (0,1)X XQ p x F x p p                                         (3) 

 

Now, suppose X has a two-parameter gamma distribution with parameters   and  , and a probability density function,  
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where  , x


   is the lower incomplete gamma function. This, therefore, gives rise to the non-closed form expression for the 

distribution function of the gamma distribution. By the relationship between quantile function and distribution function of a 

random variable, as seen in (1), the quantile function of the two-parameter gamma random variable X is given by: 

          1( ) ( ) , ; (0,1)x
XQ p p


                                    (5) 

where  1 , x


 
 is the inverse lower incomplete gamma function. 

 

From (5), it is obvious that the exact quantile measure of the gamma random variable for a given probability value, p, is almost 

intractable. Abramowitz and Stegun (1972) have obtained an approximation to the incomplete gamma function, and Shea (1988) 

has obtained a computer algorithm for the approximation. Based on this approximation, a number of authors have approximated 

the quantile function of the gamma distribution. This has also been implemented in several computer packages for statistical 

analysis, such as R. An example of such approximations is Okagbue, Adamu and Anake (2020). This, therefore, means that the 

quantile function (or quantiles) of a gamma random variable can serve as a unique property of it, notwithstanding its approximate 

measure. 

 

The quantile function of a random variable can be estimated from a random sample drawn from the population of the random 

variable. Xu and Miao (2011) state that the pth quantile of a distribution can be estimated by either the sample pth quantile of the 

distribution or the appropriate kth order statistic of a sample drawn from the distribution. This amounts to estimating a population 

parameter by either of two statistics, which are of different concepts. The sample pth quantile of a distribution, denoted by ( )nQ p  

is obtained as the inverse of the sample distribution function, also known as the empirical distribution function, which is denoted 

by ( )nF x . For (0,1)p , 

 1( ) ( ) inf : ( )n n nQ p F p x F x p                     (6) 



A New Goodness-of-Fit Test for the Two-Parameter Gamma Distribution 

Page | 70  

where 
1

1
( ) ( )

n

n i
F p n I X x


   is the average number of observations in the random sample that are less than or equal to x

. Let the number of observations in the sample that are less than or equal to x  be i. Then ( ) /nF x i n . Hence, (0,1)p can be 

approximated by /i n . With this understanding, a random sample of size n drawn from a non-negative continuous random 

variable, when ordered as 1: 2: :, , . . .,n n n nX X X , where :i nX  is the ith smallest observation in the sample, gives for /p i n  

1

:( )i
n i nn

F X  . More concretely, Serfling (1980) has shown that provided /i n p , 
. .1

: ( ) 0a s

i n nX F p  . This, of course, 

settles the use of either the sample pth quantile or the kth order statistics as appropriate estimators of the theoretical quantile 

function. What is left therefore is to obtain a distance function  : , ( )i n XD X Q p  for which 

 1(0,1) , ; 1, 2, .. .,i i
n n

p p i n    , which measures the distance apart between the pth sample quantile and the pth 

theoretical quantile with the understanding that this distance will tend to zero if the sample is obtained from the gamma 

distribution. 

 

To obtain this, each observation has to be rescaled to one so as to obtain a statistic that is not dependent on the scale parameter 

 . Let a random sample whose distribution is to be determined be 1 2, , . . ., nx x x . Obtain an estimator of   as ̂ . Then, the 

rescaled observations are obtained as 1 2, , . . ., ny y y  where ˆ ; 1, 2, . . .,ix

iy i n


   and the distance function is between each :i nY  

and the theoretical quantile of the gamma distribution with 1   where :i nY  is the ith smallest observation in the rescaled 

sample. Note that the consistent bias-corrected estimator for   is given by: 

1 1 1
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Therefore, with the average of the interval,  1 , ; 1, 2, .. .,i i
n n

p i n  , for each i as 0.5 ; 1, 2, . . .,i
i n

p i n   and following from 

Madukaife (2019), an appropriate test for the gamma distribution is obtained by: 

 
2

0.5
:

1

( )
n

i
n i n Y n

i

D Y Q 



                    (8) 

where :i nY  is the ith order statistic of the rescaled dataset and 0.5( )i
Y n

Q   is the pth theoretical quantile of the unit scaled gamma 

distribution with 0.5i
n

p  . The proposed statistic rejects the null hypothesis of the gamma distribution for large values of nD . 

 

3. Simulation Studies 

In this section, the empirical critical values, as well as the empirical power comparison, are considered. 

 

3.1 Critical values of the statistic 

There is no effort in this paper to derive the exact or asymptotic distribution of the nD  statistic. As a result, it will not be possible 

at this point to obtain the theoretical, critical values of the test. In this work, therefore, the critical values are obtained through 

extensive simulations as empirical critical values. The only disadvantage of this is that no matter how powerful this statistic may 

be, its usefulness can only be with the use of statistical software. Fortunately, there is easily available software for the use of anyone 

who is interested. The empirical critical values thus obtained in this section, therefore, is only for the purpose of demonstration. 

 

The empirical critical values of the proposed statistic are evaluated in this paper at two levels of significance (alpha = 0.01, 0.05), 

four values of the shape parameter (  = 1, 2, 3, 4) and nine sample sizes (n = 5, 10, 15, 20, 25, 30, 35, 40 and 50). In each sample 

size and shape parameter situation, 100,000 samples are generated from the unit-scaled gamma distribution with the appropriate 

shape parameter and the value of the statistic is evaluated from each generated sample, giving rise to a total of 100,000 evaluated 

statistics. The alpha-level critical value for such a situation is therefore obtained as the 100(1 - alpha) percentile of the evaluated 

statistics. The empirical critical values are presented in Table 1. 
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Table 1. Empirical critical values of the nD  statistic, alpha = 0.01, 0.05. 

 Alpha = 0.05 Alpha = 0.01 

n   = 1   = 2   = 3   = 4   = 1   = 2   = 3   = 4 

5 

10 

15 

20 

25 

30 

35 

40 

50 

8.0008 

9.2611 

10.0509 

10.6564 

11.1498 

11.6503 

11.8094 

12.0888 

12.5612 

13.0135 

14.9056 

16.1036 

16.8714 

17.4158 

18.0000 

18.1355 

18.7087 

19.0321 

18.3855 

20.4606 

21.8308 

22.6485 

23.2069 

24.1373 

24.3513 

24.6576 

25.3906 

23.2571 

26.2155 

27.6911 

28.7153 

29.3030 

29.8539 

30.6235 

30.8479 

31.6847 

19.1007 

20.6738 

21.5109 

22.1979 

22.8321 

23.1873 

23.5288 

23.5695 

23.9586 

28.3889 

30.1288 

31.0770 

31.5292 

32.4587 

32.5142 

32.7809 

32.8632 

33.1487 

36.9056 

38.9679 

39.8888 

40.4831 

40.5664 

41.2920 

41.6564 

41.9019 

42.1815 

46.0399 

47.9786 

48.8832 

49.6145 

49.9824 

50.0419 

50.6674 

51.1241 

51.7205 

 

3.2 Empirical Power Comparison 

The goodness of the proposed statistic, which translates to its recommendation for use or otherwise in practical situations, is 

dependent on its ease of application and, more importantly, on its relative power performance. Its relative power performance is 

determined in this paper by comparing its power performance with those of well-known statistics for assessing whether or not a 

dataset is from the gamma distribution. Precisely, its power is compared with the Kolmogorov-Smirnov test, the Anderson-Darling 

statistics and the Henze-Meintanis-Ebner statistic. They are described in what follows: 

 

The Kolmogorov-Smirnov nKS  Test: For each iX  observation from a random sample, obtain a rescaled observation as iY , where 

ˆ/i iY X  . Now, let iZ  be the empirical distribution function of the iY  and let all the ; 1, 2, . . .,iZ i n  be used to form order 

statistics such that :i nZ  is the ith order statistic. Then, the Kolmogorov-Smirnov statistic is defined by: 

   : :
1 1

max max / , max ( 1) /n i n i n
i n i n

KS i n Z Z i n
   

    
 

 =  max ,n nKS KS 
 

Where  :
1
max / i n n

i n
i n Z KS 

 
   and  :

1
max ( 1) /i n n

i n
Z i n KS 

 
   . The test rejects the null hypothesis of gamma distribution 

for large values of the statistic. 

 

The Anderson-Darling nAD  Test: Using the same definition of iZ  in the Kolmogorov-Smirnov test, the Anderson-Darling test is 

defined by: 

 
1

2 1 2 1
2 ln 1 ln 1

2 2

n

n i i

i

i i
AD n Z Z

n n

   
       

  
  

The test rejects the null hypothesis of gamma distribution for large values of the statistic. 

 

The Henze-Meintanis-Ebner 
1

nHME  and 
2

nHME  Tests: Upon straightforward integration of functionals which are based on 

weighted integrals of the squared distance between theoretical and empirical Laplace transform of the gamma distribution, Henze, 

Meintanis and Ebner introduced two statistics for testing the gamma distribution. They are: 

2

1

2 3
, 1

ˆ ˆ ˆ( ) 2 ( ) 21

( ) ( )

n
j k n j k n j k n j k j k

n

j k j k j k j k

Y Y Y Y Y Y Y Y Y Y
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1
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n j k n n j k jk
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 
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Where 

2( )
( ) 1 exp

42

j k j k

jk

Y Y Y Y
a

aa
 

      
     

     

 and 
2

0

2
( ) exp( )x t dt

n




   denotes the error function. The two tests 

reject the null hypothesis of the gamma distribution with large values of the statistics. In this paper, only the 
1

nHME  will be used 

in the power comparison. 

 

In order to carry out the empirical power comparison in this sub-section, a total of 10,000 samples are simulated in each case of 

sample size, n = 10, 20 and 50, and shape parameter,   = 1 for alternative distribution and the statistics being compared are 

evaluated in each case. The power of each statistic is therefore obtained as the number of the 10,000 statistics that are rejected. It 

is usually expressed in percentage. The alternative distributions considered in this study include the gamma distribution, (1,1)G ; 

standard lognormal distribution, LN(0,1); the two-parameter Weibull distribution, (4,1)W ; the standard exponential distribution; 

the uniform distribution, (0,1)U  and the beta distribution (1,1)B . The powers of the competing statistics at 5 percent level of 

significance, in percentages, are presented in Table 2. 

 

Table 2. Empirical power comparison of tests for the gamma distribution, alpha = 0.05 

Distribution n 
nKS  nAD  1

nHME  nD  

Gamma(1,1) 

Gamma(1,1) 

Gamma(1,1) 

10 

20 

50 

1.9 

5.7 

4.9 

4.9 

3.4 

5.4 

4.8 

3.8 

3.9 

5.0 

5.2 

5.1 

 

Lognormal(0,1) 

Lognormal (0,1) 

Lognormal (0,1) 

10 

20 

50 

15.5 

18.7 

35.7 

16.1 

22.8 

48.6 

14.1 

33.5 

45.7 

22.9 

31.2 

61.8 

 

Weibull(4,1) 

Weibull (4,1) 

Weibull (4,1) 

10 

20 

50 

1.7 

11.0 

23.5 

7.3 

23.1 

29.9 

18.7 

41.2 

47.0 

0.0 

39.5 

44.6 

 

Exponential(1) 

Exponential(1) 

Exponential(1) 

10 

20 

50 

4.6 

2.8 

4.3 

7.0 

8.4 

1.5 

21.4 

6.4 

2.3 

5.2 

4.9 

5.2 

 

Uniform(0,1) 

Uniform (0,1) 

Uniform (0,1) 

10 

20 

50 

18.2 

33.0 

64.8 

19.5 

49.7 

86.6 

36.3 

38.3 

83.0 

0.9 

48.2 

85.8 

 

Beta(2,1) 

Beta(2,1) 

Beta(2,1) 

10 

20 

50 

17.6 

27.4 

66.3 

21.0 

63.5 

87.1 

20.9 

63.4 

87.4 

0.8 

62.8 

88.0 

 

From Table 2, it is clear that the nD  statistic maintained a perfect control over type-I-error, not only in its two-parameter case but 

also in the standard exponential distribution. This is because all its power values in both the two-parameter gamma distribution 

(Gamma(1,1)) and the standard exponential distribution are perfectly approximated to 5 percent, which is the level of significance. 

This is a desirable property of a goodness-of-fit test to a known distribution to avoid inflating the seeming power of the test with 

“noise”. When compared with the three alternative powerful tests, there are varying degrees of fluctuations in the powers of the 

alternative tests at the null distribution of gamma. The variations became even more visible with the exponential distribution, which 

belongs to the family of gamma distribution. 

 

Comparing the powers of the nD  statistic with the nKS  and nAD , which are based on the distribution function, a variant of the 

quantile function, the results show that the proposed statistic is highly competitive with them in all the alternative distributions 

considered. Also, the proposed statistic, when compared with the 
1

nHME  statistic, shows that it is highly competitive in all the 

alternative distributions considered and in all the sample sizes. It equally shows a high tendency of very high power performance 

as the sample size becomes very large. 
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4. Conclusion 

In this study, a goodness-of-fit for the two-parameter gamma distribution has been developed. The statistic is seen to have good 

control over type-I-error. In addition, it has a relatively good power performance in relation to some time-honoured tests for the 

gamma distribution. Again, it is highly amenable to computer-based computations as it is easily implementable in statistical 

packages like the R. It is therefore recommended as a good test for the two-parameter gamma distribution. 
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