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The main core of Structural Equation Modeling (SEM) is the parameter estimation 

process. This process implies a variance-covariance matrix Σ that is close as possible to 

the sample variance-covariance matrix of data input (S). The six Sigma survey uses 

ordinal (rank) values from 1 to 5. There are several weighted correlation coefficients 

that overcome the problems of assigning equal weights to each rank and provide a 

locally most powerful rank test. This paper extends the SEM estimation method by 

adding the ordinal weighted techniques to enhance the goodness of fit indicators.  A 

two data sets of the Six Sigma model with different statistics properties are used to 

investigate this idea.   The weight 1.3 enhances the goodness of fit indicators with data 

set that has a negative skewness, and the weight 0.7 enhances the goodness of fit 

indicators with data set that has a positive skewness through treating the top-rankings. 
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1. Introduction1 

Structural Equation Modeling (SEM) is a type of system equations that are designed to deal with multiple related equations 

simultaneously; it is used by researchers in various scientific fields. Researchers choose to use SEM because of its comprehensive 

methods for the quantification and testing of theories (Raykov and Mercoulides, 2000). SEM can test various theoretical models 

that describe the relationship among observed and unobserved variables; these models hypothesize how sets of variables define 

different constructs and how these constructs relate to each other (Schumacker and Lomax, 2010). 

 

SEM models are usually estimated using cross-sectional or panel data with many independent replications, where the estimation 

process of SEM involves the use of a particular fitting function to minimize the difference between population variance-covariance 

matrix and sample variance-covariance in order to estimate a set of all unknown parameters in the model. The quality and validity 

of the parameter estimates, standard errors, and overall model fit are all depending on the estimation method being used. This 

should be determined according to the data type, model specification, and sample size. 

 

In Al-Ghamdi et al. (2021), the Six Sigma methodology has been proposed to improve job performance in the Technical and 

Vocational Training Corporation (TVTC) in the Kingdom of Saudi Arabia. Six Sigma is based on three main dimensions: preparation, 

requirements, and application. It can take into account the requirements in this model as an intermediate variable, so it has been 

suggested to use SEM to test the Six Sigma methodology proposed in TVTC. Based on the SEM analysis of the questionnaire, it 

was concluded that the Six Sigma methodology in TVTC has a significant impact on job performance in TVTC.  

 

Therefore, the purpose of the present study is to search for weighted values to transform the data in order to improve the goodness 

of fit indices within the framework of the structural equation modeling, and to explore the relationship between the performance 

of the weighted values and negative and positive skewed distribution of the data, with data in (Al-Ghamdi et al.,2021). 

 

1.1 SEM Model 

                                                           
Copyright: © 2021 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, 

London, United Kingdom. 
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In general, the SEM model expresses the relationship between the indicators and latent variables; it can be expressed as follows 

(El-Sheikh et al, 2017): 

 

       𝒙𝒊 =  𝜦𝒙𝝃𝒊 + 𝜹𝒊                                                    (1) 

𝒚𝒊 =  𝜦𝒚𝜼𝒊 + 𝝐𝒊                                                             (2) 

   𝜼𝒊 =  𝑩𝜼𝒊 + 𝚪𝝃𝒊 + 𝜻𝒊                                                  (3)                                              

 

where the model (1) is the measurement model of the exogenous latent variables with manifest variable vector 𝑥𝑖 on the latent 

exogenous variables 𝜉𝑖, 𝛿 is the measurement error in exogenous indicators δi. While 𝛬𝑥 is a matrix of factor loadings relating 

indicators to the latent exogenous variable 𝜉, with the errors 𝛿𝑖~𝑁(0,  𝛴𝛿). Finally, 𝑞 represents the number of indicators of latent 

exogenous variables. Thus, model (1) can be written in a matrix form as:  

 

(

𝒙𝒊𝟏

⋮
𝒙𝒊𝒒

)

𝒒×𝟏

= (

𝝀𝟏𝟏 … 𝝀𝟏𝒏

⋮ ⋮ ⋮
𝝀𝒒𝟏 … 𝝀𝒒𝒏

)

𝒒×𝒏

(
𝝃𝒊𝟏

⋮
𝝃𝒊𝒏

)

𝒏×𝟏

+ (

𝜹𝒊𝟏

⋮
𝜹𝒊𝒒

)

𝒒×𝟏

     (4) 

 

Indicator variables 𝑦𝑖 in subject 𝑖 are considered a manifestation of latent endogenous variables 𝜂𝑖 , and 𝜖𝑖 is the measurement 

errors in endogenous variables, where 𝑝 represents the number of indicators of latent endogenous variables. While 𝛬𝑦 is a matrix 

of factor loadings relating indicators to the latent variable 𝜂, with the errors 𝜖𝑖~𝑁(0,  𝛴𝜖). Thus, model (2) can be written in a matrix 

form as:  

 

(

𝒚𝒊𝟏

⋮
𝒚𝒊𝒑

)

𝒑×𝟏

= (

𝝀𝟏𝟏 … 𝝀𝟏𝒎

⋮ ⋮ ⋮
𝝀𝒑𝟏 … 𝝀𝒑𝒎

)

𝒑×𝒎

(

𝜼𝒊𝟏

⋮
𝜼𝒊𝒎

)

𝒎×𝟏

+ (

𝝐𝒊𝟏

⋮
𝝐𝒊𝒑

)

𝒑×𝟏

      (5) 

 

where 𝛿𝑖 and 𝜖𝑖 are independent normally distributed.  

While model (3) is the structural model of latent variables; and it can be written in a matrix form as: 

 

(

𝜼𝒊𝟏

⋮
𝜼𝒊𝒎

) = (
𝜷𝟏𝟏 … 𝜷𝟏𝒎

⋮ ⋮ ⋮
𝜷𝒎𝟏 … 𝜷𝒎𝒎

) (

𝜼𝒊𝟏

⋮
𝜼𝒊𝒎

) + (

𝜸𝟏𝟏 … 𝜸𝟏𝒏

⋮ ⋮ ⋮
𝜸𝒎𝟏 … 𝜸𝒎𝒏

) (
𝝃𝒊𝟏

⋮
𝝃𝒊𝒏

) + (
𝜻𝒊𝟏

⋮
𝜻𝒊𝒎

).          (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) presents this model. 
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Figure 1: Path diagram of SEM model parts 

 

1.2 SEM Methodology  

SEM model has basic stages that should be followed by researchers so that they can have accurate results, starting from model 

specification till the last stage, which is model modification if necessary, as seen in the flow chart of figure (2).  

 

 
Figure 2: Flow chart of SEM formulation steps 

 

1.2.1 Model Specification 

The first stage in SEM model construction is a model specification. Model specification involves the use of all available information 

necessary in developing the theoretical model. Its main role is to select the variables that will be included in the model and specify 

how they are related (Schumacker and Lomax, 2010). In other words, it is meant to represent the hypotheses in the form of SEM 

by determining every relationship and parameter in the model that the researcher is interested in. 

 

1.2.2 Model Identification 

The second stage in constructing an SEM model is model identification. Model identification is involved in producing unique 

estimates for the set of the model's parameters. It specifies the parameters of the model as free, fixed, or constrained in order to 

produce/estimate one and only one variance-covariance matrix of the implied model (Schumacker and Lomax, 2010). Thereby, 

there should be enough constraints imposed on the model and the data to obtain unique parameters estimates. 

 

The problem of identification occurs when the model is under-identified which states that there are no unique parameters' 

estimates for the theoretical model. However, this model can become identified if certain constraints are imposed, and thus, the 

degrees of freedom are either zero or more. There are necessary but not sufficient requirements for model identification. The first 

requirement as mentioned before is to have degrees of freedom greater than or equal to zero. The second is the order condition 
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which means that the number of free estimated parameters in the theoretical model must be not more than the distinct values in 

the sample variance-covariance matrix (Kline, 2011).  

 

1.2.3 Model Estimation 

The objective of this stage is to produce parameter estimates in model implied variance-covariance matrix 𝛴 that is close as possible 

to sample variance-covariance matrix S, as 𝜒2equals to 0 indicating a perfect model fit to the data. Where particular fitting function 

concerned with each estimation method is used in order to minimize the difference between 𝛴 and S. (Schumacher and Lomax, 

2010).  

 

Different estimation methods are assigned to deal with special cases of the data being used in the study, the most commonly used 

methods in structural modeling programs are Maximum Likelihood (ML), Unweighted Least Squares (ULS) sometimes known as 

Ordinary Least Squares (OLS), Generalized Least Squares (GLS), and Asymptotically Distribution Free (ADF) also known as Weighted 

Least Squares (WLS) (Raykov and Marcoulides, 2000). 

 

1.2.4 Model Assessment 

Model testing is concerned with testing how well the estimated parameters fit the model or how accurate is the theoretical model. 

Schumacher and Lomax (2010) suggested two ways to test model fit. First is some global omnibus test for the entire model. The 

second is to examine the parameter estimates independently. 

 

The procedure of the global test is involved in producing an implied covariance matrix that is as close as possible to the sample 

covariance matrix. In this context, it can be concluded that the data fit the theoretical model, unlike regression analysis that depends 

mainly on ANOVA F-test to evaluate the model fit.  

 

One of the used inferential goodness of fit indices is the Chi-square value. Other descriptive fit indices are used due to the limitation 

of the Chi-square value (to be discussed in next chapters); such fit indices are the Goodness-Of Fit Index (GFI) and the Adjusted 

Goodness of Fit Index (AGFI). GFI is similar to R2 in regression analysis where it measures the ability of the theoretical model in 

explaining the proportion of variance and covariance. The resulting index is AGFI like the adjusted R2. Both GFI and AGFI values 

range between 0 and 1. Thus, the closer the value to 1, the better is the model (Engel et al. 2003). 

There are two other descriptive fit indices, Normed Fit Index (NFI) and Non-normed Fit Index (NNFI). Both indices are based mainly 

on the idea of comparing the theoretical model to another one where absolutely no correlations are assumed to be between the 

variables. 

In addition to the previously mentioned descriptive fit indices, there are dozens of other fit indices that were proposed in the 

literature. One of them is the Root Mean Square Error of Approximation (RMSEA) index.  It was indicated that if the value of RMSEA 

is less than 0.05 the model would be considered reasonable (Raykov and Marcoulides, 2000). 

 

Additionally, it is important to consider testing the significance of the individual parameters of the theoretical model. Three main 

features are to be followed. First is testing whether a free parameter estimate is different from zero. The second is checking the 

standard error of the parameter estimates. The third is depending on the critical value of T-distribution (Schumacker and Lomax, 

2010), like how it is done in regression analysis. 

 

1.2.5 Model Modification 

Usually, the theoretical model does not always give a good fit. That is why model modification takes place. Modifying a specified 

model is known in the literature as a specification search. The purpose of specification search is to change or modify the original 

model to one with better fitting and alter the insignificant meaningless parameters to significant substantive meaning ones 

(Schumacker and Lomax, 2010). Specification search is concerned with detecting and correcting specification errors between a 

proposed model and the original one (Raykov and Marcoulides, 2000). 

 

1.3 Weights for top rankings  

There have been many cases in real life, where two independent sources have ranked n objects, with interest focused on an 

agreement in the top rankings. Spearman's rho and Kendall's tau coefficients assigned equal weights to all rankings. To overcome 

the problems of assigning equal weights to all ranking, the researchers -such as Iman and Conover (1987), Shieh (1998), and Maturi 

and Abdelfattah (2008)-  proposed several weighted correlation coefficients with emphasis on the top rankings, including the top-

down, weighted Kendall's Tau and Blest's correlation coefficient. 

 

Maturi and Abdelfattah (2008) presented a new weighted rank correlation that is more sensitive to an agreement in the top 

rankings. Their correlation coefficient (𝑅𝑊) is defined as follows: Let (𝑋𝑖 , 𝑌𝑖);  1 ≤ 𝑖 ≤ 𝑛 be an i.i.d. sample from a bivariate 
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distribution and let (𝑖, 𝑞𝑖);  𝑖 =  1, 2, … , 𝑛, be paired rankings of 𝑛 objects, where 𝑞𝑖 is the rank of the 𝑌 values whose corresponding 

𝑋 has rank 𝑖 among all 𝑋 values, the weighted scores is 𝑊𝑖  =  𝑤𝑖 , where 𝑖 is the rank of the order observations in a sample of size 

𝑛 and 0 < 𝑤 < 1, then 𝑅𝑊 is given by 

 

𝑅𝑊 = (∑ 𝑤𝑖+𝑞𝑖 − 𝑎1

𝑛

𝑖=1

) (𝑛𝑎2 − 𝑎1)⁄  

 

where 𝑎1 = 𝑤2(1 − 𝑤𝑛)2 (1 − 𝑤)2⁄  and 𝑎2 = 𝑤2(1 − 𝑤2𝑛) (1 − 𝑤)2⁄ . 

 

The weighted rank correlation provides a locally most powerful rank test. 

 

1.4 Six Sigma Survey 

(Al-Ghamdi et al. 2021) combined Six Sigma Methods and Structural Equation Modeling. They used a 356 sample of the employee 

in the Technical and Vocational Training Corporation database. Table 1 illustrates the sample characteristics for respondents.  

 

Table 1: Sample characteristics 

Frequency Dimension 

14.3 % female. 

85.7 % male. 
Gender 

0.8 % Administration within a training unit. 

7 % General Administration. 

80.9 % College. 

11.2 % Industrial institute. 

The type of unit 

6.7 % Diploma, 

46.3 % Bachelor, 

41.3 %M.A. 

5.6 % Ph.D.,  

 

Level of Education 

77.8 % academic  

8.1 % Administrative. 

14 % Technical 

education  

12.9 % Administrative work only. 

41.3 % Administrative and training work. 

45.8 % Training work only 

Working inside the unit 

14.9 % no.  

85.1 % yes 
Courses Management 

23 % no  

77 % yes 
Quality courses 

 

2. Objectives and Main hypotheses 

The main objective of this research is to extend the Six Sigma Structural Equation Model introduced in (Al-Ghamdi, and others: 

2021) by using the idea of weighted rank correlation that was introduced in (Maturi and Abdelfattah 2008). 

 

The main hypothesis is: “using the weighted data will enhance the accuracy of the constructed SEM”. 

 

To achieve this objective, the original data is converted into weighted data with different weights. Then we calculate the indicators 

of goodness-of-fit of measurement and structural models for the original data and for each weighted data. Then, we observe the 

impact behavior of converting data into weights on fitting the model. 

 

 

3. Proposed Weighted Method 

This work uses Six Sigma data that has ordinal values from 1 to 5. The transformed data will be 𝑤𝑥 . The works use weights from 

0.1 to 1.9. Table (2) shows the original values (1: 5) and the weighted value for 𝑤 ≤  1. 
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Table 2: Ranges and new values for 𝒘 ≤  𝟏. 

  N/W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

  5 0.00 0.00 0.00 0.01 0.03 0.08 0.17 0.33 0.59 1.00 

  4 0.00 0.00 0.01 0.03 0.06 0.13 0.24 0.41 0.66 1.00 

  3 0.00 0.01 0.03 0.06 0.13 0.22 0.34 0.51 0.73 1.00 

  2 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00 

  1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Range 4 0.10 0.20 0.30 0.39 0.47 0.52 0.53 0.47 0.31 0.00 

 

The range of weighted data is reduced, where original data has a range equal to 4, the weighted ranges between 0.1 and 0.53. The 

weighted process reverses the order of value, where the equivalent weighted value of 1 is greater than the equivalent weighted 

value of 5.   

 

Figure 3 shows the new values and ranges for 𝑤𝑒𝑖𝑔ℎ𝑡 <  1. 

 
Figure 3: Weighted and ranges values for 𝒘 ≤  𝟏 

 

The weighted rank correlation (Maturi and Abdelfattah 2008) study the weights with 𝑤 <  1 to reduce the gap between the ordinal 

values. This work extends the weigh values by using weighs that have values more than 1.  Table (3) shows the original values (1:5) 

and the weighted value for 𝑤 >  1. 

 

Table 3: Ranges and new values for data, when 𝒘 > 𝟏 

  N/W 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

  5 1.61 2.49 3.71 5.38 7.59 10.49 14.20 18.90 24.76 32.00 

  4 1.46 2.07 2.86 3.84 5.06 6.55 8.35 10.50 13.03 16.00 

  3 1.33 1.73 2.20 2.74 3.38 4.10 4.91 5.83 6.86 8.00 

  2 1.21 1.44 1.69 1.96 2.25 2.56 2.89 3.24 3.61 4.00 

  1 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

Range 4 0.51 1.29 2.41 3.98 6.09 8.89 12.50 17.10 22.86 30.00 

 

The range of weighted data varies from 0.51 to 30, where original data has a range equal 𝑡𝑜 4, the weighted range is less than the 

original range for 𝑤 <  1.5. For 𝑤 ≥ 1.5 range increasing (this means increasing the gap between the ordinal values). The weighted 

process keeps the order of ordinal values. 

 

 

 

Figure 4 shows the new values and ranges for 𝑤𝑒𝑖𝑔ℎ𝑡 >  1. 



The Effect of weighting Data on the Goodness of Fit Indicators of the Six Sigma Structural Equation Modeling 

Page | 42  

 
Figure 4: Weighted and ranges values for 𝒘 > 𝟏 

 

4. Practical Data Analysis and Results 

To assess the effect of using weighted data on estimating parameters using the maximum likelihood estimator, and then the effect 

of weighted data on model-fit indicators. The research used SPSS software V. 27 to analyze the data and get the descriptive 

statistics. Moreover, AMOS software V. 23 has been used to conduct structural equation modeling (SEM). AMOS is designed to 

estimate and test SEM. The overall model fit measures were used to evaluate the fit of the structural model. There are six indicators 

to test the goodness-of-fit of measurement and structural models: (1) normed 𝜒2 (2) Goodness of Fit Index (GFI), (3) Normed Fit 

Index (NFI), (4) Comparative Fit Index (CFI), (5) Root Mean Square Error of Approximation (RMSEA), and (6) Root mean square 

residual (RMR). The standardized estimates were used in reporting the causal relationships between the exogenous and 

endogenous constructs. 

 

The research uses two data sets with the same sample size (356).  The two data sets are tested with weights from 0.1 to 1.9.  

 

4.1 Data Set 1 

Table 4 shows the properties of data set 1. 

Table 4: Properties of Data Set 1 

 

Var. mode 

medi

an mean skw 
NORMAL 

Var. 

mod

e 

medi

an 

Mea

n skw 
NORMAL 

x11 3 3 3.15 -0.19 YES M31 4 4 3.56 -0.63 NO 

x12 3 3 3.25 -0.34 NO M32 3 3 3.23 -0.24 YES 

x13 4 3 3.30 -0.36 NO M33 4 4 3.63 -0.86 NO 

x14 4 4 3.60 -0.76 NO M34 4 4 3.46 -0.46 NO 

x21 4 4 3.42 -0.40 NO M41 4 4 3.49 -0.65 NO 

x22 3 3 3.09 -0.15 YES M42 4 4 3.37 -0.50 NO 

x31 3 3 3.17 -0.13 YES M43 4 4 3.51 -0.77 NO 

x32 3 3 3.19 -0.18 YES M51 4 3 3.30 -0.37 NO 

x41 4 4 3.47 -0.71 NO M52 4 4 3.39 -0.50 NO 

x42 4 4 3.33 -0.42 NO M53 4 4 3.35 -0.55 NO 

M11 4 4 3.45 -0.47 NO M54 4 4 3.37 -0.50 NO 

M12 4 4 3.77 -0.81 NO y1 4 4 3.80 -0.89 NO 

M13 3 3 3.07 -0.01 YES y2 4 4 4.13 -1.17 NO 

M21 4 4 3.50 -0.69 NO y3 5 4 4.25 -1.26 NO 
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M22 4 4 3.46 -0.65 NO y4 4 4 3.59 -0.77 NO 

M23 4 4 3.55 -0.68 NO y5 4 4 3.46 -0.63 NO 

      y6 4 4 3.44 -0.43 NO 

      y7 4 4 3.51 -0.48 NO 

The data has 6 variables that have a normal distribution and have negative skewness. Figure 5 shows the histogram of Data Set 1. 

 

Figure 5: Histogram of DATA SET 1 

Properties and histograms show this data has negative skewness. 

Table 5 and Table 6 show the fit indicators of this data with different weights. 

Table 5: Model fit statistics with weighted data with negative skewness for w < 1 

SEM Model for full items 

Measure Origina

l data 

Weighted data 

W=  

Cut-off 

value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  

Normed χ2 3.609 9.06

6 

7.44

3 

6.15

7 

5.26

7 

4.68

0 

4.29

3 

4.03

0 

3.84

4 

3.70

8 
Less than 3 

Goodness of Fit Index 

(GFI) 

.772 .579 .614 .654 .690 .718 .737 .751 .760 .767 
More than .90 

Normed Fit Index (NFI) .825 .635 .688 .732 .764 .785 .799 .809 .816 .821 More than .90 

Comparative Fit Index 

(CFI) 

.867 .660 .717 .764 .799 .822 .838 .849 .857 .862 
More than .90 

Root Mean Square Error  

of Approximation 

(RMSEA) 

.086 .151 .135 .121 .110 .102 .096 .092 .090 .087 

Less than .09 

Root mean square 

residual (RMR) 

.095 .000 .000 .000 .001 .001 .002 .002 .001 .001 
Less than .09 

 

 

 

 

 

 

 

Table 6: Model fit statistics with weighted data with negative skewness for w > 1 

SEM Model for full items 

Measure Origina

l data 

Weighted data 

W=  

Cut-off 

value 
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  

Normed χ2 3.609 3.53

9 

3.49

3 

3.46

8 

3.45

9 

3.46

5 

3.48

3 

3.51

0 

3.54

5 

3.58

6 
Less than 3 

Goodness of Fit Index 

(GFI) 

.772 .775 .777 .778 .778 .777 .775 .773 .770 .768 
More than .90 

Normed Fit Index (NFI) .825 .828 .829 .830 .830 .830 .828 .827 .825 .823 More than .90 

Comparative Fit Index 

(CFI) 

.867 .870 .871 .872 .872 .872 .871 .869 .867 .865 
More than .90 

Root Mean Square Error  

of Approximation 

(RMSEA) 

.086 .085 .084 .083 .083 .083 .084 .084 .085 .085 

Less than .09 

Root mean square 

residual (RMR) 

.095 .002 .010 .035 .097 .228 .488 .972 1.82

8 

3.28

6 
Less than .09 

These tables indicate: 

(1) The higher the value of 𝑤, the lower the value of Normed χ2 for weights 0 < 𝑤 < 1 and approaching the value of Normed χ2 

for the original data, and its value for the original data is better than when transforming the data in a weighted between 0 and 

1. While the value of Normed χ2 for weighted data is better When 1 < 𝑤 < 2 of them at the original data. 

(2) When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Goodness of Fit Index (GFI), and we find that 

its value is better with the original data than when transforming the data into weighted between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Goodness of Fit Index (GFI) is greater than its value when converting the original 

data to weighted. Therefore, the Goodness of Fit Index (GFI) value is better when converting the data to be better weighted 

than its value in the original data.  

(3)  When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Normed Fit Index (NFI), and we find that its 

value is better with the original data than when transforming the data into weighted between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Normed Fit Index (NFI) is greater than its value when converting the original data 

to weighted. Therefore, the Normed Fit Index (NFI) value is better when converting the data to be better weighted than its 

value in the original data.  

(4)  When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Comparative Fit Index (CFI), and we find that 

its value is better with the original data than when transforming the data into weighted between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Comparative Fit Index (CFI) is greater than its value when converting the original 

data to weighted. Therefore, the Comparative Fit Index (CFI) value is better when converting the data to be better weighted 

than its value in the original data. 

(5)  When 𝑤 > 1 the greater the value of 𝑤, the lower the value of Root Mean Square Error of Approximation (RMSEA), and we 

find that its value is better with the original data than when transforming the data into weighted between 0 and 1. 

While at 𝑤 > 1 we find that the value of Root Mean Square Error of Approximation (RMSEA) is lower than its value when 

converting the original data to weighted. Therefore, the Root Mean Square Error of Approximation (RMSEA) value is better 

when converting the data to be better weighted than its value in the original data. 

According to the six indicators result, weight 1.3 is the best weight for this data. Table 7 shows the properties of the weighted data 

with w = 1.3. 

Table 7: Properties of weighted data with w = 1.3 for data set 1 

Var. mode 

medi

an mean Skw 

NOR

MAL Var. mode 

medi

an mean Skw 

NOR

MAL 

x11 
2.197 2.197 2.371 0.436 NO 

M31 
2.856 2.856 2.619 

-

0.054 
YES 

x12 2.197 2.197 2.434 0.323 NO M32 2.197 2.197 2.411 0.343 NO 

x13 
2.856 2.197 2.447 0.255 YES 

M33 
2.856 2.856 2.669 

-

0.188 
YES 

x14 
2.856 2.856 2.634 

-

0.113 
YES 

M34 
2.856 2.856 2.546 0.072 YES 

x21 
2.856 2.856 2.531 0.195 YES 

M41 
2.856 2.856 2.584 

-

0.063 

YES 

x22 2.197 2.197 2.328 0.531 NO M42 2.856 2.856 2.506 0.064 YES 
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x31 
2.197 2.197 2.373 0.437 NO 

M43 
2.856 2.856 2.597 

-

0.122 

YES 

x32 2.197 2.197 2.391 0.448 NO M51 2.856 2.197 2.460 0.219 YES 

x41 
2.856 2.856 2.577 

-

0.125 
YES 

M52 
2.856 2.856 2.515 0.083 

YES 

x42 2.856 2.856 2.495 0.124 NO M53 2.856 2.856 2.486 0.039 YES 

M11 
2.856 2.856 2.563 

-

0.005 
NO 

M54 
2.856 2.856 2.517 0.065 NO 

M12 
2.856 2.856 2.761 

-

0.221 
NO 

y1 
2.856 2.856 2.775 

-

0.278 
YES 

M13 
2.197 2.197 2.306 0.700 NO 

y2 
2.856 2.856 3.026 

-

0.544 
NO 

M21 
2.856 2.856 2.575 

-

0.088 

YES 

y3 
3.713 2.856 3.130 

-

0.788 
NO 

M22 
2.856 2.856 2.548 

-

0.045 

YES 

y4 
2.856 2.856 2.648 

-

0.143 
YES 

M23 
2.856 2.856 2.6 

-

0.049 

YES 

y5 
2.856 2.856 2.571 

-

0.073 
YES 

      y6 2.856 2.856 2.550 0.134 NO 

      y7 2.856 2.856 2.597 0.034 NO 

The weighted data with w = 1.3 has 20 variables that have a normal distribution. Figure 6 shows the histogram of weighted data 

with w = 1.3 for data set 1 

Figure 6: Histogram of weighted data with w = 1.3 for data set 1 

 

 

 

 

4.2 Data Set 2 

Table 8 shows the properties of data set 2. 

Table 8: Properties of Data Set 2 
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Var. mode 

medi

an mean skw 

NOR

MAL Var. mode 

medi

an mean skw 

NOR

MAL 

x11 3 3 2.846 0.190 YES M31 2 2 2.444 0.630 NO 

x12 3 3 2.747 0.341 NO M32 3 3 2.767 0.243 YES 

x13 2 3 2.702 0.364 NO M33 2 2 2.368 0.863 NO 

x14 2 2 2.404 0.759 NO M34 2 2 2.545 0.457 NO 

x21 2 2 2.579 0.404 NO M41 2 2 2.508 0.648 NO 

x22 3 3 2.907 0.153 YES M42 2 2 2.635 0.495 NO 

x31 3 3 2.834 0.130 YES M43 2 2 2.494 0.768 NO 

x32 3 3 2.806 0.176 YES M51 2 3 2.697 0.368 NO 

x41 2 2 2.531 0.714 NO M52 2 2 2.610 0.504 NO 

x42 2 2 2.674 0.417 NO M53 2 2 2.652 0.551 NO 

M11 2 2 2.551 0.469 NO M54 2 2 2.626 0.502 NO 

M12 2 2 2.230 0.811 NO y1 2 2 2.202 0.891 NO 

M13 3 3 2.930 0.015 YES y2 2 2 1.871 1.166 NO 

M21 2 2 2.503 0.686 NO y3 1 2 1.747 1.260 NO 

M22 2 2 2.542 0.653 NO y4 2 2 2.413 0.767 NO 

M23 2 2 2.449 0.680 NO y5 2 2 2.542 0.634 NO 

      y6 2 2 2.565 0.435 NO 

      y7 2 2 2.492 0.484 NO 

Data set 2 has 6 variables that have a normal distribution 

 

Figure 7 shows the histogram of these data. 

 

Figure 7: Histogram of Data Set 2 

Properties and histograms show this data has positive skewness. Table 9 and Table 10 show the fit indicators of this data with 

different weights. 

 

Table 9: Model fit statistics  with weighted data with positive skewness  for w < 1 

SEM Model for full items 

Measure Origina

l data 

Weighted data 

W=  

Cut-off 

value 
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 

reverse 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  

Normed χ2 3.609 5.35

6 

4.82

5 

4.29

4 

3.88

9 

3.63

2 

3.50

0 

3.46

0 

3.47

8 

3.53

3 
Less than 3 

Goodness of Fit Index 

(GFI) 

.772 .692 .709 .730 .750 .765 .773 .777 .778 .776 
More than .90 

Normed Fit Index (NFI) .825 .731 .761 .788 .808 .821 .827 .830 .830 .828 More than .90 

Comparative Fit Index 

(CFI) 

.867 .769 .800 .828 .849 .863 .870 .872 .872 .870 
More than .90 

Root Mean Square Error  

of Approximation 

(RMSEA) 

.086 .111 .104 .096 .090 .086 .084 .083 .084 .084 

Less than .09 

Root mean square 

residual (RMR) 

.095 .000 .000 .001 .001 .001 .002 .002 .001 .001 
Less than .09 

 

Table 10: Model fit statistics with weighted data with positive skewness for w > 1 

SEM Model for full items 

Measure Origina

l data 
 

reverse 

Weighted data 

W=  

Cut-off 

value 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  

Normed χ2 3.609 3.69

8 

3.79

4 

3.89

5 

4.00

0 

4.10

8 

4.21

8 

4.33

1 

4.44

6 

4.56

3 
Less than 3 

Goodness of Fit Index 

(GFI) 

.772 .768 .763 .758 .752 .747 .741 .735 .729 .724 
More than .90 

Normed Fit Index (NFI) .825 .822 .818 .814 .810 .806 .802 .798 .794 .789 More than .90 

Comparative Fit Index 

(CFI) 

.867 .863 .859 .854 .850 .846 .841 .836 .832 .827 
More than .90 

Root Mean Square Error  

of Approximation 

(RMSEA) 

.086 .087 .089 .090 .092 .094 .095 .097 .099 .100 

Less than .09 

Root mean square 

residual (RMR) 

.095 .002 .010 .034 .091 .211 .446 .878 1.63

5 

2.91

2 
Less than .09 

These tables indicate: 

(1) The higher the value of w, the lower the value of Normed χ2 for weights 0 < 𝑤 < 1 and approaching the value of Normed 

χ2for the original data, and its value for the weighted data is better than original data in a weighted between 0 and 1. 

While the value of Normed χ2 for original data is better When 1 < 𝑤 < 2 of them at the weighted data. 

(2) When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Goodness of Fit Index (GFI), and we find 

that its value is better with the weighted data than original data between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Goodness of Fit Index (GFI) is smaller than its value when converting the 

original data to weighted. Therefore, the Goodness of Fit Index (GFI) value is better for original data than weighted data. 

(3)  When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Normed Fit Index (NFI), and we find 

that its value is better with the weighted data than original data between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Normed Fit Index (NFI) is smaller than its value when converting the original 

data to weighted. Therefore, the Normed Fit Index (NFI) value is better for original data than weighted data.  

(4)  When 0 < 𝑤 < 1 we find that the greater the value of 𝑤, the greater the value of Comparative Fit Index (CFI), and we find 

that its value is better with the weighted data than original data between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Comparative Fit Index (CFI) is smaller than its value when converting the 

original data to weighted. Therefore, the Comparative Fit Index (CFI) value is better for original data than weighted data 

(5)  When 0 < 𝑤 < 1 we find that the greater the value of w, the lower the value of Root Mean Square Error of Approximation 

(RMSEA), and we find that its value is better with the weighted data than original data between 0 and 1.  

While at 1 <  𝑤 <  2 we find that the value of Root Mean Square Error of Approximation (RMSEA) is greater than its value 

when converting the original data to weighted. Therefore, the Root Mean Square Error of Approximation (RMSEA) value 

is better for original data than its value in the weighted data. 
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According to the six indicators result, weight 0.7 is the best weight for this data. Table 11 shows the properties of the weighted 

data with 𝑤 =  0.7. 

Table 11: Properties of weighted data with 𝒘 =  𝟎. 𝟕 for data set 2 

Var. mode 

medi

an mean Skw 

NOR

MAL Var. mode 

medi

an mean Skw 

NOR

MAL 

x11 0.343 0.343 0.387 0.650 NO M31 0.49 0.49 0.441 0.149 YES 

x12 0.343 0.343 0.401 0.543 NO M32 0.343 0.343 0.395 0.549 NO 

x13 0.49 0.343 0.403 0.471 NO M33 0.49 0.49 0.453 0.041 YES 

x14 0.49 0.49 0.444 0.113 YES M34 0.49 0.49 0.424 0.267 YES 

x21 0.49 0.49 0.422 0.396 NO M41 0.49 0.49 0.434 0.143 YES 

x22 0.343 0.343 0.377 0.766 NO M42 0.49 0.49 0.417 0.263 NO 

x31 0.343 0.343 0.387 0.638 NO M43 0.49 0.49 0.437 0.099 YES 

x32 0.343 0.343 0.391 0.660 NO M51 0.49 0.343 0.406 0.424 NO 

x41 0.49 0.49 0.433 0.086 YES M52 0.49 0.49 0.418 0.291 NO 

x42 0.49 0.49 0.415 0.311 NO M53 0.49 0.49 0.412 0.253 YES 

M11 0.49 0.49 0.430 0.168 NO M54 0.49 0.49 0.420 0.262 NO 

M12 0.49 0.49 0.473 

-

0.016 

YES 

y1 0.49 0.49 0.477 

-

0.061 

YES 

M13 0.343 0.343 0.372 0.942 

NO 

y2 0.49 0.49 0.536 

-

0.368 

NO 

M21 0.49 0.49 0.431 0.128 

YES 

y3 0.7 0.49 0.561 

-

0.652 

NO 

M22 0.49 0.49 0.425 0.174 YES y4 0.49 0.49 0.449 0.069 YES 

M23 0.49 0.49 0.439 0.170 YES y5 0.49 0.49 0.432 0.126 YES 

      y6 0.49 0.49 0.427 0.325 NO 

      y7 0.49 0.49 0.437 0.216 NO 

The weighted data with 𝑤 =  0.7 has 15 variables that have a normal distribution. 

 

Figure 8: Histogram of weighted data with 𝒘 =  𝟎. 𝟕 for data set 2 

The results show the effect of weighted data that enhances the six fit indicators. Also, weight 1.3 (more than one) is the best for 

data set 1 that has negative skewness, and weight 0.7 (less than one) is the best for data set 2 that has positive skewness. There is 

a need to test more data to study the relationship between the weight values and the data proprieties.  

5. Conclusion 
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In this study, the data obtained in the study (Al-Ghamdi et al.: 2021), has been transformed into weighted data. 

We found that when the distribution has negative skewness, the values of the goodness of fit indicators for the weighted data are 

better than the values of the goodness of fit indicators for the original data when 1 <  𝑤 <  2, which is an indicator for the enhance 

of effect the goodness of fit indicators.  

We also found that when the distribution has positive skewness, the values of the matching indices for the weighted data are 

better than the values of the matching indices for the original data when 0 < 𝑤 < 1, which is an indicator for the enhance of effect 

the goodness of fit indicators. 

6. Future studies. 

Other studies will be conducted after generating random data with different sample sizes at symmetrical and skewed distributions 

for this model, and for some other random models to study the effect of transforming data into weighted data goodness of fit 

indicators. 
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