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This paper developed and established unprecedented global results on the structure 

of determining matrices of generic double time-delay linear autonomous functional 

differential control systems, with a view to obtaining the controllability matrix 

associated with the rank condition for the Euclidean controllability of the system. The 

computational process and implementation of the controllability matrix were 

demonstrated on the MATLAB platform to determine the controllability disposition of 

a small-problem instance. Finally, the work examined the computing complexity of the 

determining matrices. 
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1. Introduction 1 

Literature is awash with research activities on the determining matrices of autonomous linear hereditary control systems, due to the 

fact that they constitute the most efficient mechanism and vehicle for the investigation of the Euclidean controllability of the above 

class of control systems, with considerable savings in computational time, using the rank condition on the corresponding 

controllability matrices, being the least computationally intensive when compared to indices of control systems matrices and 

controllability Grammians. Amongst the works of notable authors. Ukwu (2016) pioneered the introduction of the least integer 

function in the statement and proof of the necessary and sufficient conditions for the Euclidean controllability of linear hereditary 

systems of double time-delay: ( ) ( ) ( ) ( ) ( )0 1 2 2 ; 0x t A x t A x t h A x t h Bu t t= + − + − +   with an initial function: 

( ) ( )  , 2 ,0 , 0x t t t h h= −  ; this enhanced the computability of the controllability matrix in Gabasov and Kirillova (1976) and 

eliminated any ambiguity that could arise in its application. The proof in his work relied on the results in Ukwu (2014) and (Ukwu, 

2016a), which also incorporated the characterization of Euclidean controllability in terms of the indices of control systems and 

appropriated Taylor’s theorem as an indispensable tool. The article provided an illustrative example of the computation of the 

controllability matrices and stated the implication of Euclidean controllability. 

(Ukwu, 2014) obtained the functional form of the determining matrices for the class of single-delay linear neutral autonomous 

control systems of the form: 

  

( ) ( ) ( ) ( ) ( )  0 11 0; , , 0 , 0( ) ( ) ,A x t A x t h B u t t x t t t h h
d

x t A x t h
dt

− = + − +  =  −   − −                

where 
1 0 1
, ,

−
A A A are n n  constant matrices with real entries, B  is an n m  constant matrix with real entries. The initial 

function    is in  ( ), 0 ,−
n

C h R ). The control u is in the space  ( )1
0, ,

n
L t


R . 
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[6]: For ( )

( ) ( )

1

,1 1 0

, , ...
kk v v

j k j k
v v P

j k Q jh A A
 
 − − 



 = N

( ) ( ) ( ) ( )( ) ( ) ( )

 ( )
1 1

1

1
1 1 1,1 1 ,0 ,1

,

sgn max 0, 1
j r

k

v vj v v

r
j j rj k k r j k r k r

v v P v v P

A A A A j k
+

−

=
+− − − + − −

 

 
 

+ + + − 
 
 

    where 

( ), ( ), ( )  
a cba r b r c rP  denotes the set of all permutations of 

times times times

, , , , , , , , , :

a b cr r r

a a a b b b c c c  the permutations of the objects , ,a b c  in 

which i  appears ir  times, { , , }i a b c . 

Ukwu  and Uche (2018) obtained restricted functional forms of determining matrices for a class of triple-delay linear control systems 

for certain pertinent parameters, thus bridging the knowledge gap in this area of acute research need by the exploitation of key facts 

about permutations, combinations of summation notations, change of variables techniques and the compositions of sigma and max 

functions. In the sequel, Ukwu and Uche (2018) established the result below on the functional form of the determining matrices for 

the class of triple-delay linear control systems: 

( ) ( ) ( ) ( ) ( ) ( ) ( )  0 1 2 3( ) 2 3 , 0; , 3 ,0x t A x t A x t h A x t h A x t h Bu t t x t t t h= + − + − + − +  =  −  

where 0 1 2 3and, ,A A A A  are n n  constant matrices with real entries, B  is an n m  constant matrix with real entries. The 

initial function   is in  ( )3 ,0 , nC h− R , with sup norm.   ( )1The control  ,  is  in the space, 0, , .nu L t R  

 

Theorem on ( ) 1
k

Q jh ; k j   (Ukwu & Uche, 2018): 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1

1 3 0 1 20 1 2 2 2 3 0 1 23 0 01 1 3

2 3

2 3 3

0 1 0 1

For  1 5
 

Q  
k j

k kr , k j r , r j k r , r , r , k r r r

k j j k j

k

k v v v

r v v p r r v ,v , v p j

k

jh A A A ,

− − + − − − −

     − −     
          
          

=  = =  =

 




= +



     

where 

( ) 1 3 0max 0 3 2 3r , k j r r= − + −  

 

Theorem on ( ) 1
k

Q jh ; k j   (Ukwu & Uche, 2018): 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )

1

01 10 1 2 2 0 1 2 3 1
0 1 2

Upper2

0 1=lower

For 1  integers and 0

 
jk

k kr k j , j r , r r , r , r ,

j

j ,k k

v v vk
r jr j ,kv v p v v p

j k; j,k k

,Q jh A A A

+ − −

  
  
   

= = 

  







= +    
 

where                    ( )

 ( )

1 if  3

lower

2 sgn max 0 4

k , j

j ,k

,k j , j

 − =


= 


+ − 

 

 ( )  ( )Upper 1 sgn max 0 3j,k k , j= − − −  
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( )

 ( )

1 0 2 3

3 0

2 0

1 3 sgn max 0 3

max 36
3sgn max 0 2

2

0   if 3

k r r r

k j r r , j

, jjr , r ,r

j

  
  

         = − + +                


− − + − − −

−= + − −

=

 

However, these works were all limited to single time-delay control systems and double time-delay functional differential control 

systems of non-generic delays in the state variable. In an effort to extend the research activity the class of generic double time-delay 

control systems, (Ikeh & Uche, 2021), amongst other results proved that the determining matrices of double time-delay linear 

autonomous functional differential control systems vanish if one of the time-delays is not an integral multiple of the other. The 

article went further to establish various functional forms and patterns of the determining matrices, 

   
11

( ), for  0,1, ,7 , 0,1, , 0,
k

Q jh j k h    associated with the generic double time-delay linear autonomous 

control system: 

( ) ( ) ( ) ( ) ( )0 1 1 2 2 ; 0x t A x t A x t h A x t h Bu t t= + − + − +    (1.1)  

( ) ( )   1 2 1 2 1 2, ,0 ,0 ,0 , , max{ , }.x t t t h h h h h h h h=  −    =   (1.2) 

where 0 1 2, ,A A A  are n n  constant matrices with real entries B  is an n m  constant matrix with real entries. The initial function 

  is in  ( ),0 , nC h− R , the space of continuous functions from  ,0h−  into the real n-dimensional Euclidean space, 
n

R  with 

norm defined by 
 

( )
,0

sup
t h

t 
 −

=  (the sup norm). The control u is in the space  ( )10, , .nL t R  The determining matrices for 

system (1.1) are the n n  matrix functions,
 

( )kQ s , which satisfy the system of equations: 

( ) ( ) ( ) ( )0 1 1 1 1 2 1 2k k k kQ s A Q s AQ s h A Q s h− − −= + − + −     (1.3) 

for 1,2,...; 0k s=  , with initial conditions: 

( ) ( )0 00 , 0; 0 (1.4, 1.5)nQ I Q s s= =    

These initial conditions guarantee the unique solvability of (1.1) (Gabasov & Kirillova, 1976; Ikeh & Ukwu, 2021). For notational 

simplicity, and without any loss of generality, let 
2 1

.h h  

This article adds to the body of knowledge by obtaining the structure of the afore-mentioned determining matrices for all pertinent 

global parameters and examining their computing complexity, thus filling the yawning gaps in Ikeh and Ukwu (2021). 

 

2.  Main Result of This Work 

The main result of this research is given in the theorem below: 

2.1 Theorem on the Structure of ( )1
the  Determining Matrices,  ;  , Z

k
Q jh j k   

Let 0 1 2, ,r r r  be nonnegative integers and let 
( ) ( ) ( )0 1 20 ,1 ,2r r r

P  denote the set of all permutations of 

0 1 2 times  times  times

0,0,...,0  1,1,...,1 2,2,..., 2 :

r r r

 

the permutations of the objects 0, 1 and 2 in which i  appears ir  times,      0,1, 2 . Let .  and .i            denote the greatest 

and least integer functions respectively. For ,sR let ( )kQ s  be the determining matrix of the system (1.1) with (1.2), under the 

standing hypotheses, subject to the initial condition:
 

( ) ( )0 00 , 0; 0.nQ I Q s s= =   

Then, for 2 1 ,  integers,  {2, 3, 4,...},  1, ,j k m q m h mh= = − =  
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( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 ,1 ,2

1 0 ,1 ,2

,..., 1

1

,..., 1

1

0

, for 0 , 0 (2.1)

, for1 (2.2)

, for  0 (2.3)

0,on the set

i

k qr k j j mr r

i

k qr k j j mr r

j

m k

v

v v P i

j

m k

k v

v v P ij k
r

m

n

r

A j k k

Q jh A k j

I j k

+ − −

+ − −

  
  
  

 =

  
  
  

 = −  
=   −   

=

  

=  

= =

  

  

 ( )       2 10 sgn min , 1 0, 0 , (2.4)k j mj k k j h mh  















= − =  

 

   where the permutations in expressions (2.1) and (2.2) are all feasible. 

Proof:

To prove  (2.1), (2.2) and (2.4) for the first three sets under the union operation in (2.4) of the theorem, it is enough to prove 

that 

 

( )
( ) ( ) ( ) ( )1 0 ,1 ,2

1

0 ,..., 1

(2.5)
i

k qr k j j mr r

j

m k

k v

r v v P i

Q jh A
+ − −

  
  
  

=  =

=     

and then weed out all summation infeasibilities by setting infeasible summations to zero, in accordance with mathematical 

convention. Assertion 1 of (Ikeh & Ukwu, 2021) may then be invoked to conclude the proof of (2.4). Expression (2.3) is simply a 

restatement of the initial condition (1.4).  

For notational optimality, expression (2.5) can also be written in the form: 

 ( ) ( ) ( ) ( )1 0 1 2

0

SumProdPerm , , (2.6)

j

m

k

r

Q jh A qr k j A j mr A r

  
  
  

=

= + − −     

where, ( ) ( ) ( )0 0 1 1 2 2SumProdPerm , ,A r A r A r    denotes the sum of the products of the permutations of 0 1 2,  and A A A  in 

which iA  appears ir  times, {0,1,2}.i  We proceed first with the proof of  (2.4) using (2.5): 

If 0j  , then 0j mr−   and 0
j

m


 
  

. Therefore ( )1 0kQ jh = , by the summation infeasibility of (2.5). If 0k  and 

0j  , then [ 1]  0
j

m r k j m j
m

− + −  − 
 
  

, thus ( )1 0kQ jh = , by permutation infeasibility. Both cases lead to 

the conclusion: ( )1 0kQ jh = on the set  ( ) sgn min , 1j k = − . If 0k = and 0j   then [ 1] 0,m r k j− + − 

thereby rendering all the permutations infeasible. Combine this with the case 0,j   to conclude that 
1

( ) 0
k

Q jh = on  

 0, 0 .k j=   The case 0 k j m    forces  0 0 ( 1) 0
j

r m r k j k j
m

=  =  − + − = − 
 
  

, 

resulting in permutation infeasibility; hence  
1

 on the set 0( ) 0 .
k

Q jh k j m  =  Lastly, the fact that 

 
1 12

 on the set 1,( ) 0
k

Q jh j h mh =  follows from (vii) of result (3.1) in (Ikeh & Ukwu, 2021). This completes the 

proof of (2.4).  

 
0 1 2 1

Plugging  0 and  1, into (2.5) yields (0) SumProdPerm (0), (0), (0) .
k

k
j k Q A A A A=  = =  This is 

consistent with the result from the determining equation: 
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10 1 1 1 2 1 2

2

0 1 0 2 0 0 0

(0) (0) ( ) ( )

(0) (0) (0) .

k k k k

k k

k k

Q A Q AQ h A Q h h

A Q A Q A Q A

− −

− −

= + − + −

= = = = =
 

For the rest of the proof, the only remaining cases are constituted by the set    .,  1min j k =  

Consider  1, 1:  j k=    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 0 1 ,1 1 0 ,2 0 0 1 ,1 1 ,2 0

1 2 1

,..., ,...,1 1

1  0,  in (2.5) ( ) ,
i i

k kk k

k k

k v v

v v P v v Pi i

j r Q h A A h mh
+ − − − = =

=  =  = = =     

( ) ( ) ( )

 
1 0 1 ,1 1

1 0 1 2 1

,..., 1

( ) SumProdPerm ( 1), (1) , for , 1.
i

k k

k

k v

v v P i

Q h A A k A h mh k
− =

 = = − =     

These two results correspond to (i) and (iv) of the established preliminary results (3.1) in (Ikeh & Ukwu, 2021). Also, 

( )
 ( ) ( ) ( )

 ( ) ( )( )
1

1 0 1 1 ,1 ,2

1 1 0 1 2

0 0

SumProdPerm 1 1 , ),

m r j j mr r

j j

m m

v

r v P r

Q jh A A m r j A j mr A r

− + − −

      
      
      

=  =

 = = − + − −     

( )
( ) ( )

( )

 

( )

1

1 0 (1) , 1 0 ,,2 0

1 1 0 1 1 1

1 1 2

0 0 ; 1 0 ;

0,1 , 0 ( 1) 1 1 0 infeasible permutations,

1 ( 1) 1 0, 0 ;2 0 ( 1) 1 0

infeasible permutations;  ( 1)

v

v P

j r Q jh A A j r Q jh A

j m r r m r j m

r m r j j mr Q jh A j m r m r j

j m m



=  =  = = =  =  =

=   =  − + − = −  

=  − + − = − =  =    =  − + − 

   −



1 ( 1) 1 ,r j m r m+ −  − + −
 

( )   ( )

 

1 1 1 1 2

0 ( 1) 1 1 0 infeasible permutations; So  1,

( 1) 1 1 1 0 infeasible permutations.

, 0,1

Therefore  0,  for  0, 1, ,

0, 0

j

j
r m r m m r

m

j
m r j mr j m j j j

m

A j

Q jh j m Q jh A j m

j

   
=  − + −  −      

   
  

 − + −  − + −  −  − =   
  



=   = =

 

(2.7)

,1,m







 

 

 

11 1 1 0 1 1 0 1 2 0 2

From the determining equation:
, 0,1

( ) ( ) ([ 1] ) ([ ] ) ,

0, 0,1,

j
A j

Q jh A Q jh A Q j h A Q j m h A j m

j m



= + − + − = =









 
 Therefore the theorem  is valid  for  1, for all  1, 2,k j=  prosecuted by the mathematical inductive 

principle.

 

Assume that the theorem is valid for all triple pairs,
 

k , ( )1k
Q jh ; ( )1, , kj k Q jh  for which j k j k+  + , for some 

, : 2 and 2.j k j k  . Then 

( ) ( ) ( )1 1 0 1 1 1 2 1( ) [ 1] [ ] (2.8)k k k kQ jh A Q jh AQ j h A Q j m h+ = + − + −  

Now,   12 1 ,  for 2,3, ; 0 ([ ] ) 0.kj m j j j m j m j m Q j m h−  −  −     −   − =   

 We apply the induction hypothesis to the right hand side of ( )1 1kQ jh+  to get: 
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( )
( ) ( ) ( ) ( ) ( )  ( ) ( ) ( )1 10 ,1 ,2 0 1 ,1 1 ,2

1

1 1 0 1

0 ,..., ,...,1 1
i i

k kqr k j j mr r qr k j j mr r

j j

m mk k

k v v

r v v P r o v v Pi i

Q jh A A A A
+ − − + − − − −

−      
      
      

+

=  = = =

= +         

        

( )  ( ) ( ) ( )1 0 ,1 ,2

2

0 ,..., 1

(2.9)
i

k qr k j m j m mr r

j m

m k

v

r v v P i

A A

+ − − − −

−  
  
  

=  =

+       

Two cases arise: j  a multiple of m  and j  not a multiple of m   

Case 1:   j  a multiple of m ; then: 
1

,  1
j j j j j m

m m m m m

   −   −      
= = − =          

          
  

The first component of the right hand side of (2.9) can be rewritten as: 

              
( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ,2

1

0

0 ,..., 1

,  with a leading (2.10)
i

k qr k j j mr r

j

m k

v

r v v P i

A A
+ + + − −

  
  

+  

=  =

    

The second component can be rewritten in the form: 

             
( )  ( ) ( ) ( )1 0 1 ,1 1 ,2

1

1

,..., 1

(2.11)
i

k qr k j j mr r

j

km

v

r o v v P i

A A

+ − − − −

−

=  =

     

We need to incorporate 
j

m
 in the range of :r  If  

j
r

m
= ; then 1 1 1j mr j j− − = − − = −   

Therefore the summation in (2.11) is infeasible; hence it is set equal to 0. 

Thus the case 
j

r
m

= may be included in the expression (2.11), thus the second component can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 [ 1] ,1 1 ,2 0 [ 1] ,1 ,2

1

1 1

,..., 0 ,...,1 1

  (with a leading ) (2.12)
i i

k kqr k j j mr r qr k j j mr r

j j

k km m

v v

r o v v P r v v Pi i

A A A A
++ + − − − + + − −

+

=  = = =

=       

The third component of (2.9) may be rewritten in the form:  

( ) ( ) ( ) ( )1 0 [ 1] [ 1] ,1 ( 1) ,2

1

2

0 ,..., 1

(2.13)
i

k q r k j j m r r

j

km

v

r v v P i

A A
+ + + − − +

−

=  =

    

(2.13) is equivalent to the expression: 

        
( ) ( ) ( ) ( )1 0 [ 1] [ 1] ,1 ( 1) ,2

1

2

0 ,..., 1

(2.14)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − − +

  
−  

  

=  =

  
 

Using the change of variables converts (2.14) to the equivalent expression:

: 

      
( ) ( ) ( ) ( )1 1 0 [ 1] ,1 ) ,2 1

1

2

1 ,..., 1

(2.15)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − − −

  
  

+  

=  =

  
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Expression (2.15) component for   0 is infeasible and so equated to zero for that component.

Therefore (2.15), incorporating  0 into (2.15) yields the equivalent form:

r

r

=

=
    

( ) ( ) ( ) ( )1 1 0 [ 1] ,1 ) ,2 1

1

2

0 ,..., 1

(2.16)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − − −

  
  

+  

=  =

  
 

Expression (2.16) is equivalent to :

 

      
( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ) ,2

1

2

0 ,..., 1

with a leading (2.17)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − −

  
  

+  

=  =

  
 

Combining expressions (2.9), (2.10), (2.12), and (2.17) we conclude that 

( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ,2

1

1 1 0

0 ,..., 1

( )  with a leading (2.18)
i

k qr k j j mr r

j

m k

k v

r v v P i

Q jh A A
+ + + − −

  
  

+  

+

=  =

=      

      

( ) ( ) ( ) ( )1 1 0 [ 1] ,1 ,2

1

1

0 ,..., 1

  (with a leading ) (2.19)
i

k qr k j j mr r

j

km

v

r v v P i

A A
+ + + − −

+

=  =

+     

        

( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ) ,2

1

2

0 ,..., 1

with a leading (2.17)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − −

 
  + 

=  =

+      

Thus: ( )
( ) ( ) ( ) ( )1 1 0 [ 1] ,1 ,2

1

1 1 2 1

0 ,..., 1

; (2.21)
i

k qr k j j mr r

j

m k

k v

r v v P i

Q jh A h mh
+ + + − −

  
  

+  

+

=  =

= =      

This concludes the proof of the theorem for case 1. 

Case 2: j  is not a multiple of m ; then ; {1,2,..., }
j j

j m
m m




   −    
=  −      

      
  

 
1

Either    or  Subcase1: 0, 0,1, ,

yielding the expression (2.21),as already established with the restriction  0. Therefore,

.  ([ ] ) 0;
k

j

m

j m j m Q j

r

j m j m h



−

  = 

=

  − =
 
  

( )
( ) ( ) ( ) ( )1 1 0 [ 1] ,1 , 2 0

1

1 1

,..., 1

(2.22),
i

k k j j

k

k v

v v P i

Q jh A
+ + −

+

+

 =

=    

proving the theorem for .j m   We now examine subcase 2: not a multiple of ,  .mj m j  

  Then 1, 1, ,
j j j m

j m
m m m




   −   −      
= = +  −          

          
  

Again the first component of (2.9) is the same as expression (2.10), the summation limits and permutation parameters being the 

same.   Renumber it serially to get 

 

                      
( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ,2

1

0

0 ,..., 1

,  with a leading (2.23)
i

k qr k j j mr r

j

m k

v

r v v P i

A A
+ + + − −

  
  

+  

=  =

    

The second component of (2.9) is equivalent to: 
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( )  ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 0 [ 1] ,1 ,20 1 ,1 1 ,2

1

1

1 1

0 ,..., 0 ,...,1 1

  (with a leading ) (2.24)
i i

k k qr k j j mr rqr k j j mr r

j j

m mk k

v v

r v v P r v v Pi i

A A A A
+ + + − −+ − − − −

−      
      

+      

=  = = =

=      The third 

component of (4.1) can be rewritten in the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 10 [ 1] ,1 ( 1) ,2 0 [ 1] ,1 ( 1) ,2

1 0 [ 1] ,1 ,2 1

1

2 2

0 ,..., 0 ,...,1 1

2

1 ,..., 1

. (2.

i i

k kqr k j j m r r qr k j j m r r

i

k qr k j j mr r

j m j

m mk k

v v

r v v P r v v Pi i

j

m k

v

r v v P i

A A A A

A A

+ + − − + + + − − +

+ + − − −

−      
−      

      

=  = = =

  
  
  

=  =

=

=

    

   25)

  

If 0r = , then 1 1 0r − = −  . Therefore, the summations with 0r =  vanish and the expression (2.24) above transforms to: 

         
( ) ( ) ( ) ( )

( )
1 1 0 [ 1] ,1 ) ,2

1

2

0 ,..., 1

with a leading , (2.26)
i

k q r k j j m r r

j

m k

v

r v v P i

A A
+ + + − −

  
  

+  

=  =

    

as already established in expression (2.17), since the limits and permutation parameters are the same. Combining (2.23), (2.24), and 

(2.26), the expression (2.9) translates to 

( )
( ) ( ) ( ) ( )1 1 0 [ 1] ,1 ,2

1

1 1 2 1

0 ,..., 1

; (2.27)
i

k qr k j j mr r

j

m k

k v

r v v P i

Q jh A h mh
+ + + − −

  
  

+  

+

=  =

= =    

This concludes the proof for j  not a multiple of m . Hence the validity of the theorem expressed in the form of expression (2.5) 

established, with embedded infeasible summations. 

To delete the infeasible summations, two cases arise: Case 1: ;  case 2:  .j k j k   

: 

Case 1:  [ 1] 0, 0 0;

Case 2:  : [ 1] 0 only if  . Since   is a nonnegative integer, it
1

follows that [ 1] 0 only if  
1

j
j k m r k j j mr j m j j j mr

m

j k
j k m r k j r r

m

j k
m r k j r

m

  − + −  −  −  − =  − 

−
 − + −  

−

−
− + −  

−

 
  

 
  

,  guarateeing feasibility of all

permutations when ;  needless to say that the permutations are all feasible for  .j k j k 




 

Therefore 



Global Structure of Determining Matrices for a Class of Differential Control Systems 

Page | 96  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 ,1 ,2

1 0 ,1 ,2

,..., 1

1

,..., 1

1

0

, for 0 , 0 (2.1)

, for1 (2.2)

, for  0 (2.3)

0,on the set

i

k qr k j j mr r

i

k qr k j j mr r

j

m k

v

v v P i

j

m k

k v

v v P ij k
r

m

n

r

A j k k

Q jh A k j

I j k

+ − −

+ − −

  
  
  

 =

  
  
  

 = −  
=   −   

=

  

=  

= =

  

  

 ( )       

( ) ( )

2 10

noting that expressions 2.3  and 2.4  have been established already. T

 sgn min

his co

,

mpletes the pr

1 0, 0 , (2.4)

oof.

k j mj k k j h mh  















= − =  

 2.2  

Corollary  

Let   0 ;  ,  integers, 0.  Thenj k j k k    2 1for , 1, 2, ,h mh m j j=  + +  

( )
( ) ( ) ( )1 0 ,1 ,

1 0 1

,..., 1

= SumProdPerm [ ( ), ( )]
i

k k j j

k

k v

v v P i

Q jh A A k j A j
− =

= −   

Proof: (i) is immediate from the fact that 0, if   0 .
j

j m
m

=  
 
  

 

 

3. Analysis of the Degeneracy of the Determining Matrices for System (1.1) 

If 2 0A = , in theorem (2.1), then the only surviving terms in the expression for ( )1kQ jh  are the terms with 0r = . It follows that:    

( )
( ) ( ) ( )1 0 ,1

1 2 2 1

,..., 1

; 0,
i

k k j j

k

k v

v v P i

Q jh A A h mh
− =

= = =   

The functional forms in [2] can be established as follows: 

For: 1;  {0,1,..., 1};  , ,  integersj k p k j k p   −   

  ( )
( ) ( ) ( ) ( )

( )
1 0 1 ,1 ,2 1

1 2 1

,..., 1

; , 2
i

k k p p

k

k v

v v P i

Q jh A h j p h j p
− − =

= = −     

Observe here, that 2A  appears in every permutation in ( )1kQ jh . Therefore, ( )1 20,  if 1 and 0kQ jh j k A=  + = .  

Combining the above conditions, we deduce that the determining matrices for the free part of the system 

( ) ( ) ( ) ( )0 1 1x t A x t A x t h Bu t= + − +  is given by: 

   ( ) ( ) ( ) ( )1 0 ,1 1,..., 11

;

0; 1

i

k k j

k

v

v v P ik

A k j
Q jh

j k

− =




= 


 +

 
   

This result is consistent with the results for the same single-delay system in (Gabasov & Kirillova, 1976), (Manitus & Olbrot, 1976) and 

(Ukwu, 1992). 

If 2,  then  1;m q= = consequently theorem 2.1 degenerates to the following: 

For 2 10 ;  ,  integers, 0,  2 ,j k j k k h h   =  
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  ( )
( ) ( ) ( ) ( )1 0 ,1 2 ,2

2

1 2 1

0 ,..., 1

; 2
i

k r k j j r r

j

k

k v

r v v P i

Q jh A h h
+ − −

  
  
  

=  =

= =      

This result is consistent with theorem (3.5.4)  in (Ukwu, 2016). 

 

4. Theorem on Rank Conditions for the Euclidean Controllability of System (1.1) 

Let   .        denote the least integer function (celling function) and let 

  ( ) ( ) ( ) ( ) ( )1 0 1 1 1 1 1
ˆ , ,..., : [0, ), 0, ,..., 1n nQ t Q s B Q s B Q s s t s h n h−=  = −     

where ( )kQ s  is a determining matrix for (1.1) defined by (1.3). Then system (1.1) is Euclidean controllable on  10, t  if and only if 

( )1
ˆrank nQ t n= . Moreover ( ) ( )1 1

ˆ ˆ and dim n nQ t Q t  are expressible as:  

( ) ( ) ( ) 1 1
1 1 1

1

ˆ : {0,1,..., 1}, {0, ,..., min 1 ,k

t h
Q t Q s B k n s h n h

h

      −   =  −  −     
          

  

( ) 1 1 1
1

1 1

ˆ min , 1 min , 1n

t t h
Dim Q t n mn n n mn n

h h

               −        =  =  + −                                      

  

This theorem is a modified version of that stated and proved in [7] to suit the system under consideration. 

 

5.1 Illustrations of Non-Electronic Computations of ( )1k
Q jh

 

 For , {3,4}, , {2,3,4}j k j k m     

By theorem (2.1): ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 4 0 3 1 ,1 3 4 ,2

1 4 0 2 1 ,1 3 3 ,2

1 4 0 1 ,1 3 2 ,2

40

2 1

0 ,..., 1

41

4 1 2 1

0 ,..., 1

41

2 1

0 ,..., 1

, 4

3 , 3

, 2

i

r r r

i

r r r

i

r r r

v

r v v P i

v

r v v P i

v

r v v P i

A h h

Q h A h h

A h h

+ −

+ −

+ −

=  =

=  =

=  =


=





= =


 =



  

  

  

  

                                 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 4 0 1 ,1 3 ,2 0

1 4 1 40 1 ,1 3 ,2 0 0 3 ,1 0 ,2 1

1 4 1 40 1 ,1 3 ,2 0 0 2 ,1 1 ,2 1

4

2 1

,..., 1

4 4

2 1

,..., ,...,1 1

4 4

2 1

,..., ,...,1 1

, 4

, 3

, 2

i

i i

i i

v

v v P i

v v

v v P v v Pi i

v v

v v P v v Pi i

A h h

A A h h

A A h h

 =

 = =

 = =


=





= + =


 + =



 

  

  

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 2 2 1

0 1 2 0 1 2 2 1

0 1 2 0 1 2 2 1

SumProdPerm 1 , 3 , 0 , 4

SumProdPerm 1 , 3 , 0 +SumProdPerm 3 , 0 , 1 , 3

SumProdPerm 1 , 3 , 0 +SumProdPerm 2 , 1 , 1 , 2

A A A h h

A A A A A A h h

A A A A A A h h

 =  


= =       


=       
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 1 2 1

0 1 0 2 2 1

0 1 0 1 2 2 1

SumProdPerm 1 , 3 , 4

SumProdPerm 1 , 3 +SumProdPerm 3 , 1 , 3

SumProdPerm 1 , 3 +SumProdPerm 2 , 1 , 1 , 2

A A h h

A A A A h h

A A A A A h h

 =  


= =       


=       
 

3 2 2 3

0 1 1 0 1 1 0 1 1 0 2 1

3 2 2 3 3 3 2 2

0 1 1 0 1 1 0 1 1 0 0 2 2 0 0 2 0 0 2 0 2 1

3 2 2 3 2 2

0 1 1 0 1 1 0 1 1 0 0 1 0 2 0 2 0 1 1 2 0 2 1 0

2 2 2

0 1 2 0 2 1 0 1 2 0 0 2 1 0 1 0

, 4 ;

+ , 3 ;

+

A A A A A A A A A A h h

A A A A A A A A A A A A A A A A A A A A h h

A A A A A A A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

+ + + =

+ + + + + + =
=

+ + + + + +

+ + + + + 2

2 2 0 1 1 0 2 0 2 0 1 0 2 1, 2A A A A A A A A A A A A h h






 + + + =

By (2.2): 

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 0 3 1 ,1 ,2 1

0 1 2 2 1

0 1 2 2 1

0 1 2 2 1

3

3 1 2 1
1,...,

SumProdPerm 2 , 0 , 1 , 4

SumProdPerm 1 , 1 , 1 , 3

SumProdPerm 0 , 2 , 1 , 2

4 ; 4 , {0, 1, 2}
i

k p p

v
iv v P

A A A h h

A A A h h

A A A h h

Q h A h p h p

− −
=

 =  


=   


=   

= = − 

=

 

 

                                  

2 2

0 2 2 0 0 2 0 2 1

0 1 2 0 2 2 1 0 2 1 2 0 2 1 0 2 0 1 2 1

2 2

1 2 2 1 1 2 1 2 1

, 4 ;

, 3 ;

, 2

A A A A A A A h h

A A A A A A A A A A A A A A A A A A h h

A A A A A A A h h

 + + =


+ + + + + =


+ + =

=  

Clearly ( ) ( )3 1 4 14 3Q h Q h  and in general: ( ) ( )1 1 ,  for  .k jQ jh Q kh j k  . 

The computations are unwieldy and prohibitive for large parameter cases; a resort to electronic implementations becomes 

imperative.  

By theorem 2.1; when 10, 14 and 7j k m= = = , then 

 ( ) ( ) ( ) ( )
1

14 1 0 1 2 2 1

0

10 SumProdPerm 6 14 10 , 10 7 , ; 7
r

Q h A r A r A r h h
=

= + − − =     

( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 1 2 2 1SumProdPerm 4 , 10 , 0 SumProdPerm 10 , 3 , 1 ; 7A A A A A A h h= + =         

The manual computations of this result are quite cumbersome. In general, there is an inherent computational intractability associated 

with these determining matrices. A resort to electronic implementation could be contemplated, but devising appropriate code for 

such an undertaking would task the ingenuity of even a professional computer programmer. However for small parameter instances, 

the implementation may be carried out on the MATLAB platform. The following section illustrates the implementation of 

determining matrices, controllability matrices and rank condition for Euclidean controllability for small parameter instances on the 

MATLAB platform. 

 

5.2 Electronic Implementation of Controllability Matrix and Rank Condition for System (1) 

 This section is concerned with the prosecution of the above task for small problem instances on the MATLAB platform. 

Let 0 1 2 1 1 2 1

1 2 1 1 1 1 1 1 1 1 1

0 1 0 ,  1 2 3 ,  1 1 2 ,  2 1 , 3, 0.5,

2 3 2 1 1 1 0 1 2 1 2

A A A B t h h mh

−       
       

= = = = = = =       
       −       

  

Then {2,3,...},  and 3.m n =  Recall that the controllability matrix is 
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( ) ( ) ( ) ( ) ( )1 0 1 1 1 1 1
ˆ , ,..., : {0, ,...,min{ , 1 }}n nQ t Q s B Q s B Q s s h t n h−=  −   , an 

1

1

 by 1 min , 1
t

n mn n
h

     
 + −    
        

 concatenated matrix of 1

1

1 min , 1
t

n n
h

     
 + −    
        

 matrix objects, each of 

dimension  by n m . Clearly, 

( ) ( ) ( ) ( )3 0 1 2 1 1
ˆ 3 , ,..., : {0, ,2 }Q Q s B Q s B Q s s h h=      

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 1 1 1 2 1 0 1 1 1 2 10 , 0 , 0 , , , , 2 , 2 , 2Q B Q B Q B Q h B Q h B Q h B Q h B Q h B Q h B=      

The rank is invariant if the controllability matrix is pruned, with the deletion of associated zero matrices. Consequently, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 0 1 2 1 1 2 1 1 1 2 1
ˆrank 3 rank 0 , 0 , 0 , , , 2 , 2Q Q B Q B Q B Q h B Q h B Q h B Q h B=      

      ( ) ( ) ( ) ( )2

0 0 1 1 2 1 1 1 2 1rank , , , , , 2 , 2B A B A B Q h B Q h B Q h B Q h B =     

Below is the MATLAB code for obtaining the pruned ( )3
ˆ 3Q  at 2,3, 4,...m =   and its rank with the display of the result: 

>> A0 = [1 2 1; 0 1 0;2 3 2]; A1 = [1 1 1;1 2 3;1 -1 1]; A2 = [1 1 1;1 1 2;0 1 2]; 

>> B = [1 -1; 2 1; 1 2]; t1 = 3; n = 3; m = 2,3, 4,…; h1 = 0.5; 

>> Q00 =  eye (3); Q10 = A0; Q20 = A0^2; Q1h1 = A1; Q2h1 = A0*Q1h1+A1*Q10; Q12h1 = A2;  

>> Q22h1 = A0*Q12h1+A1*Q1h1+A2*Q10; 

>> R = horzcat (Q00*B, Q10*B, Q20*B, Q1h1*B, Q12h1*B, Q22h1*B); 

>> rank(R) 

ans = 

     3 

By the theorem 4, using the above parameters, the system (1.1) is Euclidean controllable for all values of m on the interval  0,3 .
 

 

5.3 Computing Complexity of 
1

( )
k

jhQ  

The computing complexity of an algorithm is a rough measure of its computational effort and is stated in terms of the size of the 

multiplications, the number of multiplications, additions, and comparisons involved in the computations of the relevant mathematical 

objects. 

The computations of 
1

( ),
k

Q jh even for moderately-sized j and k could be quite tedious.  An appeal to multinomial distributions 

yields the following measure of computing complexity with respect to multiplications and additions of the permutation objects in 

1
( ).

k
Q jh  

We define the cardinality of 
1

( )
k

Q jh as the number of nonzero components of 
1

( )
k

Q jh and it is 0 if 
1

( )
k

Q jh has all zero 

components. Denote the cardinality of 
1

( )
k

Q jh
 
by 

1
( ) .

k
Q jh  Then by the main theorem (2.1), the following is immediate: 

 ( )       2 11

0

( ) 0,  on the set 

( ) 1, 0.

sgn min , 1 0, 0 0k

k

Q jh

Q k

j k k j k j m h mh=

= 

= − =     
Note that for 

0 , 0,j k k  
 

or for 1, ,j k j k 
 

integers, 
1

( )
k

Q jh  is the number of nonzero product terms (component 

summand) in 
1

( ).
k

Q jh   
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Table 1: Computing Complexity Table For ( ) , 1
0

k
Q jh k 

 
Number of nonzero terms 

= Number of nonzero products 

=   
1

( )
k

jhQ
  

Number of 

additions 

Size of 

Permutations 

Computing Complexity
 

 , 0 0j k k    

0

!

[( 1) ]!( ) ! !

j

m

r

k

m r k j j mr r

  
  
  

= − + − −


 

j

m

 
    

 

k
 

1
1( )

k

j
k

m
jhQ +

   
       

 , 0 0j k k  
 

!
,

( )! !

k
m j

k j j


−  

0 k
 ( )1

( )
k

kjhQ
 

, 0 0k j k  
 

1

!

[( 1) ]!( ) ! !

j

m

j k
r

m

k

m r k j j mr r

  
  
  

 −  
=   

−   

− + − −


 
1

j

m

j k

m

−

−

−

  
    

   
      

  

k
 

1

1

1

( )
k

j

m

j k

m

kjhQ

+

−
−

−

   
   

 
  
   

 

1
For   < , ( ) 0

k
k j m Q jh = . This follows from the fact that 

1
0,( )

k
Q jh =  if   < 0k j m  . Note from the 

table that the cardinality and computing complexity of 
1

( )
k

Q jh  is a decreasing function of m and 
1 1

( () )
jk

Q jh Q kh

for , 0k j  .  

 

6. Conclusion 

This article robustly and comprehensively established the structure of the determining matrices ( )1 ,kQ jh of generic double time-

delay linear autonomous functional differential control systems, (1.1), for arbitrary delay arguments 
1

h  and
2

h , with illustrations of 

their electronic and non-electronic computations, for small problem instances.   The article also performed an analysis of the 

degeneracy of the determining matrices. The work went further to provide the appropriate controllability matrices for the 

investigation of the Euclidean controllability of system (1.1) via rank condition determination. In the sequel the work examined the 

computational feasibility and computing complexity of the determining matrices, with a display of a table of the computing 

complexity. The results in this work have extended those in (Ukwu, 2016) and (Ikeh & Ukwu, 2021) in leaps and bounds. Future 

research is the extension of these results to generic triple-delay autonomous linear control systems. 
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