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ARTICLE INFORMATION ABSTRACT
Received: April 08, 2021 Three major tools are required to investigate the controllability of control systems,
Accepted: June 01, 2021 namely, determining matrices, index of control systems and controllability Grammian.
Volume: 2 Determining matrices are the preferred choice for autonomous control systems due
Issue: 1 to the fact that they are devoid of integral operators in their computations. This article
DOI: 10.32996/jmss.2021.2.1.7 developed the structure of certain parameter-ordered determining matrices of
generic double time-delay linear autonomous functional differential control systems,
KEYWORDS with a view to obtaining the controllability matrix associated with the rank condition
for Euclidean controllability of the system. Expressions for the relevant determining
Determining, Controllability, matrices were formulated and it was established that the determining matrices for
Euclidean, Generic, double time- double time-delay linear autonomous functional differential control systems do not
delay, matrices, control systems exist if one of the time-delays is not an integer multiple of the other paving the way

for the investigation of the Euclidean controllability of generic double time-delay
control systems.

1. Introduction

Controllability results for specific types of hereditary systems with diversity in treatment approaches are quite prevalent in
control literature. Angell (1980) discussed controllability of nonlinear hereditary systems, using a fixed point approach,
(Balachandran, 1986) discussed controllability of nonlinear systems with delays in both state and control variables using a
constructive control approach and an appeal to Arzela-Ascoli, and Shauder fixed point theorems to guarantee the existence and
admissibility of such controls. Balachandran (1992) and Balachandran and Balasubramaniam (1993) studied the controllability of
Volterra Integro-differential systems. Banks and Kent (1972) discussed controllability of functional differential equations of
retarded and neutral types to targets in function space; Dauer and Gahl (1977) looked at controllability of nonlinear delay
systems; Onwuatu (1984) studied null controllability in function space of nonlinear neutral differential systems with limited
controls; Underwood R. G. and Chukwu (1988) investigated null controllability of nonlinear neutral differential equations, to
mention just a few.

Chukwu (2001) further extended this research field by formulating differential models and neutral systems for controlling the
wealth of nations. His work derives from the economic principles of the dynamics of national income, interest rate, employment,
the value of the capital stock prices and cumulative balance of payments. Chukwu used a Volterra neutral integro-differential
game of pursuit where the quarry control is government intervention in the form of taxation, control of money and supply tariffs.
Other notable results focus on integro-differential equations and impulsive differential equations with finite and infinite delays
(Chang & Chalishajar, 2008; Selvi & Mallika, 2012). These works and others appropriate relevant existence and uniqueness of
solution theorems which this study relies on.

Gabasov and Kirillova (1976) first introduced the concept of determining matrices by formulating necessary and sufficient
conditions for the Euclidean controllability of the single time-delay system: X(t)z AX(t)+ BX(t—h)+CU (t) with
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piecewise continuous controls using a sequence of matrices Qk (S) ,k=0,1,... s real. But the investigation of the dependence

of Q, (t1) on QO(S),Ql(S),...,Qn_l(S) which is very crucial to establishing Euclidean controllability was not fully

addressed.

Ukwu (1992) developed computational criteria for the Euclidean controllability of the above single time-delay system using the
determining matrices with a very simple structure, effectively eliminating the afore-mentioned drawback. However, a major
drawback of his major result is that it relied on (Manitius, 1978) for the necessary and sufficient conditions for the Euclidean
controllability of the delay system, stated in terms of the transition matrices, which until (Ukwu, 1992) was a herculean or almost
impossible task to obtain. Ukwu (2014) states that multiple summations and permutation of objects were used to derive the
expressions for the determining matrices. By using the change of variables technique, deft application of mathematical induction
principles and careful avoidance of some induction pitfalls, he was able to obtain the structure of the determining matrices for

d
the single-delay neutral control model: E[X(t) - A_lx(t - h):l = AOX(t)+ AX (t - h) Bu (t) ,£ >0, without which the
computational investigation of Euclidean controllability would be impossible.

Ukwu (2016a) pioneered the introduction of the least integer function in the statement and proof of the necessary and sufficient
conditions  for  the  Euclidean  controllability = of linear  hereditary = systems of double time-delay:

x(t) = Ax(t)+Ax(t—h)+Ax(t—2h)+Bu(t);t >0 with an initial function: X(t)=¢(t),t[-2h,0],h>0; this

made the controllability matrix in (Gabasov & Kirillova, 1976) quite computable and eliminates any ambiguity that could arise in
its application, he also incorporated the characterization of Euclidean controllability in terms of the indices of control systems
and appropriated Taylor's theorem as an indispensable tool. The article provided an illustrative example on the computation of
the controllability matrices and stated the implication of the result for Euclidean controllability.

However, these works were all limited to single time-delay control systems and double time-delay control systems of non-
generic delays in the state variable. This study will extend the research activity to a class of generic double time-delay control
systems when the delay in the state variable is non-commensurate or generic with certain conditions imposed on the delay
values to avoid ambiguity. The expected results will add to the already existing body of knowledge in this field and will have
practical implications.

2. Methodology
Consider the generic double time-delay linear autonomous control system:

x(t) = Ax(t)+Ax(t—h)+Ax(t—h,)+Bu(t);t=0 (1)
x(t)=¢(t),te[-h,0],h <h,,h =h,,h=max{h,h,}>0 @)
where A), Al, A2 are NXN constant matrices with real entries, B is an NXM constant matrix with real entries. The initial

function @ is inC([—h,O], R”), the space of continuous functions from [—h,O] into the real n-dimensional Euclidean

space, R" with norm defined by ||¢|| = sup |¢(t)| (the sup norm). The control u is in the space L ([O,tl], R"), the space
te[—h,O]
of essentially bounded measurable functions taking [O,tl] into R"  with norm||¢||:ess sup |¢(t)| Any control
te[—h,O]

uel, ([O,tl], Rn) will be referred to as an admissible control.

X (z.1)

k
T

k=0,1,...

2.1 Preliminaries on the Partial Derivatives

Let t,7 € [O,tl]. For fixed t, let 7 —> X (T,t) satisfy the matrix differential equation:
0

Ex(T,t)z—x(r,t)AO—X(r+hl,t)A1—X(r+h2,t)A2 3)

Page | 63



Fundamental Results on Determining Matrices for a Certain Class of Hereditary Systems

l,, 7=t

for 0<7 <t,7 #t—kh,h=max{h,h,},k =0,1,... where X (T—I)Z{O .
>

Chukwu in [7] has the properties of X (t,’[) clearly stated; of particular importance is the fact that 7 —> X (T,t) is analytic
on the intervals (tl —( J +1)h,t1 — jh), 1=01,...t —(j +l)h >0. Any such 7€ (t1 —(j +:|.)h,t1 - jh) is called a

regular point of 7 — X (Z','[).

ak
Let Xk(T,t) denote a—kX(T,tl), the k™ partial derivative of X(T,tl) with respect to T where
T

Z'E('[i—(j—i-l)h,tl—jh); j=0,1,..r for some integer r such that ti—(l'+1)h>0. Write

X(kﬂ)(r,tl):aixk(r,tl) and  define AXk(tl—jh,'[l):Xk((tl—jh)i,tl)—xk((tl—jh)itl) for
T

k=01..)=01..;t — jh>0 where Xk((tl— jh)7 ,tl) and Xk((tl— jh)+ 1t1) denote respectively the left and

right hand limits of X (Z',tl) at 7=t —jh.

2.2 Investigation of the Expressions and Structure of the Determining Matrices for (1)
Let Qk (S) be an N XN matrix function defined by:

Qk(S):AJQk—l(S)"'AiQk—l(S_hl)"'Asz—l(S_hz) (4)

for k =1,2,...;8 >0, with initial conditions:
Q(0)=1, ©)
Q(s)=0;5#0 (6)

These initial conditions guarantee the unique solvability of (4) (Gabasov & Kirillova, 1976).

2.2.1 Preliminary Lemma on Determining Matrices for (1) Q, (S),s€ R
i Q (O) = A
i. Q(s)=0ifs<0
ii. ~— Qc(s)=0ifs=rh,s=rh,s=rh +qh, forany integerr,q=0

(
(
k
v.  Qc(h)= > JIA k=1
v.  Q/(h—rh,)=0forallk>1, r+0 integer
A, ifj=0
A ifj=1
h
ith, = jh, j=-—200j>2
Al jhy, ] éhléj
0, otherwise
vii. Qk(jhl)=0 if h, # rh, forany integerj,r >1
viii, X(k)(t{,tl):(—Ao)k :(—1)k A k=123,...

i Q(ih)=
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x XY(t,4)=0

l,ifj=0
x.  AX(t-jht)=

0, otherwise

Proof:

i Q(s)=AQ.L(s)+AQ.(s—h)+AQ. (s—h,)
For kK =1:

Q (0) =AQ (0) +AQ, (_h1)+ AQ (_hz) =A
since Qy (0)=1,,Q, (~h) =0, if —h, 0 and Q, (~h,) =0, if —h, =0)
So, (i) is true for k=1; we next assume (i) is true for 1 <K < n for any integer n such that Qn (0) = A;‘ , then
Q..(0)=AQ,(0)+AQ, (-h)+AQ, (-h,)
=AA +AQ, (-h)+AQ, (-h,)
Assertion 1: Q, (S) =0ifs<0
Proof: For K =1
Q(s)=AQy(s)+AQ(s—h)+AQ,(s—h,)=0
(since S# 0 and h;,h, >0, it implies that s =h, and s #h,; and from the initial condition)
So the assertion is true for K =1, we assume it is true for 1<K < for some integer n such that Q,(S)=0, then
Qua(8)=AQ, (s)+AQ, (s—h)+AQ,(s—h,)=0
(since Q,(5)=0and s=h;,h, impliess—h,,s—h, <0 thus Q, (s—h,),Q,(s—h,)=0)
Hence by the induction hypothesis: Q, (s) =0 if s <0 which proves the assertion; we proceed to conclude the proof of (i):
Q.. (0)=AA +AQ,(-h)+AQ,(~h,)= A" (since Q (s)=0ifs<0)
Hence by the induction hypothesis: Q (0) = Ay
i.  Q(s)=0ifs<0 (The proof is embedded in (i) above)
i. Let k=1and S#rh ors=qgh,, r,q integers, then

Q(5)=AQ, (3)+AQy(s—h)+AQ,(s—h,) =0

(Since S# 0 and hl, h2 >0, it implies that s = h1 and s # hz; and from the initial condition)
So the assertion is true for K=1, we assume it is true for 1<K<n for some integer n such that

Q.,(s)=0ifs=rh,s=qh,,s=rh +gh, then
Qn+1(s) =AQ, (5)"'A_LQn (5—h1)+ AQ, (S—hz)

Assertion 2: Q (s—h,)=0ifs=rh,s=rh +qh,, r,q integers
Proof: Let K =1, then

Q1(S_h1):AbQo(S_hl)"'AiQo(S_Zhl)"'Aon(S_hl_hz):O
since s#h;,s#2h,s=h +h, implies Q,(s—h,)=Q,(s—2h)=Q,(s—h,—h,)=0)
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So the assertion is true for K=1, we assume it is true for 1<K <N for some integer n such that
Q.(s—h)=0ifs=rh,s=rh +qgh,, r,q integers, then
Qn+1(s_hl):A)Qn(S_m)+A&Qn(S_Zhl)_'_AZQn(S_hl_hZ)zo
(since S#h;,s#2h,s#h +h, impliesQ, (s—h,)=Q,(s-2h)=Q,(s-h,—h,)=0)
Hence by the induction hypothesis: Qk (S — h1) =0ifs= I’hl, S# I’h1 + qhz, r.q integers which proves the assertion.

Similarly,

Assertion 3: Q (s—h,)=0ifs=qgh,,s=rh +qgh,, r,q integers
Proof: Let K =1 then
Q. (s—h,)=AQ,(s—h,)+AQ,(s—h,—h)+AQ,(s—2h,)=0
(Since S #h,,s#2h,,s#h +h, implies Q;(s—h,)=Q,(s—2h,)=Q,(s—h,—h,)=0)
So the assertion is true for K=1, we assume it is true for 1<K <N for some integer n such that
Q.(s—h,)=0ifs=qgh,,s=rh +gh,, r,q integers, then
Qn+1(s_h2): Aan (S_h2)+A1Qn (S_hz _hl)"'Aan (S—2h2)=0
since s #h,,s#2h,,s=h +h, implies Q, (s—h,)=Q, (s—2h,)=Q,(s—h,—h,)=0)
Hence by induction hypothesis: Qk (S — hz) =0ifs# th,S £ rhl + qhz, r,g integers which proves the assertion.
Combining the Assertions 2 and 3 will yield:

Qua(8) = AQ, (5)+ AQ, (s—h )+ AQ, (s —h;) =0

And thus by the induction hypothesis:
Qc(s)=0ifs=rh,s=rh,,s=rh +gh, for any integer r,q = 0, which proves iii.

iv. Let Kk =1, then

Ql(hl)zAbQo(h1)+A1Qo(o)+A2Qo(h1_h2)=A1= Z ’A\/1

V1€Fy0)1(1)2(0)

(since h, #0,h, =0 implies Q,(h ) =Q, (h,—h,)=0and Q,(0)=1,)

So the assertion is true for k=l, we assume it is true for 1<k<n for some integer n such that

Q)= X TIA e

(V11enVp )& Ronaamz0) =L

Qu.1(h) = AQ, (n)+AQ, (0)+ AQ, (h —h,)
A Y J]A+AA+AQ,(h-h,)

(V1 Vi )€ Pyn-gyanyz0) 1=1
Assertion 4: Q (h,—rh,) =0 forall k >1, r #0 integer
Proof: Let K =1 then
Ql(hl_rhz): AbQo(hl_rh2)+A&Qo(_rhz)"'Aon(hl_(r"'l)hz):O
(since h, >h, soh #rh, and h = (r+1)h,, thus Q,(h,—rh,)=Q, (h —(r+1)h,)=0=Q,(-rh,)

So the assertion is true for K=1, we assume it is true for 1<K<n for some integer n such that

Q. (h,—rh,)=0, r integer, then
Qui(h —rh,) = AQ, (h —rh, )+ AQ, (~rh,) + AQ, (h,—(r+1)h,) =0
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since Q, (h,—rh,)=Q,(h,—(r+1)h,)=0and Q,(-rh,)=0)
Hence by the induction hypothesis: Q, (h1 - I’hz) =0 forall k >1, r =0 integer which proves the assertion.

So to conclude the proof, we have:

Qm(hl):'%( )Z [TA +AA +A0
ViV )€Ry(n 1) 1(1).2(0) i=1

n+1 n+1

- > JIA, withaleadingA)+ > J]A, (withaleading A)

(VerVosa )< Ponyaayz0) 1=1 (Vo1 Vi )€ Py 20y 1=1

n+l

Thus: le(hl): Z HA,I

(V1»---»Vn+1)€Po(n)J(1),z(o) i=1
k
Hence by the induction hypothesis: Q, (hl) = Z H AM :k >1 which proves (iv).

(Ve V)P )y 20) 11
V. (The proof is embedded in (iv) above)

vii Q@ (0) =A and Q (hl) = A by Lemma () and (vi) respectively; then for j > 2

Q.(ih)=AQu(ih)+AQ, ([i-1]h)+AQ, (ih—h,)=AQ,(ih ~h,)
(since j, j—1>0 then Q, (jh,)=Q, ([ j—1Ih,) = 0 from the initial condition) and

. . . h
_ I, |fh:jhl:>J=§—2§
Qo(]h1_h2): ? h1
0 otherwise
A, ifh, = jh = 'éﬁg
Hence, Ql( jhl) = 2= 1= h1 ; which proves the lemma.
0 otherwise

vii. Let K =1 and let h2 * rhl for any integer I >1. Then

Ql(]hl) = AbQo ( Jh1)+ AiQO ([J _1]hl)+ Aon ( Jh1 _hz)
From the initial condition; since h, #rh, and j.r>1, then
Q, (it )=0ifjh %0, Q,([j—1Ih)=0if [j—1]n, #0, and Q, (jh,—h,) =0 if h, = jh,; thus
Q. (jh)=0forallj,r>1h,=rh
Assume that this is true for 2<K <N for some integer N . Then
Qua (i) = AQ, (ih)+AQ, ([i—1h)+AQ, (i —h,)=0
by the induction hypothesis. Hence Qk(jhl)zo if h2 £ I‘h1 for any integer j, >1. This result establishes that the

determining matrices become zero if the larger delay term h2 is not an integer multiple of the smaller delay term h1 .

0

viii. x (tl‘,tl):gx(k’l)(r,tl)

For K =1, this yields
XU (t6) ==X (t.6) A - X (b +h) ) A-X((6+h) t)A,
=—A—0.A-0.A =-A Gincet, +h >t andt +h, >1)
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Therefore X (t1 ti) -A = (—1) A, . Thus (ix) is true for K =1

Note that for 7 sufficiently close to t;, 7+h >t and 7+h, >t,
For k=2:

D ()= [;f U (e tl} XO(t,6) A - X (4 +h) 1) A-XP (6 +h) 4 )A,
(=AY A | =X (L h) 6 A= X (G4 20) ) A-X (L) 6 ) A, [A
X () b A X (L rh) ) A =X ((G+2h) ) A A
%[O%OHOAZ]A&[O'%OAO%]AZ'%()'%
Thus (vii) is true for k =2. We assume that X (t,,t, ) =(~1)" Af for 2<k <n, for some integer n. Then
Ko ()= X0 e, =X A X0 (o h)y L)X o) )

T
=(-1)(-1)" A’/A —0.A —0.A, = (-1)"" A
Therefore X ) (t{,tl) = (—1)k AI)( proving lemma (viii).

ix x® (tt)=, lim X™®(z,1,)=0 (Since 7 >t,)
Therefore X (t1 tl) 0 proving lemma (ix).
. aix(z',tl):—X(z',tl)AO—X(r+hl,tl)Al—X(r+h2,tl)A2
T

forO<z<t,r#t — jh; h=max(h,h,), j=0,1..., where

Let | be a non-negative number such that t, — jh > 0. Then we integrate the system @_ X (T,tl), apply the above initial
T

matrix function condition and the fundamental theorem of calculus (F.T.C) to get:

J~t1 iy —[X . t1 ]dr— ( jh)_,t1)—x(0,t1) (by the F.T.0)

=—j(t1 " [X(z.t) A+ X (r+h,t) A+ X (z+h,t) A e

0
Similarly,

X (- ) .t)-X (0.t) =—j0(t“h)+[x (2,) A + X (7 +h,t) A+ X (z+hy,t) A
Therefore

X (- i)t ) - X (@ - i)
J-n i)’ [X t)A+X(z+h,t)A+X(z+h,.t) Azjdr 0

(t—jh)”
since 7—> X (7,4,) Ay+ X (z+h,t,) A + X (z+h,,t,) A, is bounded and integrable (being of bounded variation) and
- a+ - -
the fact that Img ‘ f (t)dt =0 for any bounded integrable function f . Therefore AX (t1 — jh,ti) =0, forj=0.
e—>0da-¢

For J =0, we have: AX (ti,t1)= X (ti_,tl)—x (t1+,t1)= I, —0=1_, which proves lemma (x).
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3. Results

3.1 lllustration of the Computation of the Determining Matrice Q, (jh,);0< j<k,k#0 and Q (jh);j>k=>1
with respect to (1)

For notational optimality, we define: SumProdPerm[Ab(ro),Ai(rl),Az(rz)] to be the sum of the products of the

permutations of Ay, A and A, inwhich A appears I, times, i €{0,1, 2}
3.1.1 Determining Matrices for j =2,k >2
For j=2,k=2

Q, (2hl) = A)Ql(Zhl)_'_ Ain(hl)+ A2Q1(2h1 _hz)
AA, +AA + A%, =2h,

A?; otherwise

SumProdPerm|[ A, (1), A (0), A, (1) ]+ SumProdPerm|[ A, (0), A (2), A,(0) ]; h, =2h,

SumProdPerm| A, (0), A (2), A, (0)]; otherwise
For j=2,k=3
Q(2h)=AQ,(2h)+AQ, (h)+AQ, (2h —h,)
AR+ AN+ AAA+AAA+ATA+ AN, =2h

AAZ+AAA +A’A; otherwise
SumProdPerm| A, (2), A (0), A, (1) |+SumProdPerm[ A, (1), A (2), A, (0)]; h, =2h,

SumProdPerm| A, (1), A (2), A, (0)]; otherwise
For j=2,k=4
Q. (2h) = AQ, (20 )+ AQ, (h )+ AQ; (2 —hy)
AR+ AT+ ATAA + AAAA+ AN A+ AAAT+AATA+ AAAA +ATAT+AAT, =2h

ACAT+ AAAA + AAA + AATA+AAAA +A’AS; otherwise
SumProdPerm| A, (3), A (0), A, (1) |+SumProdPerm| A, (2), A (2), A,(0)];h, =2h,

SumProdPerm| A, (2), A (2),A,(0)]; otherwise
For j=2,k=5
Q5(2|‘11)=,%Q4 (2h1)+A1Q4(h1)+A2Q4(2hl_h2)
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A A+ AN+ AAA + ATAAA + ACATA + ATAA+ AAATA + AAAAA
TAAAT+ AAATANA + AATAA + AAAA+ATAT+ AN, =2h

A+ ATAAA + AATA + AAATA + AAAAA + AN+ ANA +AATAA
+AAAA®+AAS; otherwise
SumProdPerm| A, (4), A (0), A, (1) |+ SumProdPerm| A, (3), A (2),A,(0)];h, =2h,

SumProdPerm| A, (3), A (2), A, (0)]; otherwise

Emerging pattern of Q, ( jhl) for j=2,k>2:

1
> SumProdPerm[ A, (r+k—2), A (2-2r), A (r) h,=2h
r=0

SumProdPerm[ A, (k —2), A (2),A,(0)]; otherwise

3.1.2 Determining Matrices for j =3,k >2
For j=3,k=2

Q (30 ) = AQ.(3m) + AQ: (2h )+ AQ, (30, —h, )
AR, + AA T, =2k

=1 AR+ AAD, =3N,

0; otherwise

SumProdPerm| A, (0), A (1), A, (1)];h, =2h,

= <SumProdPerm|[ A, (1), A (0), A, (1) |;h, =3h,

0; otherwise
For j=3,k=3
Q;(3h) = AQ,(3n)+AQ, (2h )+ AQ, (3 —h,)
AAA + AAA +ANA + A+ AAA +AAA +AAA N, =2

= A A+ AAA+ AT+ A AT, =3h

Al3
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SumProdPerm| A, (1), A (1), A, (1) |+SumProdPerm[ A, (0), A (3), A, (0) |;h, =2h,

=< SumProdPerm[ A, (2), A (0), A, (1) |+ SumProdPerm[ A, (0), A (3), A,(0) ];h, =3h,

SumProdPerm[ A, (0), A (3), A, (0) |; otherwise
For j=3,k=4
Q. (3n) = AQ, (3n)+ AQ, (2h, )+ AQ, (3 —h,)
ACAA + ASAA + AAAA + AN+ AAAA + AAAA +AAAN+ANA + AAA
+AAAA+ATAA + ATA + AAN+ ANTA + AAAA+AAA, =2h

AR+ A AP+ AN+ AAAT+ AAR+ ATAA +A’A + A AT, =3
AA+AAAT+AAA +A’A; otherwise
SumProdPerm[ A, (2), A (1), A, (1) |+ SumProdPerm[ A, (1), A (3), A, (0) |;h, =2h,

=< SumProdPerm|[ A, (3), A (0), A, (1) ]+ SumProdPerm| A, (1), A (3), A, (0) ];h, =3h,

SumProdPerm| A, (1), A (3). A, (0)]; otherwise
Emerging pattern of Qk ( jhl) for j=3,k>3

iSumProdPerm[Ab(Hk—?;), A (3-2r),A(r) | h, =2h,

= iSumProdPerm[Ao(Zwk—3), A (3-3r),A,(r)];h, =3h,

SumProdPerm| A, (k—3), A (3), A, (0) |; otherwise

3.1.3  Determining Matrices for j =4,k >2
For j=4,k=2

Q. (4h)=AQ (4h)+AQ (3n)+AQ (4h —h,)
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Azz; h2:2h1
AA, +AA; b, =3h
AA, + A A, =4k

0; otherwise

SumProdPerm|[ A, (0),A (0),A,(2) ];h, =2h,
SumProdPerm| A, (0), A (1), A, (1) ;h, =3h,

SumProdPerm| A, (1), A (0), A, (1) |;h, =4h,

0; otherwise
For j=4,k=3

Q, (4h) = AQ, (4h,)+AQ, (3 )+ AQ, (4h —h,)
AN+ A A+ AN+ AAA + AN +A A D, =20

AAR +ARA+AAA +AAA+AAA+AAA; D, =30

ACA, + AAA+AAT T, =4

0; otherwise

SumProdPerm| A, (1), A (0), A, (2) |+SumProdPerm[ A, (0), A (2), A, (1) |;h, =2h,
SumProdPerm| A, (1), A (1), A, (1) |;h, =3h,

SumProdPerm| A, (2), A (0),A,(1) ];h, =4h,

0; otherwise
For j=4,k=4
Q, (4h) = AQ;(4h)+AQ;(3n)+AQ;(4h —h,)
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AAS+ ANA + AAAA + AAAA + AMAT+ANA+AARAM +AAA,
A AP AAAA +AAAA+AAA + ALAAT+AAA A+ AAAA
AN A+ ASAT =2y

ACAA + AR+ AAAA, + AAAA + AAAA+AMAA+AAA +AAAA,
AT AAAT+AAA - AAAA +AAA D, =30

AR+ A A+ AAAT+ AR+ AT Dy =4

A*; otherwise
SumProdPerm| A, (2), A (0), A, (2) ]+ SumProdPerm| A, (1), A (2), A, (1) ]
+SumProdPerm[ A, (0), A (4), A, (0)];h, =2h,

SumProdPerm| A, (2), A (1), A, (1) |+ SumProdPerm|[ A, (0), A (4), A,(0) |;h, =3h,

SumProdPerm|[ A, (3), A (0), A, (1) |+SumProdPerm[ A, (0), A (4), A, (0) ];h, = 4h,

SumProdPerm|[ A, (0), A (4), A,(0)]; otherwise

For j=4,k=5
Qs (4h) = AQ, (4h,)+AQ, (3 )+ AQ, (4h —h,)
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AR+ AN+ ACAAA + A A+ ACANT+ AACA + AAAAA,
FAAAAA + AN AN+ AN+ AN AN+ AAAAA+AARAA +AAAA
FAAAN + AAAAA - AAANA+AAAA+ARA+ AATAA + AATAA
+AAAAA + AAN + ANAAA + ANAAA +ARAAA+AAA +ATAA’
FATAAA AN+ AA AN AANA + ARAAA + AAAN+AACA,
AN AT+ ANTAA + AAAAA+AAAA+AAAATAAATA + AAAAA,
+AA A+ ACA h, =2k,

ACAA, + ATAA + A ANA + ASAAA + ACAAA + ATAAA + AN, + AAAAA,
AN+ AARN+ AAATA + AAAAA+AAAR +ANA + ANAA + AAAT
FAAAAT+ A AN+ ATAA + A+ AN+ AATA + AN A+ AAAA
+AAA’h, =30

ACA+ATA A+ AN AAA + AAATATAAT+ APAA + AN + AN+ AAYD, =4h,

AN+ AR+ ATAAT+ AAA +A'A; otherwise

SumProdPerm| A, (3), A (0), A, (2) |+SumProdPerm[ A, (2), A (2), A, (1) ]
+SumProdPerm| A, (1), A (4), A, (0) |;h, =2h,

SumProdPerm| A, (3), A (1), A, (1) |+SumProdPerm[ A, (1), A (4), A,(0) ];h, =3h,

SumProdPerm| A, (4), A (0), A, (1) ]+SumProdPerm[ A, (1), A (4), A, (0) ];h, = 4h,

SumProdPerm| A, (1), A (4), A, (0)]; otherwise

Emerging pattern for j =4,k >4
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Qc (4hl):

ZZ:SumProdPerm[Ab (r+k-4),A(4-2r),A(r)J;h,=2h
Zl:SumProdPerm[Ab (2r+k—-4),A(4-3r),A(r)h,=3h

Zl:SumProdPerm[Ab (3r+k—4),A(4-4r), A (r)]h, =4h

SumProdPerm| A, (k —4), A (4), A, (0)]; otherwise

3.1.4 Determining Matrices for j =5,k > 2

For jJ=5k=2

Qz (5h1) = Ale (5h1)+ AlQl (4hl)+ Ale (5hl _hz)

O;h, =2h

0;h, =3h,

=1AA +AA, =4h,

0; otherwise

0;h, = 2h,

0;h, =3h,

0: otherwise
For j=5k=3

A + A AT, =5h

= {SumProdPerm[ A, (0), A (1), A, (1) ];h, =4h,

SumProdPerm|[ A, (1),A (0), A, (1)];h, =5h,

Q:(5h) = AQ, (5h) + AQ, (4h,) + A,Q, (5h, —h,)
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AA’+AAA +AAH, =2h

AA+ AAA +A A", =3h

=1 AAA FAAA+AAA +AAA +AAA+AAA =4h
AA + AAA + A, =5h,

0; otherwise

SumProdPerm| A, (0), A (1), A,(2)];h, =2h,
SumProdPerm[ A, (0), A (2), A, (1) ];h, =3h,
={SumProdPerm [AO (1), A (1), A (1)]; h, =4h,

SumProdPerm| A, (2), A (0), A, (1)];h, =5h,

0; otherwise
For j=5k=4
Q, (5h) = AQ, (5h, )+ AQ; (4h )+ AQ, (5h —h,)
AAA+ AAMAA +AAA+AAAT+ACA + ATAA + AAAA + AAAT+AAA,
TAAAA + AAAA + AAAA +AAA +AAA +AAAH =20

ANA + AAAA+AAN + ARAA + AAAA+ A AA +AAA+AAAA+AAAA
FAAA"+ AAAA + AN A, =30

A AP+ A AN+ AAAA + AAAA+AMAA+ AAAN AN+ AAAA +AAA
+AA A+ AAAA +AAAH, =4h

AA, + AR + AA AT+ A A, =5h,

0; otherwise
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SumProdPerm| A, (1), A (1), A,(2) |+SumProdPerm| A, (0), A (3), A, (1) ]
+SumProdPerm[ A, (1), A (2), A, (1) ];h, =2h,

SumProdPerm| A, (1), A (2), A, (1) ];h, =3h,
SumProdPerm| A (2), A (1), A, (1) ];h, = 4h,

SumProdPerm| A, (3), A (0), A, (1) |;h, =5h,

0; otherwise
For j=5k=5

Qs (5h) = AQ, (5h ) + AQ, (4h )+ A,Q, (5h, —h,)
ACAA+ APAARN + ACAIA + AAAA + ARA, + AN AA + AAAAA + AAAA
TAAA A+ AAAAA + AMLAAA + AAAAA +AAAA +AAAA + AAAA
FAAA+ AAAA + AAAAA + AAAAA + AAAAT+AAA A+ ATAAA + ATAAA
FACAA, AT+ ACAA + ATAAA + ATAAA + AANA + AAANT+ AAAAA,
TAAAAA + AANA+ANA + ANAA + AAAA + AAAAA + AAR +AAAAA
+AAAAA +AAAAN+ AANA +AAAR T AAAAA+ AN AN +ARA +AAAA
+AACA A AAA + ACAA T, =2h

AAA+ A AAA+AAN + AAAAA + AAAA + AN AA + AAAAA +AAAAA,
_JHAAAN  AAAAA + AAN A+ ANAA + ANTAA + ARAAA + AAAAA,
FAAAAA+ARAAA+ A AR+ AAAA+ A+ AN+ ARAA + AAAAA,
FAAAN+ AN+ AAAAA+AANA - AAAA+AAAAA +AAA D, =3h

A AP+ AAA+ ATANA + A ANA + ATAAA + ATAAA + AAAA + AAAAA,
AAAAT+ AAAA+ AAAAA + AAAN+ANA + ANAA + AAAAT+AAAT
A+ AACA + AATAA + AAAAT+ AAAT D, =4

AA+ AR+ AP+ AAAT+ AN+ A% h, =5h,

A’; otherwise
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SumProdPerm| A, (2), A (1), A, } ) |+SumProdPerm| A, (1), A (3), A, (1) ]
+SumProdPerm| A, (0) A1(5 (0)];h, =2h,

SumProdPerm| A, (2), A (2), A, (1) |+SumProdPerm[ A, (0), A (5), A,(0) |;h, =3h,
SumProdPerm|[ A, (3), A (1), A, (1) |+SumProdPerm[ A, (0), A (5), A, (0) ];h, = 4h,

SumProdPerm|[ A, (4), A (0), A, (1) |+ SumProdPerm|[ A, (0), A (5), A, (0) ];h, =5h,

SumProdPerm|[ A, (0), A (5), A, (0)]; otherwise

For j=5k=6
Qs (5h,) = AbQ5(5h1)+A1Q5(4 )+ AQ; (5h —h,)
SumProdPerm|[ A, (3) A2 (2) ]+SumProdPerm[ A;(2), A (3), A, (1)]
+SumProdPerm[AD 5),A,(0)];h, =2h,

SumProdPerm| A, (3), A (2), A, (1) ]+SumProdPerm| A, (1), A (5). A, (0)];h, =3h,
SumProdPerm|[ A, (4), A (1), A, (1) ]+ SumProdPerm|[ A, (1), A (5), A, (0) ];h, = 4h,

SumProdPerm[ A, (5), A (0), A, (1) |+SumProdPerm[ A, (1), A (5), A, (0)];h, =5h,

SumProdPerm[ A, (1), A (5), A,(0) ]; otherwise

Emerging pattern for j =5,k >5
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Q (5hl) -

iSumProdPerm[Ab(r+k—5),Al(5—2r),Az(r)]; h, = 2h,
Zl:SumProdPerm[AO (2r+k-5),A(5-3r),A,(r)];h, =3,
Zl:SumProdPerm[A0 (3r+k—5),A(5-4r),A,(r)];h,=4h

Zl:SumProdPerm[AO (4r+k-5),A(5-5r),A,(r)];h, =5h,

SumProdPerm| A (k-5), A (5), A, (0) |; otherwise

3.1.5 Determining Matrices for j =6,k > 2

For j=6,k =2

Q, (Ghl) = A)Ql(6hl)+ A1Q1(5hl)+ A2Q1(6hl _hz)

0;h, =4h,

0; otherwise
For J=6,k=3

SumProdPerm[ A, (0), A (0), A,(2)];h, =3h,

SumProdPerm|[ A, (0), A (1), A, (1) ];h, =5h,

SumProdPerm[ A, (1),A (0), A, (1)];h, =6h,

Q. (6h,) = AQ, (6h, )+ AQ, (5N, )+ AQ, (6h, —h,)
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sumProdperm[ 4, (0), A (0), A, (3)]ih, =2h
sumProdperm[ A, (1), A (0). A, (2)]:h, =3
SumProdPerm[ A, (0), A (2), A, (1)]h, = 4h,
SumProdPerm[ A, (1), A (1), A, (1)];h, =5h,

SumProdPerm|[ A, (2), A (0), A, (1)];h, =6h,

0; otherwise
For j=6,k=4
Q,(6h,) = AQ;(Bh, )+ AQ, (5h, )+ AQ;(6h —h,)

SumProdPerm| A, (1), A (0), A, (3) |+ SumProdPerm| A;(0), A (2), A,(2) |;h, =2h,

SumProdPerm| A, (2), A (0), A, (2) ]+SumProdPerm|[ A (0), A (3), A, (1) ];h, =3h,

SumProdPerm[ A, (1), A (2), A, (1) |;h, =4h,
SumProdPerm[ A, (2), A (1), A, (1) ];h, =5h,

SumProdPerm| A, (3), A (0), A, (1) ];h, =6h,

0; otherwise
For J=6,k=5
Qs (6h,) = AQ, (6h,) + AQ, (5h, )+ AQ, (6h —h,)
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SumProdPerm[ A, (2), A (0), A, (3) ]+ SumProdPerm[ A, (1), A (2), A,(2) ]
+SumProdPerm[ A, (0), A (4), A, (1) ];h, =2h,

SumProdPerm| A, (3), A (0), A, (2) |+SumProdPerm[ A, (1), A (3), A, (1) |;h, =3h,
_ JSumProdPerm[ A,(2), A (2), A, (1) |;h, = 4h,
SumProdPerm| A, (3), A (1), A, (1) ];h, =5h,

SumProdPerm|[ A, (4), A (0), A, (1) ];h, =6h,

0: otherwise
For J=6,k=6

Qe (6hl) = Aon (6h1) + A1Q5 (5hl)+ A2Q5 (6hl - hZ)
SumProdPerm| A, (3), A (0), A, (3) ]+ SumProdPerm| A, (2), A (2), A,(2)]
+SumProdPerm| A, (1), A (4), A, (1) |+ SumProdPerm| A, (0), A (6), A, (0) ];h, =2h,

SumProdPerm| A, (4), A (0), A, (2)]+SumProdPerm| A, (2), A (3), A, (1)]
+SumProdPerm| A, (0), A (6), A, (0) ];h, =3h,

= <SumProdPerm[ A, (3), A (2), A, (1) |+SumProdPerm[ A, (0), A (6), A, (0)];h, =4h,
SumProdPerm|[ A, (4), A (1), A, (1) |+ SumProdPerm[ A, (0), A (6), A, (0) |;h, =5h,

SumProdPerm|[ A, (5), A (0), A, (1) |+SumProdPerm[ A, (0), A (6), A,(0) ];h, =6h,

SumProdPerm|[ A, (0), A (6), A, (0)]; otherwise

For j=6,k=7
Q7 (6hl) = A:)Qe (6h1)+ A1Q6 (5h1)+ AzQe (6h1 _hz)
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SumProdPerm|[ A, (4), A (0), A, (3)]+SumProdPerm[ A,(3), A (2), A, (2) ]
+SumProdPerm[ A, (2), A (4), A, (1) ]+SumProdPerm[ A, (1), A (6), A, (0) ];h, =2h,

SumProdPerm[ A, (5), A (0), A, (2) ]+SumProdPerm[ A, (3), A (3), A, (1) ]
+SumProdPerm[ A; (1), A (6), A, (0)];h, =3h,

=< SumProdPerm| A, (4), A (2), A, (1) |+SumProdPerm[ A, (1), A (6), A, (0) |;h, = 4h,
SumProdPerm| A, (5), A (1), A, (1) |+SumProdPerm[ A, (1), A (6), A, (0) |;h, =5h,

SumProdPerm|[ A, (6), A (0), A, (1) | +SumProdPerm[ A, (1), A (6), A, (0) |;h, =6h,

SumProdPerm[ A, (1), A (6), A, (0) ]; otherwise

Emerging pattern for j =6,k > 6

ZSJSumProdPerm[Ao(r+k—6),A1(6—2r),Az(r)];h2 =2h,
ZZ:SumProdPerm[Ao(2r+k—6),A1(6—3r),A2(r)};h2 =3h
iSumProdPerm[Ao(3r+k—6), A (6-4r), A, (r)]h, =4h
Q (6h1):

Zl“SumProdPerm[AO (4r+k—6), A (6-5r),A,(r)]h, =5h

Zl:SumProdPerm[A0 (5r+k—6), A (6-6r), A, (r)]:h, =6h,

SumProdPerm[ A, (k—6), A (6), A, (0)]; otherwise

3.1.6 Determining Matrices for j =7,k >2
For j=7,k=2

Q, (7h1) = AJQl(7hl)+ A1Q1(6hl)+ A2Q1(7h1 _hz)
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0;h, = 2h,

0;h, =3h,

0;h, = 4h,

={0;h, =5h,

SumProdPerm[ A, (0), A (1), A, (1)];h, =6h,

SumProdPerm| A, (1),A (0), A, (1)];h, =7h,

0; otherwise
For j=7,k=3

Qs (7h) = AQ, (7h)+ AQ, (6h )+ AQ, (7h, ~h,)
0;h, =2h,
SumProdPerm[ A, (0), A (1), A,(2) ];h, =3h,
0;h, = 4h,
=< SumProdPerm| A, (0), A (2), A, (1) |;h, =5h,
SumProdPerm| A, (1), A (1), A, (1) |;h, =6h,

SumProdPerm| A (2),A (0), A, (1)];h, =7h,

0; otherwise
For j=7,k=4

Qu (7h) = AQ (7h )+ AQ, (6h, )+ AQ, (7h —h,)
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sumProdperm| A, (0), A (1), A, (3)]:h, = 2h,
sumProdPerm[ A, (1), A (1), A, (2)]:h, =3h,
SumProdperm[ A, (0), A (3), A, (1)];h, =4h,
= { sumProdPerm[ A, (1), A (2), A, (1)]:h, =5h,
SumProdPerm[A, (2), A (1), A, (1)];h, =6h,

sumProdPerm[ A, (3), A (0), A, (1)];h, =7h,

0; otherwise
For j=7,k=5
Qs (7h) = AQ, (7h )+ AQ, (6h )+ AQ, (7h —h,)
SumProdPerm| A, (1), A (1), A, (3) |+SumProdPerm| A, (0), A (3), A, (2) ];h, =2h,

sumProdperm( A, (2), A (1), A, (2)]+ SumProdPerm[ A, (0). A (4). A, (1)]ih, =3,
sumProdPerm [ A, (1), A (3), A, (1) h, = 4h
= sumProdperm| A, (2), A (2), A, (1)]:h, =5h,
SumProdPerm| A, (3), A (1), A, (1)];h, =6h,

SumProdPerm[ A, (4), A (0), A, (1) [;h, =7h,

0; otherwise
For j=7,k=7
Q7 (7hl) = Aer (7hl)+ AlQG (6h1)+ AzQa (7hl _hz)

Page | 84



JMSS 2(1): 62-87

+SumProdPerm| A, (1)

SumProdPerm| A, (4)

A (5), A, (1) ]+ SumProdPerm| A, (0)

A (1), A, (2)]+SumProdPerm[ A, (2

A1(7)

SumProdPerm|[ A, (3), A (1), A, (3) |+ SumProdPerm[ A, (2), A (3), A, (2)]

A1(7) Az( )];h2:2h1

) A(4), A1)

+SumProdPerm| A, (0)

SumProdPerm|[ A, (6

For j=7,k=8

SumProdPerm[ A, (3),A (3). A,
SumProdPerm|[ A, (4), A (2), A, (1
SumProdPerm[ A, (5), A (1), A, (1

) A0), A (

SumProdPerm|[ A, (0), A (7

(0)]:h, =3n,
(1)]+SumProdperm] A, (0)
)]+ SumprodPerm A, (0)
)+ SumProdperm[ A, (0). A (7). A, (0):h, =61,
1) +SumProdPerm[ A, (0), A (7)., (0) J:h, = 7,

), A,(0)]; otherwise

Q (7hl) =AQ (7hl)+ AQ, (6hl)+ AQ, (7h1 h )

SumProdPerm[ A (4), A (1),

SumProdPerm[ A, (5),
+SumProdPerm[ A, (1),

SumProdPerm[ A, (4), A (3
SumProdPerm[ A, (5),
SumProdPerm[ A, (6),

SumProdPerm[ A (7), A (0

Emerging pattern for j =7,k >7

+SumProdPerm[ A, (2), A (5), A,

A (1), A, (2)]+SumProdPerm[ A, (3), A (4
A (7). A, (0)]:h, =3h,

), A, (1)]+SumProdPerm[ A (1), A (7). A,
A (2), A (1)]+SumProdPerm[ A (1), A (7). A

A (1), A, (1)]+SumProdPerm[ A, (1),

), A, (1)]+SumProdPerm [ A, (1),

SumProdPerm[ A, (1), A (7). A,

A, (3)]+SumProdPerm[ A, (3), A (3), A, (2)]
(1)]+SumProdPerm[ A, (1), A (7). A (0)];h, =2h,

). A (1)]

(0)]:h, =4h,

(0)];h, =5h,
A (7). A (0)]:h, =6h,
A(7). A, (0)]:h, =7h,

(0)]; otherwise
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rz:SumProdPerm[Ab(r+k—7),A1(7—2r),A2(r)]; h, =2h,
3. sumprodperm[ A, (21 +k—7), A (7-3r), A (r) [ =31
ZSumProdPerm[Ab(3r+k—7),A1(7—4r),A2(r)]; h, =4h,
Q. (7h)= rZi;SumProdPerm[Ab(4r+k—7),A1(7—5r),Az(r)];hz:5h1
rZ;;SumProdPerm[AO(SHk—?),A1(7—6r),A2(r)]; h, =6h,

Zl“SumProdPerm[AO (6r+k=7),A(7-7r),A(r)}h,=7h

SumProdPerm| A, (k—7), A (7),A,(0)]; otherwise

From these expressions of the determining matrices for particular cases, a general expression for the determining matrices

Q (jhl);OS J<k,k#0 and Qk(jhl), ] >k >1 can be formulated and proved.

4. Conclusion

The results on determining matrices derived here greatly extended the published works of Ukwu (2016) and Ukwu (2014).
Moreover, the results here went further to examine the structure and computing complexity of the generic case of the double
time-delay control systems that previous authors did not examine in this field in simpler systems. This work has successfully
prosecuted a number of tasks; by exploiting relevant facts about the permutation of matrices already established in Ukwu
(2014a) and deft application of mathematical induction principles, it is established that determining matrices for double time-
delay linear autonomous functional differential control systems do not exist if one of the time-delays is an integer multiple of the
other and the structures of the determining matrices for particular cases of the system in consideration follow certain patterns
which can be further investigated to determine the Euclidean controllability of the system.
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