
Journal of Mathematics and Statistics Studies  

ISSN: 2709-4200 

DOI: 10.32996/jmss 

Journal Homepage: www.al-kindipublisher.com/index.php/jmss 

JMSS  

AL-KINDI CENTER FOR RESEARCH  
AND DEVELOPMENT  

 

Copyright: © 2026 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 14  

| RESEARCH ARTICLE 

A Least Squares Hyperbolic Transformation to Moderate School Assessments   

Robert G. MacCann 

Independent Scholar 

Corresponding Author: Robert MacCann E-mail: robert.maccann@gmail.com 

 

| ABSTRACT 

This research develops a new method to mathematically moderate school assessments to make them comparable across schools 

in a large-scale public examination system. In many systems the school assessment is partly used to determine the final mark in 

a course. A hyperbola was chosen for this method as it has two important features. First, if chosen from the second or fourth 

quadrants of the Cartesian plane it is always monotonic increasing. Second, it gives a curvilinear transformation which helps to 

overcome differences in skew between a school’s raw assessments and the school’s exam marks. If the skew difference is large 

it can disadvantage the top students in a linear moderation, giving them moderated assessments below their exam marks. A 

hyperbola is closely fitted to the moderation criterion (the sorted exam marks) using a least squares process. The moderation 

equation itself is simple, with three constants, but their calculation is more complex. However a central education authority 

should have the computing resources to calculate these constants for each school group. This new method provides another 

option for school systems to consider in a high-stakes large-scale public examinations environment. 
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1. Introduction 

In many public examination systems, the final award is partly based on school assessments. These are generally based on a series 

of school-based assessment tasks that are set and marked locally at the school. Instead of a ‘one-shot’ method of testing, these 

tasks are spread throughout the final school year. For each school course (e.g. Physics at school X), the marks for such assessment 

tasks are aggregated at the school level to form a final raw assessment mark for each pupil which is then submitted to the central 

education authority. At the Higher School Certificate (HSC) in NSW, Australia, the moderated assessment counts equally with the 

public exam result in determining the Australian Tertiary Admission Rank (ATAR) and comes under considerable scrutiny.  

The raw assessments submitted by different schools cannot be assumed to be comparable, as schools can differ greatly in the 

extent to which their standards adhere to a common scale (Willingham, 1963). The process of adjusting the assessments so that 

they do conform to a common scale is known as moderation. Two types of moderation may be distinguished. The first using 

statistical procedures and a criterion to adjust the assessments is referred to as ‘statistical moderation’. The second, a procedure 

that involves human judgements to attempt assessment parity, is referred to as ‘social moderation’ (e.g. Mislevy, 1992; Linn, 1996). 

Prichard et al. (2025) and Chambers et al. (2024) focus extensively on non-statistical moderation but with these methods it is 

difficult to get an acceptable level of comparability for large-scale systems. Comprehensive surveys of statistical moderation have 

been made by Wilmut and Tuson (2005) and Williamson (2016). This paper will will develop a conceptually simple method of 

statistical moderation for both linear and non linear conversions that smoothly adjusts a set of assessment marks so that they 

closely approximate a set of criterion scores. 
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2. Literature Review 

2.1 The Linear Model 

In 1977, when assessments were introduced as part of the HSC award, the moderation method was linear. This linear adjustment, 

involving the mean and standard deviation, has a long history. It was originally devised by Francis Galton in the late nineteenth 

century, put into its current form by Karl Pearson around the turn of the twentieth century, and used in an educational context in 

Britain by Cyril Burt before the First World War (Howard, 1958). It has been used in Britain and in countries with educational systems 

modelled on the British (Pilliner, 1958; Lubisi and Murphy, 2002; Hong Kong Examinations and Assessment Authority, 2023). In its 

simplest form the assessments are adjusted to have the same mean and standard deviation as the exam marks as follows: 

𝑀 = 𝜇𝑒 +
𝜎𝑒

𝜎𝑥
(𝑥 − 𝜇𝑥)  (1) 

where x is a pupil’s raw school assessment, M is the pupil’s moderated assessment, 𝜇𝑥 and 𝜇𝑒 are the school group means for the 

assessments (x) and examination marks (e), and 𝜎𝑥 and 𝜎𝑒 are the respective standard deviations. 

Statistical moderation requires a criterion, in this case the examination marks scored by the school group. The key idea is that the 

assessments distribution must be made to resemble the exam marks distribution, except for the rank orders. For a linear conversion, 

the usual way of doing this is to match the means and standard deviations (Linn, 1966). An implicit assumption of the linear method 

is that the school group assessments and the examination marks have similar distribution shapes. This assumption often does not 

hold. Quite commonly the assessments are negatively skewed, with students bunched near the top of the mark range and tailing 

off at the lower mark levels. The external examination marks may spread the students out more effectively, with this distribution 

being more symmetrical. The result of applying a linear moderation to this situation is that the top moderated assessments can 

fall short of the top examination marks as the bunching creates smaller assessment z (standard) scores at the top than for the 

exam marks. The opposite case involves positively skewed assessments where one or two students are placed well ahead of the 

rest of the group, but on the examination, marks are somewhere in the pack or only just above the others. This situation can give 

moderated assessments that exceed the top examination marks scored by the group. In some cases, this effect could result in the 

moderated assessment exceeding the top of the mark scale requiring it to be fitted into the mark range. 

2.2. Polynomial Models 

Where the two distributions have significantly different skews the linear moderation process can be problematic. In such cases a 

transformation which equates percentiles, giving a curved line of adjustment, would be appropriate if the school groups were 

sufficiently large (Angoff, 1971; Kolen and Brennan, 2014). However, most school groups are not large enough to effectively use 

equipercentile procedures. The principle adopted by psychometricians is that if the distributions differ significantly in their shapes 

then a curved line of relationship should be used. At the 1993 HSC this led to a replacement of the linear method with a moderation 

that used a quadratic polynomial, as follows: 

𝑀 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  (2) 

where x is a pupil’s raw assessment, M is the pupil’s moderated assessment, and a, b, c are constants for each school group. 

This method is an improvement over the linear method for curvilinear relationships. However in practice, it often needs to be 

modified because of problems in gaining a monotonic increasing curve – a curve where the moderated assessments increase when 

the raw assessments increase. Such problems also occur for higher order polynomials. 

3. Methodology 

3.1 The Hyperbolic Model 

The hyperbola is chosen to be always monotonic increasing by applying the appropriate constraints. The practical importance of 

this is considerable. If a quadratic or a cubic is fitted by some process, the curves can arrange themselves to best fit the data by 

creating a maximum or minimum value in the assessment mark range. Even if they are monotonic increasing within the assessment 

mark range, they may become non monotonic if an extrapolation is required. The hyperbolic moderation equation is given by 

𝑀 =
𝑐

𝑥+𝑎
− 𝑏  (3) 

where x is a student’s raw assessment, M is the moderated assessment and a, b and c are constants to be determined for each 

school group, where 𝑎 ≠ −𝑥 for all assessments. 
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The choice of a Least Squares method focuses our attention on the distribution of the criterion. Under the traditional linear model, 

summary statistics like the mean and standard deviation were of interest. Under the Least Squares method, the distribution of the 

criterion is of interest. Here, the criterion scores (y) are simply the school group exam marks (e) sorted in the same order as the 

raw assessments. That is, the top exam mark is associated with the top raw assessment, the second top exam mark is associated 

with the second top raw assessment, and so on. If there are tied scores on the raw assessments (x), then the corresponding y scores 

are averaged. For the HSC exams, the raw assessments are integers ranging from 1 to 50. 

When the y scores are graphed against the x scores, the curve is not smooth but often somewhat ragged. The ragged features of 

this curve are assumed to not represent meaningful features of the graph. A hyperbola is then fitted to the graphed points so as 

to minimize the sum of the squared vertical deviations. This Least Squares method ensures that the resulting hyperbolic curve 

smoothly approximates the plot of y against x, fitting it closely. The constraints on the a constant for a Concave Up and Concave 

Down hyperbola are derived below. 

 

3.2 Restrictions on constant c 

For a monotonic increasing curve, the first derivative of (3) must be positive. 

𝑑𝑀

𝑑𝑥
=

−𝑐

(𝑥+𝑎)2  (4) 

∴ 𝑐 < 0  (5) 

 

3.3 Restrictions on constant a 

For a Concave Up Hyperbola: 

𝑑2𝑀

𝑑𝑥2 > 0  (6) 

𝑑2𝑀

𝑑𝑥2 =
2𝑐

(𝑥+𝑎)3  (7) 

 

Therefore from (5), (6), (7) and as 𝑥 > 0 

𝑥 + 𝑎 < 0  

∴ 𝑎 < −𝑥𝑚𝑎𝑥  (8) 

 

For a Concave Down Hyperbola: 

𝑑2𝑀

𝑑𝑥2 < 0  (9) 

 

Therefore from (5), (7), (9) and as 𝑥 > 0 

𝑥 + 𝑎 > 0  

∴ 𝑎 > −𝑥𝑚𝑖𝑛  (10) 

 

From (8) and (10) the values of a are restricted as follows: 
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4. The Least Squares Curve Fitting 

The vertical distance between each datum point (x, y) and each corresponding point on the fitted hyperbola (x, M) is squared and 

summed over all data points for the students in a particular course and school to give a value L. The Least Squares solution 

minimizes this value. The quantity to be minimized is given by the following where the summation is over the n students in a 

particular school/course group. 

𝐿 = ∑[𝑦𝑖 − 𝑀𝑖]
2

𝑛

𝑖=1

 

 

Substituting from equation (3) gives 

𝐿 = ∑ [𝑦𝑖 − (
𝑐

𝑥𝑖+𝑎
− 𝑏)]

𝑛

𝑖=1

2

  (11) 

 

Expanding (11) gives 

𝐿 = ∑ 𝑦𝑖
2

𝑖 − 2𝑐 ∑
𝑦𝑖

(𝑥𝑖+𝑎)𝑖 + 2𝑏 ∑ 𝑦𝑖𝑖 + 𝑐2 ∑
1

(𝑥𝑖+𝑎)2𝑖 − 2𝑏𝑐 ∑
1

(𝑥𝑖+𝑎)𝑖 + 𝑛𝑏2  (12) 

 

To find the values of a, b and c that minimize L, equation 12 is partially differentiated with respect to each of these three parameters. 

The partial derivatives are then each set to zero to obtain a minimum value of the function. (Maximum values are inappropriate to 

this situation). The three equations obtained are then solved for a, b and c. This technique of setting the partial derivatives to zero 

to find the values that minimize or maximize a function has long been used in psychometrics (for example, Lord, 1955). 

 

4.1 The Partial Derivative of L with respect to a 

 

 
𝜕𝐿

𝜕𝑎
= 2𝑐 ∑

𝑦𝑖

(𝑥𝑖+𝑎)2𝑖 − 2𝑐2 ∑
1

(𝑥𝑖+𝑎)3𝑖 + 2𝑏𝑐 ∑
1

(𝑥𝑖+𝑎)2 𝑖         (13) 

As 𝑐 ≠ 0, and setting (13) equal to zero, this gives 

 ∑
𝑦𝑖

(𝑥𝑖+𝑎)2𝑖 + 𝑏 ∑
1

(𝑥𝑖+𝑎)2𝑖 − 𝑐 ∑
1

(𝑥𝑖+𝑎)3𝑖 = 0         (14) 

 

4.2 The Partial Derivative of L with respect to b 

 

𝜕𝐿

𝜕𝑏
= 2 ∑ 𝑦𝑖𝑖 − 2𝑐 ∑

1

(𝑥𝑖+𝑎)𝑖 + 2𝑛𝑏  (15) 

Setting (15) equal to zero gives 

𝑏 =
𝑐

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 − 𝑦̄  (16) 

 

4.3 The Partial Derivative of L with respect to c 

 

𝜕𝐿

𝜕𝑐
= −2 ∑

𝑦𝑖

(𝑥𝑖+𝑎)𝑖 + 2𝑐 ∑
1

(𝑥𝑖+𝑎)2𝑖 − 2𝑏 ∑
1

(𝑥𝑖+𝑎)𝑖         (17) 

Setting (17) equal to zero gives 

𝑐 ∑
1

(𝑥𝑖+𝑎)2𝑖 − ∑
𝑦𝑖

(𝑥𝑖+𝑎)𝑖 − 𝑏 ∑
1

(𝑥𝑖+𝑎)𝑖 = 0  (18) 
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4.4. Solving for the Constants 

Eliminating b from (18) by substituting from (16) gives 

𝑐 ∑
1

(𝑥𝑖+𝑎)2𝑖 − ∑
𝑦𝑖

(𝑥𝑖+𝑎)𝑖 − [
𝑐

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 − 𝑦̄] ∑
1

(𝑥𝑖+𝑎)𝑖 = 0  

 

Expanding and solving for c in terms of a gives 

𝑐 =
∑

(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)𝑖

∑
1

(𝑥𝑖+𝑎)2𝑖 −
1

𝑛
(∑

1

(𝑥𝑖+𝑎)𝑖 )
2  (19) 

 

Eliminating b from (14) by substituting from (16) gives 

 ∑
𝑦𝑖

(𝑥𝑖+𝑎)2𝑖 + [
𝑐

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 − 𝑦̄] ∑
1

(𝑥𝑖+𝑎)2𝑖 − 𝑐 ∑
1

(𝑥𝑖+𝑎)3𝑖 = 0      (20) 

 

Expanding (20) gives 

𝑐

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖 − 𝑐 ∑
1

(𝑥𝑖+𝑎)3 + ∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)2𝑖 = 0  (21) 

 

Solving for c gives 

𝑐 =
[∑

(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)2𝑖 ]

[∑
1

(𝑥𝑖+𝑎)3𝑖 −
1

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖 ]
  (22) 

 

Eliminating c from (19) and (22) gives (23), an equation solely in terms of the a parameter. 

[∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)𝑖 ] [∑
1

(𝑥𝑖+𝑎)3𝑖 −
1

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖 ] − [∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)2𝑖 ] [∑
1

(𝑥𝑖+𝑎)2 −
1

𝑛
(∑

1

(𝑥𝑖+𝑎)𝑖 )
2

𝑖 ] = 0  (23) 

 

The key to solving these equations is to find a from (23). Then c is obtained from (19) and b from (16). An iterative process is used 

to find the value of a in Equation (23). This equation may be written as 𝐹(𝑎) = 0. 

 

4.5. What does F(a) look like? 

Where a root exists, the general characteristics of F(a) are sketched below in Figure 1 for Concave Up and Figure 2 for Concave 

Down. In Concave Up,  F(a) approaches +∞ at −𝑥𝑚𝑎𝑥 . After crossing below the a-axis it reaches a minimum and then approaches 

0 as 𝑎 → −∞.  

The existence of a root is confirmed by constructing an interval and evaluating F(a) at the endpoints to see if it changes sign. The 

Bisecting the Interval method is also used to get an initial estimate of the root. The right side of the interval is set at a suitable 

value close to the left of −𝑥𝑚𝑎𝑥 and the left side of the interval is set at −𝑎𝑐, a critical value set at a large negative value. If the root 

is to the left of −𝑎𝑐, it means that the curved hyperbola is approximating a near straight line and so a linear moderation can be 

used instead of the hyperbola. 

For Concave Down, F(a) approaches −∞ at the −𝑥𝑚𝑖𝑛 discontinuity. Here, F(a) crosses above the a-axis, reaches a maximum and 

then approaches 0 as 𝑎 → ∞. 

The left side of the interval is set close to the right of −𝑥𝑚𝑖𝑛 and the right side is set at 𝑎𝑐, a very large critical value. If the root is 

to the right of 𝑎𝑐, the hyperbola is approximating a near straight line and a linear moderation can be used.  
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         Figure 1: F(a) for Concave Up 

 

       Figure 2: F(a) for Concave Down 

 

A decision is needed on the size of 𝑎𝑐, a boundary governing what type of moderation is used. If the root is outside this boundary, 

a linear moderation is preferred; if inside this boundary, a hyperbolic moderation is used. Here the size of 𝑎𝑐 is based on the 

experience from observing a number of cases. As many school group samples are small a statistical method of determining linearity 

may lack sufficient power. In NSW, the moderated assessments are out of 50 and are calculated to 1 decimal place.  

Here 𝑎𝑐 was set at ten times the range at 500 which seems conservative but may not be optimal. Other educational systems may 

prefer a different value if this method is implemented. Further research could be useful on this point. However, if 𝑎𝑐 is set too small 

then a root for a genuine curved relationship may lie outside the boundary. 

 

5. Applying the Newton-Raphson Method 

The Newton-Raphson method requires that an initial estimate 𝑎0 be made. The existence of a root is determined from the Bisecting 

the Interval method, which also gives a starting estimate for the root, 𝑎0, after a few iterations. To avoid complications that may 

be caused by the maximum and minimum points, for the Concave Up case, the last value of a that made F(a) positive is taken as 

𝑎0 and for the Concave Down case, the last value of a that made F(a) negative is taken as 𝑎0.  

Then given 𝑎0, a better estimate is given by 𝑎1 as follows: 

 

𝑎1 = 𝑎0 −
𝐹(𝑎0)

𝐹′(𝑎0)
   (25) 

 

𝑎1 is then the next estimate in (25) which generates 𝑎2, and so on as the estimate converges. 
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5.1 An expression for 𝑭′(𝒂) 

Equation (23) may be written in terms of its products as 

 

𝐹(𝑎) = 𝐺1(𝑎)𝐺2(𝑎) − 𝐺3(𝑎)𝐺4(𝑎),  where   (26) 

𝐺1(𝑎) = ∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)𝑖    (27) 

𝐺2(𝑎) = ∑
1

(𝑥𝑖+𝑎)3𝑖 −
1

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖    (28) 

𝐺3(𝑎) = ∑
𝑦𝑖−𝑦̄

(𝑥𝑖+𝑎)2𝑖    (29) 

𝐺4(𝑎) = ∑
1

(𝑥𝑖+𝑎)2𝑖 −
1

𝑛
(∑

1

(𝑥𝑖+𝑎)𝑖 )
2

   (30) 

 

Then by the formula for differentiating a product: 

𝐹′(𝑎) = [𝐺1
𝜕𝐺2

𝜕𝑎
+ 𝐺2

𝜕𝐺1

𝜕𝑎
] − [𝐺3

𝜕𝐺4

𝜕𝑎
+ 𝐺4

𝜕𝐺3

𝜕𝑎
]   (31) 

 

Taking the partial derivatives of (27) to (30) with respect to a we obtain: 

𝜕𝐺1

𝜕𝑎
= − ∑

(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)2𝑖    (32) 

𝜕𝐺2

𝜕𝑎
= −3 ∑

1

(𝑥𝑖+𝑎)4𝑖 +
2

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)3𝑖 +
1

𝑛
[∑

1

(𝑥𝑖+𝑎)2𝑖 ]
2

   (33) 

𝜕𝐺3

𝜕𝑎
= −2 ∑

(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)3𝑖    (34) 

𝜕𝐺4

𝜕𝑎
= −2 ∑

1

(𝑥𝑖+𝑎)3𝑖 +
2

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖    (35) 

 

Substituting (27) to (30) and (32) to (35) into (31), and simplifying, we obtain: 

𝐹′(𝑎) = [∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)𝑖 ] [−3 ∑
1

(𝑥𝑖+𝑎)4𝑖 +
2

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)3𝑖 +
1

𝑛
[∑

1

(𝑥𝑖+𝑎)2𝑖 ]
2

]  

            + [∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)2𝑖 ] [∑
1

(𝑥𝑖+𝑎)3𝑖 −
1

𝑛
∑

1

(𝑥𝑖+𝑎)𝑖 ∑
1

(𝑥𝑖+𝑎)2𝑖 ]  

            + [2 ∑
(𝑦𝑖−𝑦̄)

(𝑥𝑖+𝑎)3𝑖 ] [∑
1

(𝑥𝑖+𝑎)2𝑖 −
1

𝑛
(∑

1

(𝑥𝑖+𝑎)𝑖 )
2

]   (36) 

 

6. Small School/Course groups 

A hyperbola obviously has no solution if the school group is less than 3. If there are 3 students, then it will give a solution if the 3 

values for x are distinct and the 3 values for y are distinct. A formula can easily be worked out for this. However the curve obtained 

can hardly be trusted. The best solution is to combine the assessment programs for schools in the same region to build up the 

number under the supervision of a local assessment officer appointed by the central authority.  

If this cannot be done and the school group number is 5 or less it is probably safest to initially use a simple linear moderation and 

have these school groups flagged. Then each school group results would need to be inspected by officers of the central authority 

to look for any anomalies.  

A third line of validation would come from School Appeals against the moderated assessment results which would result in a 

further analysis and a possible change with an explanation to the school. 
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7. Examples of the Moderated Assessments (M) 

The M values (red circles) were calculated for real school groups and worked exactly as expected. They closely follow the trend of 

the criterion (y) shown by open circles. Four examples from different courses are given. Here the M points are only plotted where 

a raw assessment exists although Equation (3) gives a continuous line. When pupils with suspect exam marks (e.g. illness cases) 

are removed from the process to establish the conversion line, their M values can be easily interpolated from Equation (3). 

 
                          Figure 3   Course: Physics (n = 7) 

 

 
 

                        Figure 4   Course: Drama (n = 30) 

 

The Drama raw assessments are more closely bunched at the top of the mark scale and more widely spaced near the bottom than 

the criterion scores, giving a strongly curved concave up moderation conversion line.  
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                          Figure 5   Course: Mathematics (n = 102) 

 

 
 

 

                                Figure 6   Course: English (n = 117) 

 

Here the conversion line is concave up. There is a small group of low ability students who appear to have slightly underperformed 

on the examination. 
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8. Conclusion 

The Least Squares method ensures that the moderation curve will closely fit the plot of the criterion scores but of course does not 

solve all the problems that can crop up in moderation. In some cases there may be outliers and moderation systems usually have 

additional techniques for identifying these. There are also Illness/misadventure cases whose exam marks may be suspect. These 

groups would be temporarily removed from the moderation process when the parameters of the moderation conversion line are 

calculated. The moderation would then be performed on all students, including those temporarily excluded. This technique can 

also be applied to the hyperbolic moderation. 

All moderation systems, regardless of the method used, also have to consider the sensitive issue of how to treat the top moderated 

assessment. In high-stakes systems the results of these able students come under scrutiny and the resulting moderated assessment 

must be seen to be fair. An important category involves those students who were ranked first on the school assessment and also 

gained the top examination mark in their school groups. For such a student it would seem a reasonable principle that their 

moderated assessment should be no lower than the exam mark that they earned. If this principle is adopted, then this may require 

a further adjustment to raise their moderated assessment. Some systems may decide to automatically adjust the top moderated 

assessment to be equal to the top examination mark scored in the school group, regardless of who scored it (e.g. NSW Education 

Standards Authority, 2026). 

Williamson (2016) notes the lack of transparency of several of the moderation methods in her survey. Although the mathematics 

presented earlier may seem complicated, schools need not be concerned with the details. The actual equation that performs the 

moderation (Equation 3) is a simple formula. The deriving of the constants a, b and c would be done by the central authority’s 

computer. Most teachers would be able to understand the general principle of the Least Squares method of deriving a moderation 

conversion line if it is presented clearly through a diagram, without needing to consider the estimation details. 

At the school level, teachers could receive a list of the raw assessment, moderated assessment and exam mark for each student, 

with students whose moderated assessment and exam mark are significantly different being flagged. The authority could also 

provide graphs of the form presented earlier in this paper. Schools would receive the constants a, b and c for each school group 

so that teachers who desired to do so could use Equation (3) to confirm the results and enhance their understanding of how the 

moderation worked. This paper has developed a viable model for the moderation of school assessments whose principles are not 

difficult to grasp and can accommodate a curvilinear relationship between the raw assessments and criterion scores. 
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