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| ABSTRACT
We study the existence of multiple solutions of the quasilinear equation

@' ®)N' = fEu®),u' (), te[0,T]
submitted to periodic boundary conditions, where 1:] — a,a[— R, with 0 < a < +oo, is an increasing homeomorphism such that
Y(0) = 0. Combining some sign conditions and lower and upper solutions method, we obtain existence of two or Three
solutions.
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1. Introduction

This work is devoted to the study of the existence of solutions of the the quasilinear equation

(lp(u'(t)))l = f(eu@®uw'®), Vv telo,T] (1)
submitted to periodic boundary conditions
u'(0) = u'(T), u(0) = u(?). (2)
Where ¢:] —a,a[= Rwith 0 < a < 4o, is an increasing homeomorphism such that (0) = 0.
In section 2, we give some preliminaries results.

In section 3, combining some sign conditions and existence only one strict lower solution and one strict upper solution of
problem (1)-(2), we prove existence of at least two or three solutions of problem (1)-(2). We show in this section that the
existence of at least two or three solutions for certain forced second order quasilinear equations submitted to periodic boundary
conditions is guaranteed by the presence of one strict lower solution and one strict upper solution.

2. Methodology

Generally, in the lower and upper solutions method, to show existence of at least one solution of a problem, we need existence
of at least one lower solution and at least one upper solution. In the case of the sign conditions method, we usually need two
sign conditions to show existence of at least one solution of a problem.

Copyright: © 2026 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.
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In (Goli & Adjé, 2016), the authors proved existence of solutions of (1)-(2), when there exists only one sign condition and only
one lower solution or only one upper solution.

We use the results proven by Goli and Adjé to show:

e  Existence of at least two solutions of (1)-(2), when we have only one sign condition, one strict lower solution and one
strict upper solution.

e Existence of at least three solutions of (1)-(2), when we have two sign conditions, one strict lower solution and one strict
upper solution.

e  For some periodic problems, the existence of two real numbers a and b such that a > b and f(t,a,0) < 0 and
f(t,b,0) >0, vVt € [0,T], allows us to affirm the existence of 2 or 3 solutions.

3. Preliminary
Definition 3.1. A solution of problem (1)-(2) is a function u € C1([0, T]) such that y(u") € C1([0,T]), ||v'|| < a and satisfies (1)-

(2).
Definition 3.2. A function § € C1([0,T]) is a lower-solution of the problem (1)-(2) if ||§ '||e < @, ¥(8 ") € C1([0,T]),
(W(E'®)) = £(6.60,5'®), teloT] 3)
8'(0) = &6'(T) and §(0) = 5(T). 4

Definition 3.3. A function y € C1([0,T]) is an upper-solution of the problem (1)-(2) if ||y || < @, ¥ (¥ ") € C1([0, T,

o' ®)) < fLr®.r'®), telor), 5)
y'(0) <y '(T) and y (0) =y (). ©)

Definition 3.4. A lower-solution § of (1)-(2) is said to be strict if every solution u of (1)-(2) with u(t) = &(t) on [0,T] is such that
u(t) > 6(t) on[0,T].

Definition 3.5. A upper-solution y of (1)-(2) is said to be strict if every solution u of (1)-(2) with u(t) < y(t) on [0,T] is such that
u(t) <y(t)on|[o0,T].

Remark 3.1.

e  Alower solution of (1)-(2) is strict if the inequality (4) is strict for all t € [0, T];
e An upper solution of (1)-(2) is strict if the inequality (6) is strict for all ¢t € [0, T].

Theorem 3.1. Assume that:

1. there exists a lower-solution § of the problem (1)-(2);
2. 3R >0 such that

T
u, = R and ||u’||oo <a> j f(t,u(t),u’(t))dt > 0. 7
0

Then the problem (1)-(2) admits at least one solution u such that §(t) < u(t) forall ¢t € [0,T].
Proof. See Theorem 3.2 and its proof in (Goli & Adjé, 2016).
Theorem 3.2. Assume that:

1. there exists an upper-solution y of the problem (1)-(2);
2. 3R >0 such that

T
uy < —Rand ||u’||c>o <a> f f(t,u(t), u'(t))dt < 0. (8)
0
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Then the problem (1)-(2) admits at least one solution u such that u(t) < y(t) forallt € [0,T].

Proof. See (Goli & Adjé, 2016).

Theorem 3.3. Assume that there exist a lower-solution § and an upper-solution y of (1)-(2) such that

3t € [0,T] such that §(%) > y(f);

Then the problem (1)-(2) admits at least one solution u, such that

min{&(t,), ¥y (t)} < u(ty) < max{§(t,), y(tu)}

for some t,, € [0,T] and

[lul| < max{|isl]_, |Ivl]_}+aT.

Proof. See Theorem 1 and its proof in (Bereanu and Al, 2013).

4. Existence of multiple solutions

a.

Existence of at least two solutions
Theorem 4.1. Assume that:
1. there exist a strict lower-solution § and a strict upper-solution y of (1)-(2) such that
Ite [0,T], 6(t) >y(t);
2. 3R >0 suchthat

T
u, = Rand |[W||  <a = f f(tu@®,uw' (t))dt > 0. (9
0

Then the problem (1)-(2) admits at least two solutions u and w such that:
o §(t) < u(t) forallte [0,T].

e y(ty) < u(ty) < 6(ty) forsome t,, € [0,T].

Proof. By Theorem 3.1. and the fact that § is strict, the problem (1)-(2) admits
at least one solution u such that

6(t) < u(t) forall t€[0,T]. (10)
Using the Theorem 3.3, the problem (1)-(2) admits at least one solution w such that
y(tw) = min{8(t,,), y(tu)} < w(t,) < max{5(t,), y(t,)} = 8(tw). 1y

Using (10) and (11), we have u # w.

Theorem 4.2. Assume that:
1. there exist a strict lower-solution § and a strict upper-solution y of (1)-(2) such that
3te [0,T] () > y(@);
2. 3R >0 such that

T
uy < —Rand ||u’||Oo <a> f f(t,u(t),u’(t))dt < 0. (12)
0

Then the problem (1)-(2) admits at least two solutions v and w such that:
o v(t)< y() forallte [0,T];
o y(ty) < u(ty) < 48(ty,) forsome t,, € [0,T].

Proof. By Theorem 3.2. and the fact that y is strict, the problem (1)-(2) admits
at least one solution v such that

v(t) < y(t) forall t €[0,T]. (13)
Using the Theorem 3.3,, the problem (1)-(2) admits at least one solution w such that
y(tw) = min{8(t,), y(t,)} < w(ty) < max{d(t,), y(ty)} = 8(tw) (14

Using (13) and (14), we have v # w.
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Corollary 4.1. Assume that:
1.
ul_i)r_nw f(t,u,v) = —o0 or ul_i)rngf(t, u,v) = 400
uniformly in {(t,v); (t,v) € [0,T] X [—a, al};
2. there exist a strict lower-solution § and a strict upper-solution y of (1)-(2).
Then the problem (1)-(2) has at least two solutions.

Corollary 4.2. Assume that:
1.
lim f(t,u,v) = —o0 or lirp ft,u,v) =+oo
UuU—>—00 u—>+oo
uniformly in {(t,v); (t,v) € [0,T] X [—a,al};
2. thereexist § € Randy € Rsuchthat § >y and f(t,6,0) < 0and f(t,y,0) >0,Vt€E[O0,T].

Then the problem (1)-(2) has at least two solutions.

Example 4.1. Consider the problem

v \ =62+ (D)2 + =9 + t*(u' (D) + cos(u(t))), t e [0,1],

(
\Ji-wey)

u'(0) =u'(1), u(0)= u(d),

We can take § = 1 and y = —10.
We have:
lim f(t,u,v) =+
u—-+0o
uniformly in {(¢,v); (t,v) € [0,T] X [—a,a]},
(6,00 = f(£,1,0) = t2 4+ (1)> = 9 + t*(0 + cos(1))
= t2-8+t*(0 + cos(1)) <0,
f(,y,0) = f(t,1,0) = t2 + (—10)%2 — 9 + t*(0 + cos(1))
= t2+ 91+ t*(0 + cos(—10)) < 0.
Using Corollary 3.2, we deduce the existence of at least two solutions.

b. Existence of at least three solutions
Theorem 4.3. Assume that:
1. there exist a strict lower-solution § and a strict upper-solution y of (1)-(2) such that
3te [0,T] () > y(@);
2. 3R >0 such that

T
u; = R and ||u’||Oo <a :>J- f(t,u(t),u’(t))dt >0
0

and

3R, > 0 such that
T
uy < —R, and ||u’||oo <a > f f(t,u(t),u’(t))dt < 0.
0

Then the problem (1)-(2) admits at least three solutions u, v and w such that:

e §(t) < u(t) forallte [0,T];
e ()< y(t) forallte [0,T];
o y(tw) < u(ty) < 46(ty) forsomet,, €[0,T].
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Proof. By Theorem 3.1. and the fact that § is strict, the problem (1)-(2) admits
at least one solution u such that
() < u(t) forall t€0,T]. (15)
By Theorem 3.2. and the fact that y is strict, the problem (1)-(2) admits
at least one solution v such that
v(t) < y(t) forall t €[0,T]. (16)

Using the Theorem 3.3,, the problem (1)-(2) admits at least one solution w such that
y(tw) = min{8(t,), ¥ (t,)} < w(t,) < max{s(ty), y(tw)} = 8(tw). a7
Using (15), (16) and (17), we have u # v, u # w and v # w.

Corollary 4.3. Assume that:
1.
lim f(t,u,v) =—o0 and lirp ft,u,v) =+
U—>—00 u—>+oo
uniformly in {(¢,v); (t,v) € [0,T] X [—a,a]};
2. there exist a strict lower-solution § and a strict upper-solution y of (1)-(2).
Then the problem (1)-(2) has at least three solutions.

Corollary 4.4. Assume that:

1.
lim f(t,u,v) =—oc0 and liIIl ft,u,v) =+
U—>—00 u—+oo
uniformly in {(¢,v); (t,v) € [0,T] X [—a, al};
2. thereexist§ € Randy € Rsuchthatd >y and f(t,6,0) <0and f(t,y,0) >0,vte][0,T].
Then the problem (1)-(2) has at least three solutions.

Example 4.2.
u'(t)

NS NS + (u(®))® —12u(t) — 1 + sin t* (W'(t) + arctan(u(t))), t € [0,1],
1-(w®)

u'(0) =u'(1), u(0)= u(d),

We can take § =2 and y = —2.
We have:
lim f(t,u,v) =—c0 and liT ft,u,v) = +oo
UuU—>—co u—+oo
uniformly in {(¢,v); (t,v) € [0,T] X [—a,a]},
f(£,8,0) = f(£,2,0) == —17 +sint* (0 +arctan(2)) <0,
ft,v,0)= f(t,—2,0) = g + 15 + sin t* (0 + arctan(—2)) > 0.

Using Corollary 3.4, we deduce the existence of at least three solutions.
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