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| ABSTRACT 

We study the existence of multiple solutions of the quasilinear equation   

(𝜓(𝑢′(𝑡)))′ =  𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)),   𝑡 ∈ [0, 𝑇] 

submitted to periodic boundary conditions, where 𝜓: ] − 𝑎, 𝑎[→ ℝ, with 0 < 𝑎 <  +∞, is an increasing homeomorphism such that 

𝜓(0) = 0. Combining some sign conditions and lower and upper solutions method, we obtain existence of two or Three 

solutions. 
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1. Introduction 

This work is devoted to the study of the existence of solutions of the the quasilinear equation 

                                (𝜓(𝑢′(𝑡)))
′
=  𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)), ∀   𝑡 ∈ [0, 𝑇]                                   (1) 

submitted to periodic boundary conditions 

                                      𝑢′(0) = 𝑢′(𝑇),                   𝑢(0) = 𝑢(𝑇).                                                   (2) 

Where 𝜓: ] − 𝑎, 𝑎[→ ℝ with 0 <  𝑎 <  +∞, is an increasing homeomorphism such that 𝜓(0) = 0. 

In section 2, we give some preliminaries results.  

In section 3, combining some sign conditions and existence only one strict lower solution and one strict upper solution of 

problem (1)-(2), we prove existence of at least two or three solutions of problem (1)-(2). We show in this section that the 

existence of at least two or three solutions for certain forced second order quasilinear equations submitted to periodic boundary 

conditions is guaranteed by the presence of one strict lower solution and one strict upper solution. 

2. Methodology 

Generally, in the lower and upper solutions method, to show existence of at least one solution of a problem, we need existence 

of at least one lower solution and at least one upper solution. In the case of the sign conditions method, we usually need two 

sign conditions to show existence of at least one solution of a problem. 
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In (Goli & Adjé, 2016), the authors proved existence of solutions of (1)-(2), when there exists only one sign condition and only 

one lower solution or only one upper solution. 

We use the results proven by Goli and Adjé to show: 

• Existence of at least two solutions of (1)-(2), when we have only one sign condition, one strict lower solution and one 

strict upper solution. 

• Existence of at least three solutions of (1)-(2), when we have two sign conditions, one strict lower solution and one strict 

upper solution. 

• For some periodic problems, the existence of two real numbers 𝑎 and 𝑏 such that 𝑎 > 𝑏 and 𝑓(𝑡, 𝑎, 0) < 0 and 

𝑓(𝑡, 𝑏, 0) > 0, ∀𝑡 ∈ [0, 𝑇], allows us to affirm the existence of 2 or 3 solutions. 

 

3. Preliminary 

Definition 3.1. A solution of problem (1)-(2) is a function 𝑢 ∈ 𝐶1([0, 𝑇]) such that 𝜓(𝑢′) ∈ 𝐶1([0, 𝑇]), ||𝑢′||∞ < 𝑎 and satisfies (1)-

(2). 

Definition 3.2. A function 𝛿 ∈ 𝐶1([0, 𝑇]) is a lower-solution of the problem (1)-(2) if ||𝛿 ′||∞ < 𝑎, 𝜓(𝛿 ′) ∈ 𝐶1([0, 𝑇]),  

                                         (𝜓(𝛿′(𝑡)))
′
≥  𝑓(𝑡, 𝛿(𝑡), 𝛿 ′(𝑡)),     𝑡 ∈ [0, 𝑇],                                               (3) 

                                                  𝛿′(0) ≥ 𝛿′(𝑇)  𝑎𝑛𝑑  𝛿(0) = 𝛿(𝑇).                                                           (4) 

Definition 3.3. A function 𝛾 ∈ 𝐶1([0, 𝑇]) is an upper-solution of the problem (1)-(2) if ||𝛾 ′||∞ < 𝑎, 𝜓(𝛾 ′) ∈ 𝐶1([0, 𝑇]),  

                                            (𝜓(𝛾′(𝑡)))
′
≤  𝑓(𝑡, 𝛾(𝑡), 𝛾 ′(𝑡)),     𝑡 ∈ [0, 𝑇],                                            (5) 

                                                   𝛾 ′(0) ≤ 𝛾 ′(𝑇)  𝑎𝑛𝑑  𝛾 (0) = 𝛾 (𝑇).                                                      (6) 

Definition 3.4. A lower-solution 𝛿 of (1)-(2) is said to be strict if every solution 𝑢 of (1)-(2) with 𝑢(𝑡)  ≥ 𝛿(𝑡) on [0, 𝑇] is such that 

𝑢(𝑡)  >  𝛿(𝑡) on [0, 𝑇]. 

Definition 3.5. A upper-solution 𝛾 of (1)-(2) is said to be strict if every solution 𝑢 of (1)-(2) with 𝑢(𝑡)  ≤ 𝛾(𝑡)  on [0, 𝑇] is such that 

𝑢(𝑡)  < 𝛾(𝑡) on [0, 𝑇]. 

Remark 3.1.   

• A lower solution of (1)-(2) is strict if the inequality (4) is strict for all 𝑡 ∈ [0, 𝑇]; 

• An upper solution of (1)-(2) is strict if the inequality (6) is strict for all 𝑡 ∈ [0, 𝑇]. 

Theorem 3.1. Assume that: 

1. there exists a lower-solution 𝛿 of the problem (1)-(2); 

2. ∃ 𝑅 > 0  such that 

                                      𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

>  0.                            (7) 

Then the problem (1)-(2) admits at least one solution 𝑢 such that 𝛿(𝑡)  ≤  𝑢(𝑡) for all 𝑡 ∈  [0, 𝑇]. 

Proof. See Theorem 3.2 and its proof in (Goli & Adjé, 2016). 

Theorem 3.2. Assume that: 

1. there exists an upper-solution 𝛾 of the problem (1)-(2); 

2. ∃ 𝑅 > 0  such that 

                                      𝑢𝑀 ≤ −𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

<  0.                            (8) 
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Then the problem (1)-(2) admits at least one solution 𝑢 such that 𝑢(𝑡)  ≤  𝛾(𝑡) for all 𝑡 ∈  [0, 𝑇]. 

Proof. See (Goli & Adjé, 2016). 

Theorem 3.3. Assume that there exist a lower-solution 𝛿 and an upper-solution 𝛾 of (1)-(2) such that 

∃𝑡̃ ∈  [0, 𝑇] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿(𝑡̃) > 𝛾(𝑡̃); 

Then the problem (1)-(2) admits at least one solution 𝑢, such that 

min{𝛿(𝑡𝑢), 𝛾(𝑡𝑢)} ≤  𝑢(𝑡𝑢) ≤ max{𝛿(𝑡𝑢), 𝛾(𝑡𝑢)} 

for some 𝑡𝑢 ∈ [0, 𝑇] and 

||𝑢||
∞
≤ max {||𝛿||

∞
, ||𝛾||

∞
} + 𝑎𝑇. 

Proof. See Theorem 1 and its proof in (Bereanu and Al, 2013). 

4. Existence of multiple solutions 

a. Existence of at least two solutions 

Theorem 4.1. Assume that: 

1. there exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that 

∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 

2.  ∃ 𝑅 > 0  such that 

                                      𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

>  0.                            (9) 

               Then the problem (1)-(2) admits at least two solutions 𝑢 and 𝑤 such that: 

• 𝛿(𝑡) <  𝑢(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]. 

• 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 

 

Proof. By Theorem 3.1. and the fact that 𝛿 is strict, the problem (1)-(2) admits 

at least one solution 𝑢 such that 

                                            𝛿(𝑡) <  𝑢(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [0, 𝑇].                                                  (10) 

Using the Theorem 3.3, the problem (1)-(2) admits at least one solution 𝑤 such that 

          𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤).                (11) 

Using (10) and (11), we have 𝑢 ≠ 𝑤. 

 

Theorem 4.2. Assume that: 

1. there exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that 

∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 

2.  ∃ 𝑅 > 0  such that 

                                      𝑢𝑀 ≤ −𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

<  0.                            (12) 

             Then the problem (1)-(2) admits at least two solutions 𝑣 and 𝑤 such that: 

• 𝑣(𝑡) <  𝛾(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 

• 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 

 

Proof. By Theorem 3.2. and the fact that 𝛾 is strict, the problem (1)-(2) admits 

at least one solution 𝑣 such that 

                                           𝑣(𝑡) <  𝛾(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [0, 𝑇].                                                      (13) 

Using the Theorem 3.3., the problem (1)-(2) admits at least one solution 𝑤 such that 

          𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤).                 (14) 

Using (13) and (14), we have 𝑣 ≠ 𝑤. 



NEW MULTIPLE SOLUTIONS FOR SOME PERIODIC BOUNDARY VALUE PROBLEMS WITH ψ-LAPLACIAN    

Page | 12  

Corollary 4.1. Assume that: 

1.  

    lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞  𝑜𝑟 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

2. there exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2). 

  Then the problem (1)-(2) has at least two solutions. 

 

Corollary 4.2. Assume that: 

1.  

    lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞  𝑜𝑟 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

2. there exist 𝛿 ∈ ℝ and 𝛾 ∈ ℝ such that 𝛿 > 𝛾 and 𝑓(𝑡, 𝛿, 0) < 0 and 𝑓(𝑡, 𝛾, 0) > 0, ∀ 𝑡 ∈ [0, 𝑇]. 

Then the problem (1)-(2) has at least two solutions. 

 

Example 4.1. Consider the problem 

(

 
𝑢′(𝑡)

√1 − (𝑢′(𝑡))
2

)

 

′

 = 𝑡2 + (u(t))2 + −9 + 𝑡4(u′(t) + cos(u(t))) ,   𝑡 ∈  [0,1],

𝑢′(0) = 𝑢′(1),        𝑢(0) =  𝑢(1),   

 

 

We can take 𝛿 = 1 and 𝛾 = −10. 

We have:  

lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}, 

  𝑓(𝑡, 𝛿, 0)  =  𝑓(𝑡, 1,0) = 𝑡2 + (1)2 − 9 + 𝑡4(0 + cos(1))  

                      =  𝑡2 − 8 + 𝑡4(0 + cos(1))  < 0, 

  𝑓(𝑡, 𝛾, 0)  =  𝑓(𝑡, 1,0) = 𝑡2 + (−10)2 − 9 + 𝑡4(0 + cos(1))  

                      =  𝑡2 + 91 + 𝑡4(0 + cos(−10))  < 0. 

Using Corollary 3.2, we deduce the existence of at least two solutions. 

 

b.  Existence of at least three solutions 

Theorem 4.3. Assume that: 

1. there exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that 

∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 

2.  ∃ 𝑅 > 0  such that 

        𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

>  0   

                   and  

∃ 𝑅1 > 0  such that 

          𝑢𝑀 ≤ −𝑅1 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

<  0.  

               Then the problem (1)-(2) admits at least three solutions 𝑢, 𝑣 and 𝑤 such that: 

• 𝛿(𝑡) <  𝑢(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 

• 𝑣(𝑡) <  𝛾(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 

• 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 
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Proof. By Theorem 3.1. and the fact that 𝛿 is strict, the problem (1)-(2) admits 

at least one solution 𝑢 such that 

                                            𝛿(𝑡) <  𝑢(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [0, 𝑇].                                                   (15) 

By Theorem 3.2. and the fact that 𝛾 is strict, the problem (1)-(2) admits 

at least one solution 𝑣 such that 

                                           𝑣(𝑡) <  𝛾(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [0, 𝑇].                                                      (16) 

 

Using the Theorem 3.3., the problem (1)-(2) admits at least one solution 𝑤 such that 

          𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤).                 (17) 

Using (15), (16) and (17), we have 𝑢 ≠ 𝑣, 𝑢 ≠ 𝑤 and 𝑣 ≠ 𝑤. 

 

Corollary 4.3. Assume that: 

1.  

    lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞  𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

2. there exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2). 

  Then the problem (1)-(2) has at least three solutions. 

 

              Corollary 4.4. Assume that: 

1.  

    lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞  𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

2. there exist 𝛿 ∈ ℝ and 𝛾 ∈ ℝ such that 𝛿 > 𝛾 and 𝑓(𝑡, 𝛿, 0) < 0 and 𝑓(𝑡, 𝛾, 0) > 0, ∀ 𝑡 ∈ [0, 𝑇]. 

  Then the problem (1)-(2) has at least three solutions. 

 

              Example 4.2.  

(

 
𝑢′(𝑡)

√1 − (𝑢′(𝑡))
2

)

 

′

 =
𝑡

3
+ (u(t))3 − 12𝑢(𝑡) − 1 + sin 𝑡4 (u′(t) + arctan(u(t))) ,   𝑡 ∈  [0,1],

𝑢′(0) = 𝑢′(1),        𝑢(0) =  𝑢(1),   

 

We can take 𝛿 = 2 and 𝛾 = −2. 

We have:  

lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞  𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ 

    uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}, 

  𝑓(𝑡, 𝛿, 0)  =  𝑓(𝑡, 2,0) =
𝑡

3
− 17 + sin 𝑡4 (0 + arctan(2))  < 0, 

  𝑓(𝑡, 𝛾, 0) =  𝑓(𝑡, −2,0) =
𝑡

3
+ 15 + sin 𝑡4 (0 + arctan(−2)) > 0. 

Using Corollary 3.4, we deduce the existence of at least three solutions. 
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