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| ABSTRACT 
The Philippine rice market is characterized by high volatility and a critical impact on national food security, necessitating the use 
of accurate forecasting tools for price monitoring and risk mitigation. The primary objective of this study was to determine the 
optimal forecasting methodology for the nominal wholesale price of regular-milled rice. The analysis utilized 430 monthly 
observations (January 1990 – October 2025), partitioned into an 80% training set (344 data points) and a 20% out-of-sample 
test set (86 data points). Eight time series models including traditional methods: Seasonal Naïve, ETS, ARIMA, TBATS, Theta, and 
Prophet, and machine learning algorithms: Random Forest and XGBoost were evaluated. Performance was assessed using Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), supplemented by Ljung–
Box and Lilliefors tests for residual diagnostics. Evaluation revealed that the Random Forest model achieved the best predictive 
accuracy, confirming the superior capability of non-linear models to capture the volatile patterns present in the wholesale price 
data. Residual diagnostics indicated a fundamental trade-off between structural adequacy and predictive accuracy. The final 
projection forecasts that wholesale prices will stabilize within the Php 34.00/kg to Php 35.50/kg range through 2027. The general 
price stability predicted for the next two years suggests policy focus may prioritize long-term supply-side improvements rather 
than short-term demand controls, unless external shocks occur. 

| KEYWORDS 

non-stationary, ensemble methods, food security, price volatility, time series forecasting, random forest 

 | ARTICLE INFORMATION 

ACCEPTED: 10 December 2025                     PUBLISHED: 21 December 2025                       DOI: 10.32996/jmss.2025.6.6.3 

 

1. Introduction  

Rice is one of the staple foods in the Philippines. Its wholesale price plays a central role in economic stability, inflation 
management, and household food security. The significance of rice extends deeply into the political economy; its price can 
influence election results and overall economic stability, especially given historical government policy challenges in stabilizing 
prices or improving production (Intal & Garcia, 2005). Because rice is essential to nearly every Filipino family, changes in its price 
have immediate social and economic implications. Given the high volatility inherent in Philippine rice prices, stabilization through 
market mechanisms alone is inadequate, necessitating strategic government intervention for economic stability and household 
food security (Montano, 2025). Consequently, accurate price forecasting becomes an essential tool. Government agencies, such as 
the Department of Agriculture, rely on timely monitoring and projections to guide buffer stock decisions, set import allocations, 
and implement measures aimed at maintaining stable and affordable rice prices. 

However, generating accurate forecasts for the wholesale price of rice remains a technically demanding task due to the 
complex underlying dynamics of the time series itself. Montano (2025) suggests that while rice price demonstrates general annual 
patterns, its notable volatility and persistence mean that recurring seasonal impacts may be minimal and potentially masked by 
larger underlying shocks and non-linear trends. These complex characteristics challenge many traditional forecasting models that 
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typically assume stable, linear patterns. To address, this study compares an extensive set of models, including both traditional 
forecasting methods and modern machine learning (ML) approaches, in terms of performance and diagnostic assessments. 

This study aims to offer a methodological contribution by investigating a forecasting model that may serve as a useful input 
for short-to-medium term policy and planning in the Philippine rice sector. To achieve this, the study seeks to examine the overall 
structure of the monthly wholesale price series of regular-milled rice from January 1990 to October 2025, to assess and compare 
the predictive performance of different forecasting models, and to identify the best-performing model to generate point forecasts 
and 95% confidence intervals for wholesale rice prices through December 2027.  
1.1 Literature Review 

The wholesale price of a commodity represents the price for large-volume transactions intended for further resale or 
processing (Philippine Statistics Authority, PSA, n.d.). This price is the spot value received by wholesalers for bulk lots, calculated 
net of discounts, allowances, or rebates, and is economically composed of the producer price, trade margin, tax mark-up, and 
distribution cost. PSA computes national data from the monthly average wholesale price of regular-milled rice collected across 
various provinces. Given that wholesale price data represent an aggregated, time-dependent economic series subject to market 
and policy shocks, accurate prediction requires models capable of handling high volatility and temporal structure. 

Forecasting commodity prices is a mature yet rapidly evolving field. Researchers generally rely on three major methodological 
traditions: classical statistical models such as Autoregressive Integrated Moving Average (ARIMA) and Error-Trend-Seasonality 
(ETS); decomposition and complex-seasonality methods such as Theta, TBATS (Trigonometric seasonality, Box-Cox transformation, 
ARMA errors, Trend and Seasonal), and Prophet; and ML and ensemble methods such as Random Forest (RF) and Extreme Gradient 
Boosting (XGBoost). 

Classical time series models remain foundational in commodity price forecasting. ARIMA and its seasonal extension (SARIMA) 
explicitly model autocorrelation, differencing, and moving-average components. While these are effective for linear and stationary 
series (Hyndman & Athanasopoulos, 2021), they address non-stationary trends through the differencing process. However, they 
often struggle when the underlying data exhibit nonlinearity, structural breaks, or shocks, phenomena common in agricultural 
price series. In the Philippine context, ARIMA and its extensions were reported to have performed adequately in modeling rice 
production (Caquilala et al., 2025) and wheat moisture content variations for grain storage systems (Rubillos et al., 2024). 

As time series data have grown more complex, decomposition and hybrid approaches have gained prominence. The Theta 
Method, which decomposes a series into modified trend components, has been shown to perform exceptionally well in major 
forecasting competitions, including the M-Competitions (Hyndman & Billah, 2001). TBATS, an extension of exponential smoothing 
using Box–Cox transformations and trigonometric seasonality, was specifically developed to model multiple and non-integer 
seasonality common in long agricultural series (De Livera et al., 2011). Prophet, introduced by Facebook, has also been widely 
adopted due to its ability to capture nonlinear trends, accommodate user-defined changepoints, and model multiple seasonal 
patterns effectively, making it suitable for socio-economic variables subject to structural changes (Taylor & Letham, 2018). 

In parallel, ML techniques have emerged as powerful tools for forecasting. Unlike traditional models, ML does not assume 
linearity or fixed parametric relationships and can detect nonlinear interactions and higher-order patterns. RF, introduced by 
Breiman (2001), uses ensembles of decorrelated decision trees trained on bootstrap samples, resulting in robust and low-variance 
predictions. XGBoost, a gradient boosting algorithm developed by Chen and Guestrin (2016), builds trees sequentially to minimize 
prediction error and has achieved state-of-the-art results in a wide range of forecasting applications. Recent applications in 
agricultural forecasting show that ML ensembles can outperform traditional models when nonlinearities are present (Li et al., 2024). 

Despite these advancements, notable gaps remain in literature. Few studies have conducted comprehensive comparisons 
spanning simple benchmarks (Seasonal Naïve), classical statistical models (ARIMA, ETS), decomposition-based methods (Theta, 
TBATS, Prophet), and modern ML models (Random Forest, XGBoost) using long historical datasets of Philippine rice prices. To 
address this gap, the present study offers a general comparison using a long-term (1990–2025) series of Philippine wholesale rice 
prices, aiming to identify robust forecasting tools that support informed decision-making in rice market management. 

2. Materials and Methods 

2.1 Data Source and Preprocessing 
This study utilized monthly secondary data on the wholesale price of regular-milled rice in the Philippines from January 1990 

to October 2025, covering 430 monthly observations. The data were retrieved from Ricelytics, a platform developed by the Data 
Analytics Center of the Department of Agriculture – Philippine Rice Research Institute (DA–PhilRice) in partnership with DA–
National Rice Program. The variable of interest was the nominal wholesale price of regular-milled rice in Philippine pesos per 
kilogram (Php/kg). Prices were retained in nominal form because the objective of the study was to assess forecasting accuracy 
rather than analyze changes in real purchasing power. 
2.2 Exploratory Analysis and Preprocessing 

Initial analysis was performed to understand the underlying structure and patterns in the wholesale price data. Visual 
inspection through line plots revealed a long-term upward movement. Monthly boxplots highlighted recurring peaks and dips. 
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These patterns justified the use of forecasting models that incorporate seasonal adjustments. For model estimation and accuracy 
assessment, the first 80% of the series, equivalent to 344 monthly observations from January 1990 to August 2018 were used as 
the training dataset. The remaining 20%, composed of 86 observations from September 2018 to October 2025, served as the test 
dataset. This data split ensured that all forecasts were assessed strictly on data not used during model estimation, thereby 
preventing information leakage. No manual transformations were applied to the series; instead, any required differencing or 
detrending was handled internally by the respective models. 
2.3 Time Series Models 

The study incorporated eight different models with six traditional time series methods: Seasonal Naïve, ETS, ARIMA, TBATS, 
Theta, and Prophet and two models based on ML techniques: RF and XGBoost. Each model was chosen to represent a distinct 
modeling philosophy, ensuring comprehensive evaluation of forecasting performance. 

The Seasonal Naïve model served as the baseline and predicts each month’s value as equal to the corresponding month of 
the preceding year. Despite its simplicity, it is effective in highly seasonal series and establishes a minimum standard that more 
sophisticated models are expected to outperform. 

The ETS model was estimated using the ets() function, which automatically determines the optimal combination of error type 
(additive or multiplicative), trend structure (none, additive, multiplicative, or damped), and seasonal pattern. ETS models rely on 
exponentially decreasing weights, giving greater influence to more recent observations. This makes ETS suitable when recent values 
are more informative for forecasting than earlier historical data. 

The ARIMA model was estimated using the auto.arima() function, which identifies the optimal combination of autoregressive 
terms, differencing, and moving-average components automatically based on Akaike Information Criteria (AIC). The auto.arima() 
function can detect and incorporate both seasonal and non-seasonal structures as needed, selecting parameters that best capture 
temporal dependencies in the data. This approach models the current value of the series as a function of its past observations and 
forecast errors, making it suitable for time series with autocorrelation and moderate seasonal patterns.  

The TBATS model was included to address potentially complex seasonal structures, nonlinear growth patterns, and variance 
instability. TBATS incorporates multiple features: trigonometric representations of seasonal components, Box–Cox transformation 
for variance stabilization, ARMA residual adjustment, and trend damping. Its structure makes it flexible for data where seasonality 
does not maintain a constant magnitude over time, which is a plausible characteristic in agricultural prices. 

The Theta method was included due to its strong empirical forecasting performance and theoretical simplicity. It decomposes 
the time series into modified components known as theta lines, adjusts curvature through a scaling parameter, and recombines 
them to form forecasts. This method has shown competitive performance in large forecasting competitions and is especially robust 
for series with linear growth patterns and smooth long-term evolution. 

The Prophet model was implemented to capture multiple seasonal cycles through an additive decomposition approach. 
Prophet supports both nonlinear trends and structural shifts, making it suitable for economic and market data that can experience 
abrupt changes due to policy adjustments or external shocks such as supply disruptions. 

RF was applied using lagged values of the series as predictors. Because RF is an ensemble of regression trees constructed 
through bootstrapped samples and random feature splits, it captures nonlinear interactions in historical patterns without requiring 
explicit statistical assumptions such as stationarity. 

Finally, XGBoost was implemented using lag-based predictors similar to RF but uses gradient boosting, where successive trees 
optimize the residual error from previous trees. XGBoost applies regularization penalties that minimize overfitting, enabling robust 
forecasting even with high‐dimensional predictor sets. 

Together, these models offer a wide spectrum of predictive methods, from simple seasonal replication to additive 
decomposition, autoregressive dynamics, nonlinear decision boundaries, and gradient‐based optimization, thereby ensuring 
meaningful performance comparison. 
2.4 Model Evaluation and Diagnostics 

Models were evaluated using their predictive accuracy on the test set. Three measures were calculated: Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). MAE quantifies the average absolute 
deviation of forecasts from actual prices and serves as a straightforward indicator of typical forecast errors. RMSE emphasizes 
larger errors by squaring deviations, which is informative in price forecasting, where occasional spikes or drops may occur. MAPE 
expresses forecast accuracy relative to actual price magnitudes, expressed as a percentage, thereby enabling intuitive interpretation 
across different price levels. Forecast performance was compared across models, and the optimal model was selected based on 
overall lower error magnitudes. 

Diagnostic assessment was performed to ensure that residuals satisfied key assumptions. The Ljung–Box test was applied to 
test for autocorrelation in the residuals. Models that produced nonsignificant results were interpreted as adequately capturing 
serial dependence. The Lilliefors modification of the Kolmogorov–Smirnov test was used to evaluate normality of residuals, a 
desirable property particularly for probabilistic forecasting and interval estimation.  
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2.5 Software and Computational Environment 
All procedures were executed in R version 4.4.1 within R Studio environment. Data handling and visualization were performed 

using tidyverse packages including ggplot2 package. Statistical models were fitted using the forecast package, Prophet was 
implemented through the prophet package, and ML models were executed using randomForest package and xgboost package.  

3. Results and Discussion 

3.1 Exploratory Analysis of Regular-Milled Rice Wholesale Prices 
The initial analysis of the monthly wholesale price series, spanning from 1990 to 2025, confirmed two essential 

characteristics that guided the selection of appropriate time series models: a non-stationary trend and seasonality. 

 
Figure 1. Monthly Wholesale Price of Regular-Milled Rice in the Philippines (Jan 1990 – Oct 2025) 

Figure 1 shows that the wholesale price of regular-milled rice exhibits a general upward price movement but with fluctuations 
over the three and a half decades. This is consistent with long-term macroeconomic factors like persistent inflation and rising 
production costs. The early period (1990 to 2007) showed gradual, relatively stable price growth from approximately Php 8/kg to 
Php 22/kg. This stability was abruptly broken by the 2008 global price shock, which triggered a massive, near-vertical spike, 
elevating the price floor to approximately Php 34/kg. The price roughly stabilized at this higher level but maintained increased 
volatility, culminating in a strong acceleration in the trend visible around 2023, where prices pushed towards the highest recorded 
values, reaching approximately Php 47/kg. The clear lack of stationarity and the presence of these structural breaks dictated the 
need for robust modeling techniques capable of adjusting to a changing mean and variance over time. 

  
Figure 2. Boxplot of Monthly Wholesale Price of Regular-Milled Rice  

Figure 2 suggests the existence of a twelve-month seasonal pattern that can be linked to the national rice cultivation cycle. 
Rice crops in the Philippines are typically cultivated during both the wet and dry seasons, with the Department of Agriculture 
implementing a crop calendar that defines the planting periods (Cauba et al., 2025). The wet season spans from March 16 to 
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September 15, while the dry season runs from September 16 to March 15. The planting window for the wet season typically runs 
from April to August, with peak activity in June-July. The planting window for the dry season runs from September to February, 
peaking in November-December (Gutierrez et al., 2019). 

The overall national pattern observed in Figure 2 shows that the highest median prices from April to October coincide with 
the lean season, reflecting the general decline in market inventory before the major harvests. Conversely, the lowest median prices 
are recorded in January (Php 20.57/kg) and February (Php 20.80/kg), which immediately follows the peak wet season harvest and 
the availability of supply from the main crop. This predictable annual cycle validates the fundamental decision to utilize seasonally-
aware time series models to capture the seasonality observed in the regular-milled rice wholesale price. 
3.2 Model Fitting 
Table 1. Model Specifications and Parameters 

Table 1 shows the specifications and optimized parameters of all eight forecasting models used in the comparative analysis. 
The baseline Seasonal Naïve model utilized only the monthly seasonal factor of 12. The automated selection procedure for the ETS 
model settled on an ETS(M,A,A) structure, combining a Multiplicative (M) error with an Additive (A) trend and Additive (A) 
seasonality. This combination minimizes AIC and reflects the observed upward trend (Additive Trend) combined with an error term 
that likely grows proportionally to the series' magnitude (Multiplicative Error). The ARIMA model selection, utilizing the auto.arima() 
function, resulted in the specifications ARIMA(3,1,2) with a seasonal period of 12. This specification indicates a requirement for 
first-order differencing (d=1) to achieve stationarity, and the resulting structure includes a drift parameter of 0.0943, confirming 
the presence of a persistent underlying linear trend in the differenced series. 

Model Parameters Notes 
1. Seasonal Naïve No tunable parameters Baseline model with seasonal frequency = 12 
2. ETS Model: ETS(M,A,A) 

Alpha = 0.999 
Beta = 0.0905 
Gamma = 0.0004 
Seasonal period = 12 

Trend and seasonal components automatically 
selected by ets() using AIC 

3. ARIMA ARIMA(3,1,2) 
Coefficients: 
ar1 = 1.6478 
ar2 = -0.8620 
ar3 = -0.0582 
ma1 = -1.7090 
ma2 = 0.9309 
drift = 0.0943 

Model selected automatically by auto.arima(); 
non-seasonal ARIMA(3,1,2) 

4. TBATS Lambda (Box-Cox) = 0.0003 
Trend included: TRUE 
Damping applied: FALSE 
ARMA errors included: FALSE 
Seasonal periods: 12 

TBATS handles multiple seasonality, damping, 
and ARMA residuals 

5. Theta Method: Theta 
Drift: 0.044 

Theta model decomposition; robust for trending 
series 

6. Prophet Trend type: linear 
Number of changepoints: 25 
Seasonality included: monthly, yearly 

Prophet decomposes time series into trend, 
seasonality, and holidays; additive seasonality 
and automatic changepoints 

7. RF ntree = 500 
mtry = 10 
nodesize = 3 
Number of lagged predictors = 60 
Importance computed = TRUE 

RF uses lagged predictors for recursive 
forecasting and captures nonlinear patterns; 
optimal lag determined through lag-length 
search; and hyperparameters tuned via grid 
search 

8. XGBoost nrounds = 1000 
max_depth = 12 
eta = 0.1 
subsample = 0.8 
colsample_bytree = 0.9 
Objective = reg:squarederror 
Number of lagged predictors = 72 

Gradient-boosted trees with regularization and 
recursive forecasting using lagged features; 
optimal lag determined through lag-length 
search; and hyperparameters tuned via grid 
search 
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The TBATS model applied a Box–Cox transformation with (𝜆𝜆=0.0003), suggesting the original price scale was nearly optimal 
for modeling and that variance stabilization was minimally required. The Theta method utilized a small drift parameter of 0.044, 
which is responsible for projecting the long-term linear trend of the series. The Prophet model automatically identified 25 trend 
change-points, a high quantity consistent with the multiple structural shifts and periods of pronounced volatility observed 
historically. This flexible structure allows the model to adapt quickly to changes in the series' mean growth rate. 

For the ML models, the RF model was configured with 60 lagged predictors and 500 trees (ntree). The XGBoost model utilized 
a higher number of 72 lagged predictors and used parameters like max_depth=12 and eta=0.1 for gradient boosting. Both 
ensemble methods relied on a high number of historical data points to implicitly capture seasonality and non-linear dependencies 
for their recursive forecasts. 

 
Figure 3. Visual Comparison of Model Fit and Forecast Paths of the Different Models 
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Figure 3 illustrates how each model's fitted values (red line) tracked the training data (black line) and how their predictions 
(orange line) projected the series into the test period (blue line), along with the 95% confidence interval (shaded orange region).  

Extrapolative models like Theta (e), ARIMA (c), and ETS (b) generated predictions that generally maintained the steep upward 
trend established by the training data. For instance, the ETS model, though showing a pronounced trend, severely underestimated 
the magnitude of prices until the end of the test set, leading to a massive error. 

Conversely, models based on lagged inputs, such as RF (g) and XGBoost (h), display a relatively flat or moderately increasing 
trajectory for the prediction path. This behavior is characteristic of recursive ML models, which struggle to extrapolate a steep 
trend that lies significantly outside the range of their training features. This visual projection contrasts sharply with the steep 
upward path of the actual prices in the test period. 

Furthermore, the confidence intervals (CI, shaded orange region) for the traditional models Seasonal Naïve (a), ETS (b), ARIMA 
(c), TBATS(d), and Theta (e) were visibly wider, reflecting a greater range of uncertainty. This outcome contrasts sharply with the 
tighter CI displayed by the ML models, RF (g) and XGB (h). This visual comparison of differing trend extrapolation strategies and 
uncertainty across model classes establishes the context for the numerical accuracy comparison in the subsequent section. 
3.3 Model Evaluation and Diagnostic 

Table 2 shows the predictive accuracy of the different models assessed using MAE, RMSE, and MAPE on the test period 
September 2018 to October 2025.  It shows that RF has the lowest MAE at 3.60, indicating that it produced the smallest average 
deviation from actual prices. RF also has the lowest RMSE at 4.30, suggesting strong performance even when larger errors were 
penalized. In terms of MAPE, RF again registered the lowest at 9.36%, which implies the highest relative accuracy. 
Table 2. Comparison of Predictive Accuracy 

The next best performers were the XGBoost model (second lowest across all accuracy metrics: MAE=3.68, RMSE=4.63, 
MAPE=9.37%) and the Seasonal Naïve model (third lowest across all accuracy metrics: MAE=3.88, RMSE=4.98, and MAPE=9.87%). 
The high accuracy of RF and the robust performance of the Seasonal Naïve model confirm the necessity of focusing on strong 
annual periodicity and non-linear patterns when forecasting volatile commodity prices such as the wholesale price of regular-
milled rice. This result is consistent with studies emphasizing the superior performance of tree-based models in capturing localized 
non-linear dependencies over purely linear projections (Montgomery, 2018). 

Conversely, the ETS model recorded the highest error values (MAE=20.22, RMSE=21.83, MAPE=54.75%). This performance 
deficiency suggests that the structural sensitivity of the ETS(M,A,A) model specification was unable to adapt to the abrupt trend 
shifts and extreme volatility observed in the historical data. This finding supports the literature on the fragility of exponential 
smoothing decomposition models when facing significant structural breaks in economic time series (Barrow, 2020). 

Table 3 summarizes the residual diagnostics of the models assuming a significance level 𝛼𝛼=0.05. The Ljung–Box test revealed 
that ARIMA, TBATS, Theta, and RF produced residuals without significant autocorrelation (p>0.05), indicating that they sufficiently 
captured the time dependence in the data. This means these models successfully extracted all predictable linear structure. In 
contrast, the Seasonal Naïve, ETS, Prophet, and XGBoost models showed significant autocorrelation, suggesting they failed to fully 
fit the seasonal or trend components. This challenges the structural completeness of these models for this dataset. 
Table 3. Residual Diagnostic Test Results 

Model MAE RMSE MAPE 
1. Seasonal Naïve 3.88 4.98 9.87 
2. ETS 20.22 21.83 54.75 
3. ARIMA 7.48 8.34 21.27 
4. TBATS 4.94 5.28 13.52 
5. Theta 5.45 5.94 15.33 
6. Prophet 5.13 5.68 14.43 
7. RF 3.60 4.30 9.36 
8. XGBoost 3.68 4.63 9.37 

Model Ljung-Box p-value Lilliefors p-value Residuals Interpretation 
1. Seasonal Naïve 0.00 1.93 x 10-32 Autocorrelated and not normally distributed 
2. ETS 0.00 1.83 x 10-28 Autocorrelated and not normally distributed 
3. ARIMA 0.80 3.53 x 10-41 Not autocorrelated and not normally distributed 
4. TBATS 0.17 1.54 x 10-24 Not autocorrelated and not normally distributed 
5. Theta 0.08 4.31 x 10-43 Not autocorrelated and not normally distributed 
6. Prophet 0.00 3.30 x 10-16 Autocorrelated and not normally distributed 
7. RF 0.12 1.24 x 10-28 Not autocorrelated and not normally distributed 
8. XGBoost 0.00 0.06 Autocorrelated and normally distributed 
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Normality testing using the Lilliefors test showed that the residuals for nearly all models were not normally distributed 
(p<0.05). The sole exception was the XGBoost model, which exhibited approximately normal residuals (p=0.06), suggesting a 
distribution of errors that adhered to theoretical statistical assumptions. This contradicts the non-normality found in the majority 
of time series models tested and is often indicative of effective error regularization within the boosting framework. For the models 
that failed the normality test, this deviation is likely due to the presence of large, non-linear price shocks such as the 2008 spike 
that skew the error distribution. This is consistent with literature on the non-normality of residuals following major economic crises 
or periods of high volatility in commodity markets (Corsi, 2008). 

The overall results highlight a practical trade-off between predictive accuracy and diagnostic adequacy. The RF model provided 
the best predictive accuracy, suggesting its non-linear approach successfully minimized final error. Conversely, models like ARIMA 
demonstrated structural adequacy but yielded higher errors. Similarly, the XGBoost model, despite achieving near-best accuracy, 
was not structurally adequate as its residuals showed significant autocorrelation. This situation is often described in forecasting 
literature as the bias-variance trade-off, where the flexible structure of ML models allows for a lower variance (better accuracy) at 
the cost of higher diagnostic bias (Yu & Eng, 2020). 
3.4 Best Fit Model and its Forecast 

The RF model was identified as the best-fit model for forecasting the wholesale price of regular-milled rice in the Philippines, 
having demonstrated the lowest error across all three primary accuracy metrics in the out-of-sample test. Following its validation, 
the RF model was re-estimated using the complete dataset (January 1990 – October 2025) to maximize its predictive capacity for 
the future period. Table 4 presents the point forecast for November 2025 to December 2027, including the 95% confidence interval, 
which is also visually depicted in Figure 4.  
Table 4. RF Model Forecast of Regular-Milled Rice Price with 95% Confidence Interval 

The forecast projects that the wholesale price of regular-milled rice will generally remain within the Php 34.00/kg to Php 
35.50/kg range through the end of 2027. The forecasts show a characteristic dampening trend, where the prices slightly decrease 
from the starting point of Php 34.62/kg in November 2025 to a low of Php 34.03/kg in May 2026, before gradually climbing again. 
The width of the 95% confidence interval (e.g., from Php 30.26 to Php 38.26 in February 2026) reflects the high degree of price 
volatility present in the historical series. 
 

Date Point Forecast Lower 95% Upper 95% 
Nov-2025 34.62 32.54 36.69 
Dec-2025 34.54 31.27 37.80 
Jan-2026 34.45 30.60 38.31 
Feb-2026 34.26 30.26 38.26 
Mar-2026 34.16 30.16 38.16 
Apr-2026 34.08 30.09 38.06 
May-2026 34.03 30.13 37.93 
Jun-2026 34.10 30.02 38.18 
Jul-2026 34.15 30.27 38.04 
Aug-2026 34.26 30.58 37.94 
Sep-2026 34.31 30.76 37.86 
Oct-2026 34.36 30.49 38.22 
Nov-2026 34.39 30.54 38.24 
Dec-2026 34.45 30.61 38.30 
Jan-2027 34.47 30.58 38.37 
Feb-2027 34.55 30.80 38.31 
Mar-2027 34.59 30.97 38.20 
Apr-2027 34.62 30.95 38.29 
May-2027 34.70 30.91 38.48 
Jun-2027 34.90 30.93 38.87 
Jul-2027 35.08 31.14 39.03 
Aug-2027 35.10 31.55 38.65 
Sep-2027 35.04 32.13 37.94 
Oct-2027 34.91 32.82 37.00 
Nov-2027 34.97 33.01 36.93 
Dec-2027 35.02 33.15 36.89 
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Figure 4. RF Model Forecast for Nov 2025 to Dec 2027 with 95% Confidence Interval (shaded orange region)  

The general price stability predicted for the next two years suggests that broad market interventions, like implementing price 
caps, may not be necessary unless external shocks occur. Policy focus may remain on supply-side improvements rather than 
demand-side controls, as the wholesale price trend is generally contained within the established range. Moreover, the results 
highlight the importance of selecting forecasting models capable of capturing non-linear dependencies and localized patterns 
such as seasonal fluctuations, nonlinear trends, and structural changes when modeling the price of rice. The strong performance 
of the RF model suggests that its ensemble tree structure may be particularly effective for practical forecasting applications in rice 
price monitoring. Improved forecast accuracy can support policy decisions related to buffer stock management, importation 
planning, inflation monitoring, and market stabilization efforts. Private sector stakeholders may also benefit from these forecasts 
for procurement scheduling and risk management. 
3.5 Limitations 

This study, while providing a rigorous comparative analysis, is subject to several limitations that inform the direction of future 
research. The analysis relied exclusively on secondary data of nominal prices and a strictly univariate modeling approach, which 
excludes external variables such as global prices, production volume, weather factors, and other relevant variables. Furthermore, 
the study used nationally aggregated data, which may mask important regional differences in price dynamics. Future research may 
build upon this study by exploring multivariate forecasting models that incorporate relevant socioeconomic indicators and 
specifically investigate hybrid or ensemble frameworks. 

4. Conclusions 

This study confirmed that the Philippine wholesale price of rice is governed by two dominant forces: a strong, non-stationary 
trend and a predictable annual seasonal cycle. Models employing non-linear local pattern recognition offered superior predictive 
accuracy over traditional linear and structural approaches. The RF model was identified as the most effective algorithm, 
demonstrating the capability to minimize errors despite highly volatile commodity markets characterized by structural breaks. The 
final projection anticipates that wholesale prices will stabilize within the current range through 2027. 
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