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1. Introduction 

Kelly [1] in 1963, introduced the bitopological space (𝑋, 𝑇1, 𝑇2) where X is a nonempty set, 𝑇1and 𝑇2 are topologies on X. The 

notion of pre-open set in a topological space was introduced by Mashhour et al. [3] In 2005 Alaa Erees studied Pre-open set in 

Bitopological Spaces [10]. Csaszar [4] in 1997, defined generalized open sets in generalized topological spaces. Levine [2] in 

1963, introduced the notion of semi-open sets in bitopological spaces. In 2011, N. Rajesh [5] defined preopen sets in Ideal 

Bitopological Spaces. In 2018 S. Hussain [6] defined Generalized Open Sets. In 2008 Young Bae Jun, Seong Woo Jeong, Hyeon 

Jeong Lee and Joon Woo Lee [8] defined Pre-limit point, pre-derived set, Pre-interior, Pre-closure, Pre- interior points, Pre-

border, Pre-frontier, Pre-exterior points in topological spaces.  

 

Preliminaries: Throughout the paper (𝑋, 𝑇1, 𝑇2) will represent a bitopological space and for any subset 𝐴 of 𝑋, by 𝑇𝑖 − 𝑐𝑙(𝐴) & 

𝑇𝑖 − 𝑖𝑛𝑡(𝐴) we denote Closure and Interior of 𝐴 with respect the topology 𝑇𝑖 ; 𝑖 = 1,2 and 𝑖 ≠ 𝑗 

 

Definition 1: [9] A subset 𝐴 of 𝑋, where (𝑋, 𝑇1, 𝑇2) is a bitopological space, is defined to 𝑏𝑒 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 (in brief 𝑖𝑗 − 𝑝 −

𝑜𝑝𝑒𝑛) if 𝐴 ⊆ 𝑇𝑖 − 𝑖𝑛𝑡 (𝑇𝑗 − 𝑐𝑙 (𝐴)) & complement of 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set is called 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑 (in brief 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑) where 

𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗. 

Definition 2: [11] A subset A of a bitopological space (𝑋, 𝑇1, 𝑇2) is said to be 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 if               𝐴 ⊆ 𝑇𝑖 − 𝑖𝑛𝑡(𝑇𝑗 − 𝑐𝑙 (𝑇𝑖 −

𝑖𝑛𝑡(𝐴))) & complement of 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 set is called 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 where 𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗.where 𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗. 

We denote the family of 𝑖𝑗 −  𝑝 − 𝑜𝑝𝑒𝑛 sets by 𝑇𝑖𝑗
𝑝𝑜

 and the family of 𝑖𝑗 −  𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets by 𝑇𝑖𝑗
𝑝𝑐

 

We denote the family of 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 sets by 𝑇𝑖𝑗
𝛼𝑜 and the family of 𝑖𝑗 −  𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets by 𝑇𝑖𝑗

𝛼𝑐 

Example 1: 

 Let (𝑋, 𝑇1, 𝑇2) be a bitopological space, where 𝑋 =  {𝑎, 𝑏, 𝑐, 𝑑},  

  𝑇1 =  {∅, {𝑏}, {𝑏, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑑}, 𝑋} 
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𝑇2 =  {∅, {𝑏}, {𝑑}, {𝑏, 𝑑}, 𝑋}. 

 Then T1-closed sets: ∅, {𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋. 

&  T2-closed sets: ∅, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋. 

We now present the following table for the determination of 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 sets & 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 sets. 

A⊆X T2-cl(A) T1-int(T2-cl(A)) T1-cl(A) T2-int(T1-cl(A)) T1-int(T2-cl(T1-int (A))) T2-int(T1-cl(T2-int (A))) 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 
{𝑎} {𝑎, 𝑐} ∅ {𝑎, 𝑑} {𝑑} ∅ ∅ 
{𝑏} {𝑎, 𝑏, 𝑐} {𝑏, 𝑐} {𝑏, 𝑐} {𝑏} {𝑏, 𝑐} {𝑏} 
{𝑐} {𝑎, 𝑐} ∅ {𝑐} ∅ ∅ ∅ 
{𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑑} {𝑎, 𝑑} {𝑑} ∅ {𝑑} 

{𝑎, 𝑏} {𝑎, 𝑏, 𝑐} {𝑏, 𝑐} 𝑋 𝑋 {𝑏, 𝑐} {𝑏} 
{𝑎, 𝑐} {𝑎, 𝑐} ∅ {𝑎, 𝑐, 𝑑} ∅ ∅ ∅ 
{𝑎, 𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑑} {𝑎, 𝑑} {𝑑} {𝑎, 𝑑} {𝑑} 
{𝑏, 𝑐} {𝑎, 𝑏, 𝑐} {𝑏, 𝑐} {𝑏, 𝑐} {𝑏} {𝑏, 𝑐} {𝑏} 
{𝑏, 𝑑} 𝑋 𝑋 𝑋 𝑋 {𝑏, 𝑐} 𝑋 
{𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑑} {𝑎, 𝑐, 𝑑} ∅ ∅ {𝑑} 

{𝑎, 𝑏, 𝑐} {𝑎, 𝑏, 𝑐} {𝑏, 𝑐} 𝑋 𝑋 {𝑏, 𝑐} {𝑏} 
{𝑎, 𝑏, 𝑑} 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 
{𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑑} {𝑎, 𝑐, 𝑑} ∅ {𝑎, 𝑑} {𝑑} 
{𝑏, 𝑐, 𝑑} 𝑋 𝑋 𝑋 𝑋 {𝑏, 𝑐} 𝑋 

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 

 

𝑇12
𝑝𝑜

= {∅, {𝑏}, {𝑑}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

𝑇12
𝑝𝑐

= {∅, {𝑎}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋} 

𝑇21
𝑝𝑜

= {∅, {𝑏}, {𝑑}, {𝑎, 𝑏}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

𝑇21
𝑝𝑐

= {∅, {𝑎}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋} 

𝑇12
𝛼𝑜= {∅, {𝑏}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, 𝑋} 

𝑇12
𝛼𝑐= {∅, {𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋} 

𝑇21
𝛼𝑜= {∅, {𝑏}, {𝑑}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

𝑇21
𝛼𝑐= {∅, {𝑎}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑋} 

The following observations are worth noting: 

(a) Every 𝑇𝑖– 𝑜𝑝𝑒𝑛 set is 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 or every 𝑇𝑖 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

(b) Every 𝑇𝑖– 𝑜𝑝𝑒𝑛 set is 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 or every 𝑇𝑖 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

(c) Every 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 set is an 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛. (i.e. 𝑇𝑖𝑗
𝛼𝑜 ⊆ 𝑇𝑖𝑗

𝑝𝑜
) 

(d) Every 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is an 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑. (i.e. 𝑇𝑖𝑗
𝛼𝑐 ⊆ 𝑇𝑖𝑗

𝑝𝑐
) 

(e) Arbitrary union of 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 sets is 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛. Also, arbitrary intersection of 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets is 𝑖𝑗 − 𝑝 −

𝑐𝑙𝑜𝑠𝑒𝑑. 

(f) Arbitrary union of 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 sets is 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛. Also, arbitrary intersection of 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets is 𝑖𝑗 − 𝛼 −

𝑐𝑙𝑜𝑠𝑒𝑑. 

(g) The intersection of two 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 subsets may not be ij−𝑝 − 𝑜𝑝𝑒𝑛. 

(h) The union of two 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑 subsets may not be 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

(i) The intersection of two 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 subsets is 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛. 

(j) The union of two 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 subsets is 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

Definition 3: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. A point 𝑥 ∈  𝑋 is said to be 𝑖𝑗 − 𝑝 − 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 of a subset 𝐴 of 𝑋 if for every 

𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 set G containing 𝑥 contains a point of 𝐴 other than 𝑥. 

i.e. ∀ G ∈ 𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ 
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Definition 4: The set of all 𝑖𝑗 − 𝑝 − 𝑙𝑖𝑚𝑖𝑡 points of 𝐴 is called 𝑖𝑗 − 𝑝 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 set of 𝐴. It is denoted by 𝐷𝑖𝑗
𝑝

(𝐴), 𝑖, 𝑗 = 1, 2 

Definition 5: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. A point 𝑥 ∈  𝑋 is said to be 𝑖𝑗 − 𝑝 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 of a subset 𝐴 of 𝑋 there 

exists an 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 set G such that 𝑥 ∈ 𝐺 ⊆ 𝐴 

Definition 6: The set of all 𝑖𝑗 − 𝑝 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 points of 𝐴 is called 𝑖𝑗 − 𝑝 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 of 𝐴. It is denoted by 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴), 𝑖, 𝑗 = 1, 2 

In other words, the largest 𝑖𝑗 −  𝑝 − 𝑜𝑝𝑒𝑛 set contained in 𝐴 is 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴). 

Definition 7: Let (𝑋, 𝑇1, 𝑇2) a bitopological space and 𝐴 ⊆ 𝑋. Then the set 𝐴 ∪ 𝐷𝑖𝑗
𝑝

(𝐴) is called 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 of 𝐴. It is denoted 

by 𝐶𝑙𝑖𝑗
𝑝

(𝐴)  

In other words, the smallest 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑 set containing 𝐴 is 𝐶𝑙𝑖𝑗
𝑝

(𝐴). 

Definition 8: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. A point 𝑥 ∈  𝑋 is said to be 𝑖𝑗 − 𝛼 − 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 of a subset 𝐴 of 𝑋 if for every 

𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 set G containing 𝑥 contains a point of 𝐴 other than 𝑥. 

i.e. ∀ G ∈ 𝑇𝑖𝑗
𝛼𝑜, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ 

Definition 9: The set of all 𝑖𝑗 − 𝛼 − 𝑙𝑖𝑚𝑖𝑡 points of 𝐴 is called 𝑖𝑗 − 𝛼 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 set of 𝐴. It is denoted by 𝐷𝑖𝑗
𝛼(𝐴), 𝑖, 𝑗 = 1, 2 

Definition 10: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. A point 𝑥 ∈  𝑋 is said to be 𝑖𝑗 − 𝛼 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 of a subset 𝐴 of 𝑋 there 

exists an 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 set G such that 𝑥 ∈ 𝐺 ⊆ 𝐴.  

Definition 11: The set of all 𝑖𝑗 − 𝛼 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 points of 𝐴 is called 𝑖𝑗 − 𝛼 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 of 𝐴. It is denoted by 𝐼𝑛𝑡𝑖𝑗
𝛼 (𝐴), 𝑖, 𝑗 = 1, 2.  

In other words, the largest 𝑖𝑗 −  𝛼 − 𝑜𝑝𝑒𝑛 set contained in 𝐴 is 𝐼𝑛𝑡𝑖𝑗
𝛼 (𝐴). 

Definition 12: Let (𝑋, 𝑇1, 𝑇2) a bitopological space and 𝐴 ⊆ 𝑋. Then the set 𝐴 ∪ 𝐷𝑖𝑗
𝛼(𝐴) is called 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 of 𝐴. It is 

denoted by 𝐶𝑙𝑖𝑗
𝛼 (𝐴). 

In other words, the smallest 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 set containing 𝐴 is 𝐶𝑙𝑖𝑗
𝛼 (𝐴). 

Example 2: 

Let (𝑋, 𝑇1, 𝑇2) be a bitopological space, where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑},  

𝑇1 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} and 𝑇2 =  {∅, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑋}. 

Then  𝑇1– 𝑐𝑙𝑜𝑠𝑒𝑑 sets: ∅, {𝑏}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋. 

& 𝑇3– 𝑐𝑙𝑜𝑠𝑒𝑑 sets: ∅, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋. 

We now present the following table for the determination of ij–pre-open sets. 
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A⊆X T2-cl(A) T1-int(T2-cl(A)) T1-cl(A) T2-int(T1-cl(A)) T1-int(T2-cl(T1-int (A))) T2-int(T1-cl(T2-int (A))) 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 
{𝑎} {𝑎, 𝑑} {𝑎} {𝑎, 𝑏} {𝑏} {𝑎} ∅ 
{𝑏} {𝑎, 𝑏, 𝑑} {𝑎, 𝑏} {𝑏} {𝑏} ∅ {𝑏} 
{𝑐} {𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑐, 𝑑} {𝑐} ∅ {𝑐} 
{𝑑} {𝑎, 𝑑} {𝑎} {𝑐, 𝑑} {𝑐} ∅ ∅ 

{𝑎, 𝑏} {𝑎, 𝑏, 𝑑} {𝑎, 𝑏} {𝑎, 𝑏} {𝑏} {𝑎, 𝑏} {𝑏} 
{𝑎, 𝑐} {𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} 𝑋 𝑋 {𝑎} {𝑐} 
{𝑎, 𝑑} {𝑎, 𝑑} {𝑎} 𝑋 𝑋 {𝑎} ∅ 
{𝑏, 𝑐} 𝑋 𝑋 {𝑏, 𝑐, 𝑑} {𝑏, 𝑐} ∅ {𝑏, 𝑐} 
{𝑏, 𝑑} {𝑎, 𝑏, 𝑑} {𝑎, 𝑏} {𝑏, 𝑐, 𝑑} {𝑏, 𝑐} ∅ {𝑏} 
{𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑐, 𝑑} {𝑐} {𝑎, 𝑐, 𝑑} {𝑐} 

{𝑎, 𝑏, 𝑐} 𝑋 𝑋 𝑋 𝑋 {𝑎, 𝑏} {𝑏, 𝑐} 
{𝑎, 𝑏, 𝑑} {𝑎, 𝑏, 𝑑} {𝑎, 𝑏} 𝑋 𝑋 {𝑎, 𝑏} {𝑏} 
{𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} {𝑎, 𝑐, 𝑑} 𝑋 𝑋 {𝑎, 𝑐, 𝑑} {𝑐} 
{𝑏, 𝑐, 𝑑} 𝑋 𝑋 {𝑏, 𝑐, 𝑑} {𝑏, 𝑐} {𝑎, 𝑐, 𝑑} {𝑏, 𝑐} 

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 

 

 𝑇12
𝑝𝑜

= {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

 𝑇12
𝑝𝑐

 = {∅, {𝑎}, {𝑏}, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑑}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

 𝑇21
𝑝𝑜

= {∅, {𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋. } 

 𝑇21
𝑝𝑐

= {∅, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} 

𝑇12
𝛼𝑜= {∅, {𝑎}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} 

𝑇12
𝛼𝑐= {∅, {𝑏}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

𝑇21
𝛼𝑜= {∅, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑋} 

𝑇21
𝛼𝑐= {∅, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} 

For subset 𝐴 = {𝑏, 𝑐, 𝑑} and 𝐵 = {𝑎, 𝑑} 

𝐷12
𝑝 (𝐴) = {𝑑}    𝐷21

𝑝 (𝐴) = {𝑎}   

𝐷12
𝑝 (𝐵) = ∅    𝐷21

𝑝 (𝐵) = {𝑑} 

12 − 𝑝 − 𝑖𝑛𝑡(𝐴) = {𝑏, 𝑐, 𝑑}  21 − 𝑝 − 𝑖𝑛𝑡(𝐴) ={b, c} 

12 − 𝑝 − 𝑖𝑛𝑡(𝐵) = {𝑎}  21 − 𝑝 − 𝑖𝑛𝑡(𝐵) = {𝑎, 𝑑} 

12 − 𝑝 − 𝑐𝑙(𝐴) = 𝑋   21 − 𝑝 − 𝑐𝑙(𝐴) = 𝑋 

12 − 𝑝 − 𝑐𝑙(𝐵) = {𝑎, 𝑑}  21 − 𝑝 − 𝑐𝑙(𝐵) = {𝑎, 𝑑} 

Theorem 1: Every 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 set is 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛. 

Proof:   Since, 𝑇𝑖 − 𝑖𝑛𝑡(𝐴) ⊆ 𝐴 

 ⟹ 𝑇𝑗 − 𝑐𝑙 (𝑇𝑖 − 𝑖𝑛𝑡(𝐴))  ⊆ 𝑇𝑗 − 𝑐𝑙(𝐴) 

 ⟹ 𝑇𝑖 − 𝑖𝑛𝑡(𝑇𝑗 − 𝑐𝑙 (𝑇𝑖 − 𝑖𝑛𝑡(𝐴)))  ⊆ 𝑇𝑖 − 𝑖𝑛𝑡(𝑇𝑗 − 𝑐𝑙(𝐴)) …(𝑖) 

So,  If 𝐴 ⊆ 𝑇𝑖 − 𝑖𝑛𝑡(𝑇𝑗 − 𝑐𝑙 (𝑇𝑖 − 𝑖𝑛𝑡(𝐴))) then 𝐴 ⊆ 𝑇𝑖 − 𝑖𝑛𝑡(𝑇𝑗 − 𝑐𝑙(𝐴)) 

i.e.  𝐴 is 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛 ⟹ 𝐴 is 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛. 

Corollary 1: Every 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is an 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

Proof:  Let 𝐴 is 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

⟹ 𝐴𝑐 is 𝑖𝑗 − 𝛼 − 𝑜𝑝𝑒𝑛. 
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⟹ 𝐴𝑐 is 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛. 

⟹ 𝐴 is 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

Theorem 2: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. Where 𝑇2 contains only ∅, 𝑋, and {𝑎} for a 

fixed 𝑎 ∈ 𝑋 and 𝑎 belongs to every 𝑇1 − 𝑜𝑝𝑒𝑛 set other than ∅, then 𝑇𝑖𝑗
𝑝𝑜

= 𝑇𝑖𝑗
𝛼𝑜 

Proof:  

Let 𝑎 ∈  𝑋 and let 𝐴(≠ ∅, 𝑋) be an element of 𝑇12
𝑝𝑜

.  

We want show that 𝑎 ∈ 𝐴. If not, then 𝑇2 − 𝑐𝑙(𝐴) = {𝑎}𝑐 

    ⟹ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)) = 𝑇1 − 𝑖𝑛𝑡({𝑎}𝑐) 

    ⟹ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)) = ∅ 

    ⟹ 𝐴 ⊈ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)). Which is a contradiction. 

So 𝑎 ∈ 𝐴. Also, since 𝑎 belongs to every 𝑇1 − 𝑜𝑝𝑒𝑛 set ⟹ {𝑎} ⊆ 𝑇1 − 𝑖𝑛𝑡(𝐴) 

    ⟹ 𝑇2 − 𝑐𝑙({𝑎}) ⊆ 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

    ⟹ 𝑋 ⊆ 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

    ⟹ 𝑋 = 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

  Now, 𝑇1 − 𝑖𝑛𝑡 (𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴))) = 𝑇1 − 𝑖𝑛𝑡(𝑋) = 𝑋  

which contains 𝐴. Hence, 𝐴 ∈ 𝑇12
𝛼𝑜 .  

i.e 𝑇12
𝑝𝑜

⊆ 𝑇12
𝛼𝑜, but we know that 𝑇𝑖𝑗

𝛼𝑜 ⊆ 𝑇𝑖𝑗
𝑝𝑜

. Thus 𝑇𝑖𝑗
𝑝𝑜

= 𝑇𝑖𝑗
𝛼𝑜. Hence, the theorem. 

Example 3: Let (𝑋, 𝑇1, 𝑇2) be a bitopological space, where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑},and 

𝑇1  =  {∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, 𝑋} 

𝑇2  =  {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}, 𝑋} 

𝑇1 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒: ∅, {𝑑}, {𝑐, 𝑑}, 𝑋 

𝑇2 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒: ∅, {𝑐}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋 

 

𝑇12
𝑝𝑜

= {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} 

A⊆X T1-int(A) T2-int(A) T1-cl(A) T2-cl(A) T1-int( T2-cl(A)) T2-int( T1-cl(A)) T1-int( T2-cl( T1-int(A))) 
T2-int( T1-cl( 

T2-int(A))) 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 
{𝑎} ∅ {𝑎} 𝑋 𝑋 𝑋 𝑋 ∅ 𝑋 
{𝑏} ∅ ∅ 𝑋 {𝑏, 𝑐, 𝑑} ∅ 𝑋 ∅ ∅ 
{𝑐} ∅ ∅ {𝑐. 𝑑} {𝑐} ∅ ∅ ∅ ∅ 
{𝑑} ∅ ∅ {𝑑} {𝑐, 𝑑} ∅ ∅ ∅ ∅ 

{𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 
{𝑎, 𝑐} ∅ {𝑎} 𝑋 𝑋 𝑋 𝑋 ∅ 𝑋 
{𝑎, 𝑑} ∅ {𝑎} 𝑋 𝑋 𝑋 𝑋 ∅ 𝑋 
{𝑏, 𝑐} ∅ ∅ 𝑋 {𝑏, 𝑐, 𝑑} ∅ 𝑋 ∅ ∅ 
{𝑏, 𝑑} ∅ ∅ 𝑋 {𝑏, 𝑐, 𝑑} ∅ 𝑋 ∅ ∅ 
{𝑐, 𝑑} ∅ ∅ {𝑐, 𝑑} {𝑐, 𝑑} ∅ ∅ ∅ ∅ 
{𝑎, 𝑏, 𝑐} {𝑎, 𝑏, 𝑐} {𝑎. 𝑏} 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 
{𝑎, 𝑏, 𝑑} {𝑎, 𝑏} {𝑎, 𝑏, 𝑑} 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 
{𝑎, 𝑐, 𝑑} ∅ {𝑎} 𝑋 𝑋 𝑋 𝑋 ∅ 𝑋 
{𝑏, 𝑐, 𝑑} ∅ ∅ 𝑋 {𝑏, 𝑐, 𝑑} ∅ 𝑋 ∅ ∅ 

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 
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𝑇21
𝑝𝑜

= {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} 

𝑇12
𝛼𝑜 = {∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, 𝑋} 

𝑇12
𝛼𝑜 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑} 𝑋} 

Lemma 1: If there exists 𝑎 ∈  𝑋 such that {a} is the smallest element of (𝑇2 \{∅}, ⊆), then every non-empty 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set 

contains ∩ {𝐺𝑖  |𝐺𝑖 ∈ 𝑇2 \{∅}; 𝑖 =  1, 2, 3, . . }. 

Proof. If {𝑎} is the smallest element of (𝑇2\ {∅}, ⊆), then 

∩ {𝐺𝑖  |𝐺𝑖 ∈ 𝑇2 \{∅}; 𝑖 =  1, 2, 3, . . } = {𝑎} 

Let 𝐴 be a non-empty 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set in X.  

We want show that 𝑎 ∈ 𝐴. If not, then 𝑇2 − 𝑐𝑙(𝐴) ⊆ {𝑎}𝑐 

    ⟹ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)) ⊆ 𝑇1 − 𝑖𝑛𝑡({𝑎}𝑐) 

    ⟹ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)) ⊆ ∅ 

    ⟹ 𝐴 ⊆ ∅ as 𝐴 ⊆ 𝑇1 − 𝑖𝑛𝑡(𝑇2 − 𝑐𝑙(𝐴)) 

which is a contradiction. Hence 𝑎 ∈  𝐴. Hence the theorem. 

Theorem 3: Let (𝑋, 𝑇1, 𝑇2) a bitopological space. If there exists 𝑎 ∈  𝑋 such that {a} is the smallest element of (𝑇2\{∅}, ⊆) and 

every non-empty 𝑇1 − 𝑜𝑝𝑒𝑛 set contains 𝑎 then 𝑇12
𝑝𝑜

= 𝑇12
𝛼𝑜 

Proof: Let 𝐴 be a non-empty 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set in X. 

From lemma (1) 𝑎 ∈ 𝐴. 

Also, since 𝑎 belongs to every 𝑇1 − 𝑜𝑝𝑒𝑛 set ⟹ {𝑎} ⊆ 𝑇1 − 𝑖𝑛𝑡(𝐴) 

    ⟹ 𝑇2 − 𝑐𝑙({𝑎}) ⊆ 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

    ⟹ 𝑋 ⊆ 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

    ⟹ 𝑋 = 𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴)) 

  Now, 𝑇1 − 𝑖𝑛𝑡 (𝑇2 − 𝑐𝑙 (𝑇1 − 𝑖𝑛𝑡(𝐴))) = 𝑇1 − 𝑖𝑛𝑡(𝑋) = 𝑋  

which contains 𝐴. Hence, 𝐴 ∈ 𝑇12
𝛼𝑜 .  

i.e 𝑇12
𝑝𝑜

⊆ 𝑇12
𝛼𝑜, but we know that 𝑇12

𝛼𝑜 ⊆ 𝑇12
𝑝𝑜

. Thus 𝑇12
𝑝𝑜

= 𝑇12
𝛼𝑜. Hence, the theorem. 

Theorem 4. For any subsets 𝐴 and 𝐵 of (𝑋, 𝑇1, 𝑇2), the following assertions are valid: 

1. 𝐷𝑖𝑗
𝑝 (𝐴) ⊆ 𝐷𝑖𝑗

𝛼(𝐴) 

2. If 𝐴 ⊆ 𝐵, then 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐷𝑖𝑗
𝑝

(𝐵) 

3. 𝐷𝑖𝑗
𝑝

(𝐴) ∪ 𝐷𝑖𝑗
𝑝

(𝐵) ⊆ 𝐷𝑖𝑗
𝑝

(𝐴 ∪ 𝐵) & 𝐷𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐷𝑖𝑗
𝑝

(𝐴) ∩ 𝐷𝑖𝑗
𝑝

(𝐵) 

4. {𝐷𝑖𝑗
𝑝

(𝐷𝑖𝑗
𝑝 (𝐴)) \𝐴} ⊆ 𝐷𝑖𝑗

𝑝 (𝐴) 

5. 𝐷𝑖𝑗
𝑝

(𝐴 ∪ 𝐷𝑖𝑗
𝑝 (𝐴)) ⊆ 𝐴 ∪ 𝐷𝑖𝑗

𝑝 (𝐴) 

Proof:  

1. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝 (𝐴) 

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ 

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝛼𝑜, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅  as 𝑇12

𝛼𝑜 ⊆ 𝑇12
𝑝𝑜

 

⟹ 𝑥 ∈ 𝐷𝑖𝑗
𝛼(𝐴) 

2. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝 (𝐴) 

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ 
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⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐵\{𝑥}) ≠ ∅  as 𝐴 ⊆ 𝐵 

⟹ 𝑥 ∈ 𝐷𝑖𝑗
𝑝 (𝐵) 

3. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴) ∪ 𝐷𝑖𝑗
𝑝

(𝐵) 

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ or ⟹ 𝐺 ∩ (𝐵\{𝑥}) ≠ ∅ 

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ ((𝐴 ∪ B)\{𝑥}) ≠ ∅ 

⟹ 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴 ∪ 𝐵) 

The second part has similar proof. 

4. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐷𝑖𝑗
𝑝 (𝐴)) \𝐴  

⟹ ∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

, 𝑥 ∈ 𝐺 ⇒ 𝐺 ∩ (𝐷𝑖𝑗
𝑝 (𝐴)\{𝑥}) ≠ ∅ 

 Let 𝑦 ∈ 𝐷𝑖𝑗
𝑝 (𝐴)\{𝑥}. Then 𝑦 ∈ 𝐺 and 𝑦 ∈ 𝐷𝑖𝑗

𝑝 (𝐴) so, 𝐺 ∩ (𝐴\{𝑦}) ≠ ∅ 

 Let 𝑧 ∈  𝐺 ∩ (𝐴\{𝑦}) then 𝑥 ≠ 𝑧 because 𝑥 ∉ 𝐴. 

Hence, 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ 

Therefor 𝑥 ∈ 𝐷𝑖𝑗
𝑝 (𝐴) 

5. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴 ∪ 𝐷𝑖𝑗
𝑝 (𝐴)). If 𝑥 ∈ 𝐴 then the result is obvious. So let us assume that 𝑥 ∉ 𝐴 then 𝐺 ∩ (𝐴 ∪ 𝐷𝑖𝑗

𝑝 (𝐴)\{𝑥}) ≠ ∅ 

∀ 𝐺 ∈  𝑇𝑖𝑗
𝑝𝑜

 with 𝑥 ∈ 𝐺. Then either 𝐺 ∩ (𝐴\{𝑥}) ≠ ∅ or 𝐺 ∩ (𝐷𝑖𝑗
𝑝 (𝐴)\{𝑥}) ≠ ∅. The first case implies that 𝑥 ∈ 𝐷𝑖𝑗

𝑝 (𝐴) but if 

𝐺 ∩ (𝐷𝑖𝑗
𝑝 (𝐴)\{𝑥}) ≠ ∅ then 𝑥 ∈ 𝐷𝑖𝑗

𝑝
(𝐷𝑖𝑗

𝑝 (𝐴)). Also, since 𝑥 ∉ 𝐴, we have 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐷𝑖𝑗
𝑝 (𝐴)) \𝐴. Thus from (4) 𝑥 ∈ 𝐷𝑖𝑗

𝑝 (𝐴). 

Hence the theorem. 

Theorem 5: Let 𝐴 be a subset of bitopological space (𝑋, 𝑇1, 𝑇2), then 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐶𝑙𝑖𝑗
𝑝

(𝐴) 

Proof. Let 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴) i.e. 𝑥 is a limit point of 𝐴. Then obviously 𝑥 ∈ 𝐶𝑙𝑖𝑗
𝑝

(𝐴) because if 𝑥 ∉ 𝐶𝑙𝑖𝑗
𝑝

(𝐴), then there exists a 𝑖𝑗 − 𝑝 −

𝑐𝑙𝑜𝑠𝑒𝑑 set 𝐹 such that 𝐴 ⊆  𝐹 and 𝑥 ∉  𝐹. Hence 𝑋\𝐹 is a 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 set containing 𝑥 and 𝐴 ∩ (𝑋\𝐹) ⊆ 𝐴 ∩ (𝑋\𝐴) = ∅. i.e. 𝑥 is 

not a limit point of 𝐴. This is a contradiction. 

Theorem 6. Let 𝐴 be a subset of bitopological space (𝑋, 𝑇1, 𝑇2), 𝐶𝑙𝑖𝑗
𝑝

(𝐴) = 𝐴 ∪ 𝐷𝑖𝑗
𝑝

(𝐴), 

Proof: Let 𝑥 ∈  𝐶𝑙𝑖𝑗
𝑝

(𝐴). Let 𝑥 ∉ 𝐴 then 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴). If not, and let 𝐺 ∈ 𝑇𝑖𝑗
𝑝𝑜

 &  𝑥 ∈ 𝐺  

Then 𝐺 ∩ (𝐴 − {𝑥}) = 𝐺 ∩ 𝐴 ≠ ∅, and so 𝑥 ∈  𝐷𝑖𝑗
𝑝

(𝐴). Hence 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐶𝑙𝑖𝑗
𝑝

(𝐴). The reverse 

inclusion is by 𝐴 ⊆ 𝐶𝑙𝑖𝑗
𝑝

(𝐴) and Corollary 2. 

Theorem 7: Let 𝐴 and 𝐵 be subsets of 𝑋. If 𝐴 ∈ 𝑇𝑖𝑗
𝑝𝑜

 and 𝑇𝑖𝑗
𝑝𝑜

 is a topology on 𝑋, then 𝐴 ∩ 𝐶𝑙𝑖𝑗
𝑝

(𝐵) ⊆ 𝐶𝑙𝑖𝑗
𝑝

(𝐴 ∩ 𝐵). 

Proof: Let 𝑥 ∈ 𝐴 ∩ 𝐶𝑙𝑖𝑗
𝑝

(𝐵). Then 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐶𝑙𝑖𝑗
𝑝

(𝐵) =  𝐵 ∪ 𝐷𝑖𝑗
𝑝

 (𝐵). If 𝑥 ∈ 𝐵, then          𝑥 ∈ 𝐴 ∩ 𝐵 ⊆ 𝐶𝑙𝑖𝑗
𝑝

(𝐴 ∩ 𝐵). If 𝑥 ∉ 𝐵, then 

𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐵) and so 𝐺 ∩ 𝐵 ≠ ∅ for all 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set 𝐺 containing 𝑥. Since 𝐴 ∈ 𝑇𝑖𝑗
𝑝𝑜

, 𝐺 ∩ 𝐴 is also a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set 

containing 𝑥. Hence    𝐺 ∩ (𝐴 ∩ 𝐵) = (𝐺 ∩ 𝐴) ∩ 𝐵 ≠ ∅, and consequently 𝑥 ∈ 𝐷𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐶𝑙𝑝(𝐴 ∩ 𝐵). Therefore 𝐴 ∩ 𝐶𝑙𝑖𝑗
𝑝

(𝐵) ⊆

𝐶𝑙𝑖𝑗
𝑝

(𝐴 ∩ 𝐵). 

Example 4: 

Let (𝑋, 𝑇1, 𝑇2) be a bitopological space, where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑},  

𝑇1 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} and 𝑇2 =  {∅, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑋}. 

Then we have 

𝑇12
𝑝𝑜

= {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋} which is a topology on 𝑋 also we have 

𝑇12
𝑝𝑐

 = {∅, {𝑎}, {𝑏}, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑑}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑋}. 

Let 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐵 = {𝑐, 𝑑} be two subsets of 𝑋 and {𝑎, 𝑏, 𝑐} ∈ 𝑇12
𝑝𝑜

. 
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Now, 𝐴 ∩ 𝐶𝑙12
𝑝 (𝐵) = {𝑎, 𝑏, 𝑐} ∩ {𝑐, 𝑑} = {𝑐} but 𝐶𝑙12

𝑝 (𝐴 ∩ 𝐵) = 𝐶𝑙12
𝑝 ({𝑐}) = {𝑐, 𝑑} 

This shows that in the theorem 7, equality does not hold. 

Example 5: 

Let (𝑋, 𝑇1, 𝑇2) be a bitopological space, where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑},  

𝑇1 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋} and 𝑇2 =  {∅, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑋}. 

Then we have 

𝑇21
𝑝𝑜

= {∅, {𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋. } is not a topology on 𝑋. Also, we have 

𝑇21
𝑝𝑐

= {∅, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑋}. 

Let 𝐴 = {𝑎, 𝑐} and 𝐵 = {𝑏, 𝑐, 𝑑} be two subsets of 𝑋 and {𝑎, 𝑐} ∈ 𝑇12
𝑝𝑜

. 

Now, 𝐴 ∩ 𝐶𝑙12
𝑝 (𝐵) = {𝑎, 𝑐} ∩ 𝑋 = {𝑎, 𝑐} but 𝐶𝑙12

𝑝 (𝐴 ∩ 𝐵) = 𝐶𝑙12
𝑝 ({𝑐}) = {𝑐}  

i.e. 𝐴 ∩ 𝐶𝑙𝑖𝑗
𝑝

(𝐵) ⊈ 𝐶𝑙𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) 

This shows that if 𝑇𝑖𝑗
𝑝𝑜

 is not a topology on 𝑋 then the result in theorem 7 is not true in general. 

Theorem 8: Let 𝐴 and 𝐵 subsets of a bitopological space (𝑋, 𝑇1, 𝑇2). If A is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑, then 𝐶𝑙𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐴 ∩ 𝐶𝑙𝑖𝑗
𝑝

(𝐵) 

Proof. If 𝐴 is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑, then 𝐶𝑙𝑖𝑗
𝑝 (𝐴) = 𝐴   

So 𝐶𝑙𝑖𝑗
𝑝 (𝐴 ∩ 𝐵) ⊆ 𝐶𝑙𝑖𝑗

𝑝 (𝐴) ∩ 𝐶𝑙𝑖𝑗
𝑝 (𝐵) = 𝐴 ∩ 𝐶𝑙𝑖𝑗

𝑝
(𝐵) which is the desired result. 

Lemma 2: A subset 𝐴 of a bitopological space 𝑋 is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 if and only if there exists an 𝑇𝑖 − 𝑜𝑝𝑒𝑛 set 𝐻 in 𝑋 such that 

𝐴 ⊆ 𝐻 ⊆ 𝑇𝑗 − 𝐶𝑙(𝐴). 

Proof: It has a straightforward proof. 

Lemma 3: The intersection of a 𝑇𝑖 − 𝑜𝑝𝑒𝑛 set and a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set is a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set. 

Proof. Let 𝐴 be an 𝑇𝑖 − 𝑜𝑝𝑒𝑛 set in 𝑋 and 𝐵 a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set in 𝑋. Then there exists an 𝑇𝑖 − 𝑜𝑝𝑒𝑛 set 𝐺 in X such that 𝐵 ⊆ 𝐺 ⊆

𝑇𝑗 − 𝐶𝑙(𝐵). It follows that  

𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐺 ⊆ 𝐴 ∩ {𝑇𝑗 − 𝐶𝑙(𝐵)} ⊆ 𝑇𝑗 − 𝐶𝑙(𝐴 ∩ 𝐵). 

Now since 𝐴 ∩ 𝐺 is 𝑇𝑖 − 𝑜𝑝𝑒𝑛, it follows from Lemma 2 that 𝐴 ∩ 𝐵 is pre-open. 

Theorem 9: If 𝐴 is a subset of a bitopological space (𝑋, 𝑇1, 𝑇2) and 𝑇1 is discrete topology on X, then 𝐷12
𝑝

 (𝐴) = ∅. 

Proof. Let 𝑥 be any element of 𝑋. Since 𝑇1 is discrete topology on 𝑋 so every subset of 𝑋 is 𝑇1 − 𝑜𝑝𝑒𝑛, and so 12 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛. In 

particular, the singleton set 𝐺 = {𝑥} is 12 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛. But 𝑥 ∈ 𝐺 and 𝐺 ∩ 𝐴 = {𝑥} ∩ 𝐴 ⊆ {𝑥}. Hence x is not a 12 − 𝑝𝑟𝑒 − 𝑙𝑖𝑚𝑖𝑡 

point of A, and so 𝐷12
𝑝

(𝐴) = ∅. _ 

Theorem 10: For every subset 𝐴 of a bitopological space 𝑋, we have A is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑 if and only if 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐴. 

Proof. Let us assume that 𝐴 is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑. Let 𝑥 ∉ 𝐴, i.e., 𝑥 ∈ 𝑋\𝐴. Since 𝑋\𝐴 is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛, 𝑥 is not a 𝑖𝑗 − 𝑝𝑟𝑒 −

𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 of 𝐴, i.e., 𝑥 ∉ 𝐷𝑖𝑗
𝑝

(𝐴). Hence 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐴. The reverse implication is by Theorem 5. 

Theorem 11: Let 𝐴 be a subset of 𝑋. If 𝐹 is a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑐𝑙𝑜𝑠𝑒𝑑 superset of A, then 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐹. 

Proof. By Theorem 4 and Theorem 10, A ⊆ F implies 𝐷𝑖𝑗
𝑝

(𝐴) ⊆ 𝐷𝑖𝑗
𝑝

(𝐹) ⊆ 𝐹. 

Theorem 12: Let 𝐴 be a subset of 𝑋. If a point 𝑥 ∈ 𝑋 is a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑙𝑖𝑚𝑖𝑡 point of 𝐴, then 𝑥 is also a pre-limit point of 𝐴\{𝑥}. 

Proof. The proof is Straightforward. 

Theorem 13: For subsets 𝐴 and 𝐵 of 𝑋, the following assertions are valid. 𝐼𝑛𝑡𝑖𝑗
𝛼 (𝐴) 
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(1) 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) is the union of all 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 subsets of 𝐴; 

(2) 𝐴 is 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 if and only if 𝐴 = 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴); 

(3) 𝐼𝑛𝑡𝑖𝑗
𝑝

 (𝐼𝑛𝑡𝑖𝑗
𝑝

 (A)) = 𝐼𝑛𝑡𝑖𝑗
𝑝

 (A); 

(4) 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) = 𝐴\𝐷𝑖𝑗
𝑝

(𝑋\𝐴). 

(5) X \ 𝐼𝑛𝑡𝑖𝑗
𝑝

 (A) = 𝐶𝑙𝑖𝑗
𝑝

 (X \ A). 

(6) 𝑋\𝐶𝑙𝑖𝑗
𝑝

(𝐴) = 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝑋\𝐴). 

(7) 𝐴 ⊆ 𝐵 ⇒ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵). 

(8) 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∪ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∪ 𝐵). 

(9) 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∩ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵). 

Proof. (1) Let {𝐺𝜆|𝜆 ∈ Λ} be a collection of all 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 subsets of 𝐴. If 𝑥 ∈ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴), then there exists 𝜇 ∈ Λ  such that 𝑥 ∈

𝐺𝜇 ⊆ 𝐴. Hence 𝑥 ∈ ⋃ 𝐺𝜆𝜆∈Λ  and so 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ⊆ ⋃ 𝐺𝑖𝑖∈𝐼 . On the other hand, if 𝑦 ∈ ⋃ 𝐺𝜆𝜆∈𝛬 , then y∈ 𝐺𝜈 ⊆ 𝐴 for some 𝜈 ∈ 𝛬. Thus 𝑦 ∈

𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴), and ⋃ 𝐺𝜆𝜆∈𝛬 ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴). Accordingly, 𝐼𝑛𝑡𝑖𝑗
𝑝 (𝐴) = ⋃ 𝐺𝜆𝜆∈𝛬  

(2) Proof is straightforward. 

(3) It follows from (1) and (2). 

(4) If 𝑥 ∈ 𝐴\𝐷𝑖𝑗
𝑝

(𝑋 \𝐴), then 𝑥 ∉ 𝐷𝑖𝑗
𝑝

(𝑋 \𝐴) and so there exists a 𝑖𝑗 − 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 set 𝐺 containing 𝑥 such that 𝐺 ∩ (𝑋\𝐴) = ∅. Thus 

𝑥 ∈ 𝐺 ⊆ 𝐴 and hence 𝑥 ∈ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴). This shows that 𝐴\𝐷𝑖𝑗
𝑝

(𝑋\𝐴) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴). Now let 𝑥 ∈ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴). Since 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∈ 𝑇𝑖𝑗
𝑝
 and 

𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∩ (𝑋\𝐴) = ∅, we have 𝑥 ∉ 𝐷𝑖𝑗
𝑝

(𝑋 \ 𝐴). Therefore 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) = 𝐴\𝐷𝑖𝑗
𝑝

(𝑋\𝐴). 

(5) Using (4) and Theorem 6, we have 

𝑋\𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) = 𝑋\(𝐴\𝐷𝑖𝑗
𝑝

(𝑋 \ 𝐴)) = (𝑋\𝐴) ∪ 𝐷𝑖𝑗
𝑝

(𝑋\𝐴) = 𝐶𝑙𝑖𝑗
𝑝

(𝑋\𝐴). 

(6) Using Theorem 5 and Theorem 6, we get 

𝐼𝑛𝑡𝑖𝑗
𝑝

 (X \ A) = (X \ A) \ 𝐷𝑖𝑗
𝑝

(A) = X \ (A ∪ 𝐷𝑖𝑗
𝑝

(A)) = X \ 𝐶𝑙𝑖𝑗
𝑝

 (A). 

(7) Let 𝐴 ⊆ 𝐵 and 𝑥 ∈ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴).  

⟹ 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝐴 

⟹ 𝑖𝑗 − 𝑝 − 𝑜𝑝𝑒𝑛 set 𝐺 such that 𝑥 ∈ 𝐺 ⊆ 𝐵 

⟹ 𝑥 ∈ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵)  

Hence 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) 

(8) Since 𝐴 ⊆ 𝐴 ∪ 𝐵 & 𝐵 ⊆ 𝐴 ∪ 𝐵, so using (7) 

⟹  𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∪ 𝐵) & 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∪ 𝐵) 

⟹ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∪ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∪ 𝐵)  

(9) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 & 𝐴 ∩ 𝐵 ⊆ 𝐵 

⟹ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) & 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) 

⟹ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ∩ 𝐼𝑛𝑡𝑖𝑗
𝑝 (𝐵)  

The converse of (7) in Theorem 33 is not true in general as seen in the following example. 

Example 6: In the bitopological space (𝑋, 𝑇1, 𝑇2) which is described in Example 3.  
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Let 𝐴 = {𝑏, 𝑐, 𝑑} and 𝐵 = {𝑎, 𝑏} be the subsets of 𝑋.  

Then 𝐼𝑛𝑡𝑖𝑗
𝑝 (𝐴) = ∅ and 𝐼𝑛𝑡𝑖𝑗

𝑝 (𝐵) = {𝑎, 𝑏}.  

i.e. 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐴) ⊆ 𝐼𝑛𝑡𝑖𝑗
𝑝

(𝐵) but 𝐴 ⊈ 𝐵. 

Conclusion: In this study, we defend the notion of 𝑖𝑗 − 𝑝 − 𝑙𝑖𝑚𝑖𝑡 points, 𝑖𝑗 − 𝑝 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 set, 𝑖𝑗 − 𝑝 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟, 𝑖𝑗 − 𝑝 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒, 

𝑖𝑗 − 𝛼 − 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡, 𝑖𝑗 − 𝛼 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑, 𝑖𝑗 − 𝛼 − 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟, 𝑖𝑗 − 𝛼 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒. And we have discussed related properties.  
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