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| ABSTRACT 

In addition to Alzheimer's disease, Bradykinesia, stiffness, tremor, and postural instability are symptoms of Parkinson's disease 

(PD), the second most prevalent neurological illness globally. The symptoms might overlap with those of other neurological 

diseases, making early identification difficult. This research investigates the possibilities of deep learning to detect PD through 

non-invasive voice analysis, which offers a practical and accessible diagnostic approach. Leveraging a biomedical voice dataset, 

propose to improve prediction accuracy and rectify the inherent class imbalance, a convolutional neural network (CNN) model 

can differentiate between healthy individuals and those with Parkinson's disease. SMOTE and feature selection strategies were 

employed. Experimental results demonstrate that the CNN model outperforms traditional classifiers, achieving a classification 

accuracy of 98.05%, as well as strong F1-score, precision, and recall. These results demonstrate how deep learning may help 

diagnose Parkinson's disease early and allow for quicker treatments. This study advances the development of voice-based, 

reasonably priced diagnostic tools for practical clinical applications. 

| KEYWORDS 

Neurodegeneration, Parkinson’s Disease (PD), Early Diagnosis, Multi-Omics Integration, Precision Medicine, Machine Learning 

(ML), CNN, PD Data. 

| ARTICLE INFORMATION 

ACCEPTED: 15 May 2021                              PUBLISHED: 18 June 2021                  DOI: 10.32996/jmhs.2021.2.1.5 

 

1. Introduction 

Inevitably, people age worldwide, and neurodegenerative diseases like PD and Alzheimer's are becoming more common.  After 

Alzheimer's and PD neurodegenerative illness affects around 5% of those over 65.  PD is caused by the substantia nigra's 

dopaminergic neurons degenerating.[1]. Among them, PD stands out as a complex, age-associated neurological disorder. It 

impacts more than 1% of those over 60. CMS, including bradykinesia, rigidity, and tremor, are the consequence of the slow death 

of the substance nigra monoamine neurons in PD [2]. However, these symptoms only become apparent after substantial neuronal 

loss, limiting the effectiveness of current pharmacological therapies [3]. Neurosurgical interventions, such as DBS and emerging 

laser nano-surgery techniques, offer symptomatic relief and show potential in neural circuit modulation and neuro restoration. 

Nonetheless, for these operations to be successful, careful patient selection and timing, ideally at earlier stages, are required when 

interventions may yield better outcomes [4]. 

 

This highlights the importance of identifying individuals at risk for PD before the start of any kind of motor problem.  Prodrome 

symptoms that do not include movement, include rapid eye movement sleep behaviour problem, depression, hyposmia, and 

gastrointestinal complications, present a valuable window for early detection. However, current clinical diagnostic tools fall short in 

detecting these subtle, early manifestations [5]. To bridge this gap, A systems-level picture of the biological alterations that 

precede PD symptoms may be obtained by multi-omics approaches. These techniques incorporate information from 

transcriptomics, proteomics, metabolomics, genomes, and epigenomics [6]. Because multi-omics data is so large and complicated, 
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effective interpretation requires sophisticated computational techniques. AI models can be trained to integrate multi-omics and 

clinical data for early disease detection, risk assessment, and therapeutic planning [7][8].  

 

Furthermore, AI has applications in neurosurgery, assisting in image-guided procedures, intraoperative decision-making, and 

postoperative outcome prediction, especially when integrated with omics-driven risk profiles [9]. AI-driven predictive analytics and 

advanced neurosurgical techniques represent a paradigm shift in how to treat PD [10]. This is where AI, particularly through ML 

and DL, becomes indispensable. These technologies enable the discovery of complex, nonlinear patterns in high-dimensional 

datasets, making it possible to predict PD onset, progression, and subtypes with high precision. This integrative approach offers a 

roadmap for transitioning from late-stage symptom management to early-stage disease interception. By enabling personalized, 

data-driven, and precisely targeted interventions, this model holds promise not only for improving patient outcomes but also for 

redefining how we understand and treat PD in the future. 

 

1.1 Motivation and Contribution of Paper 

This project aims to develop a speech signal early detection approach for PD that is non-invasive, accurate, and cost-effective. The 

signals should be simple to collect. Given the progressive nature of PD and the critical importance of early diagnosis for effective 

treatment, leveraging machine learning techniques, particularly a CNN-based model, offers a promising solution. The paper also 

discusses important issues including feature imbalance and redundancy, aiming in order of facilitate better clinical decision-

making and improve the precision of diagnoses. The key contributions of the study are listed below: 

 

• Utilized a voice signal-based biomedical dataset for non-invasive early detection of PD. 

• Conducted comprehensive data pre-processing, including outlier detection, missing value handling, and standardization. 

• Addressed class imbalance using the SMOTE technique to improve model generalization and fairness. 

• To determine which voice characteristics are most important for PD prediction, RFE was used. 

• Proposed a lightweight CNN architecture inspired by AlexNet, optimized for small biomedical datasets. 

• Evaluated the model with multiple performance metrics (recall, accuracy, F1-score, precision, and ROC) to guarantee a 

thorough estimation. 

1.2 Structure of paper 

This document has the succeeding structure: Section II gives an outline of the literature on PD detection that is currently 

accessible. Section III outlines the proposed approach, which includes gathering and preparing data. Section IV discusses model 

implementation, experimental results, and key findings. Finally, Section V highlights the study's shortcomings and makes 

recommendations for future research possibilities. 

 

2. Literature Review 

This survey of the literature provides an extensive synthesis of recent studies focused on Identification of PD markers.  The 

approaches are summarized in Table I, datasets, key findings, performance metrics, limitations, and proposed directions for future 

research. 

 

Gil-Martín, Montero and San-Segundo (2019) Endeavour by examining a CNN for the recognition of PD based on the movements 

of drawings. They looked at how well different orientations could discriminate when drawing and found that X and Y were the 

most effective. Spiral Diagrams from PD This analysis made use of the freely accessible Digitized Graphics Tablet dataset.   The 

optimal precision, F1-score, and AUC in this study were 96.5%, 97.7%, and 99.2%, respectively [11]. 

 

Polat (2019) found that LR modelling has identified the PD patients experiencing Fog. There are eight cases of PD in the dataset. 

An accuracy of 81.3% was attained in the classification of FoG patients with PD using acceleration data.  According to the findings, 

the suggested approach might be utilised to identify and diagnose PD using only an acceleration sensor [12]. 

 

Wroge et al. (2018) investigate how well in order to diagnose the disease, Deep neural networks and other supervised 

classification techniques might be used. In a head-to-head comparison with industry experts, their ML models achieve an 

impressive 85% accuracy when using pathological post-mortem examination as ground truth. This significantly surpasses the 

average accuracy of movement disorder specialists, who achieve 83.9% with follow-up and non-experts (73.8%) in clinical 

diagnostics [13]. 

 

Viswanathan et al. (2018) Of the 40 participants in the trial, 18 had PD and 22 were controls. To distinguish between PD and 

healthy participants, the characteristics that were retrieved were used in an SVM classifier model. Phonation /m/ produced a 93% 

classification accuracy and a 0.85 MCC, while pronunciation /a/ produced a 70% classification accuracy and a 0.39 MCC. The 

results raise the possibility of using nasal consonant-corresponding features for PD diagnosis and tracking [14]. 
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Wu et al. (2017) provide a gait sensing device that can identify PD patients from healthy controls by tracking how they walk about. 

One of their first products is a platform with force-responsive sensors that measure pressures. They proceed by gleaning gait 

characteristics from the gathered information. When compared to eight other models, the random forest model obtains a 

quantitative gait analysis accuracy of 92.49% for early PD identification, making it the clear winner, demonstrating the potential of 

this method experimental findings using nine distinct classifiers [15]. 

 

Agarwal, Chandrayan and Sahu (2016) suggested a productive method for reliably predicting Parkinson's illness utilizing voice 

samples and Extreme Learning Machines.  For in on the training dataset, the suggested technique achieves a 90.76% accuracy rate 

and a 0.81 MCC when differentiating between healthy and PD patients.    When evaluated using an independent dataset of PD 

patients, the suggested technique demonstrates an accuracy of 81.55%.  The results show that the suggested approach is 

dependable for detecting PD [16]. 

 

Bhalchandra et al. (2015) Utilizing image processing, calculate radial and gradient characteristics derived from shape-based 

information extracted from SPECT images of 163 patients in the early stages of Parkinson's disease and 187 healthy controls 

drawn from the Parkinson's disease PPMI.  The two are classified using support vector machines and discriminant analysis, utilizing 

these features and the SBR values, which are also given by the PPMI. A high classification accuracy of 99.42% is observed. 

According to the implication, these models may help physicians diagnose PD early [17]. 

 

Table I outlines ML for Parkinson’s detection, guiding readers to see the variability in approaches, the strong accuracy levels and 

the different types of data used. Although progress is being made, studies are often restricted by small datasets, as bigger, 

multimodal inputs are needed and clinical use requires them to be validated. 

 

Table 1: Summary of Recent Studies Parkinson disease prediction using machine learning 

Author Methodology Datasets Findings Limitation / 

Recommendation 

Gil-Martín, 

Montero & 

San-Segundo 

(2019) 

Convolutional Neural 

Network (CNN) using 

FFT (0–25 Hz) of 

drawing movements 

PD Spiral 

Drawings Using 

Digitized Graphics 

Tablet 

F1-score: 97.7%, AUC: 

99.2%; Accuracy: 96.5%,  

best performance with 

X and Y directions 

Dataset limited to drawing 

tasks; recommend 

expanding to multimodal 

input for broader diagnosis 

Polat (2019) Logistic Regression, 

Linear/Quadratic/Cubic 

SVM, kNN 

Acceleration 

signals from PD 

patients 

Accuracy: 81.3% for 

FoG classification 

Small sample size; more 

diverse data and larger 

cohort recommended 

Wroge et al. 

(2018) 

Supervised learning 

with Deep Neural 

Networks 

Dataset with post-

mortem validated 

PD diagnoses 

Accuracy: 85%, 

outperforming non-

expert and specialist 

clinical diagnosis 

Suggests ML can assist 

diagnosis; real-world 

application needs larger 

validation 

Viswanathan 

et al. (2018) 

SVM classifier on 

phonation features 

(/m/, /a/) 

40 subjects (18 

PD, 22 control) 

Nasal consonant /m/: 

93% accuracy, MCC: 

0.85; vowel /a/: 70% 

accuracy, MCC: 0.39 

Limited subject pool; 

recommend further studies 

with more diverse phonetic 

samples 

Wu et al. 

(2017) 

Random Forest vs. 8 

classifiers 

386 subjects (218 

healthy, 168 PD) 

RF accuracy: 92.49%; 

demonstrates effective 

gait-based PD 

classification 

Platform performance 

dependent on walking 

condition; field testing is 

needed 

Agarwal et al. 

(2016) 

ML Classification/ 

Supervised learning 

Training and 

independent PD 

datasets 

Training accuracy: 

90.76%, Test accuracy: 

81.55%, MCC: 0.81 

Results show promise; 

larger datasets and real-

time tests suggested 

Bhalchandra et 

al. (2015) 

SPECT image 

processing + 

SVM/Discriminant 

Analysis 

PPMI: 163 PD, 187 

healthy 

Achieved 99.42% 

classification accuracy 

using shape features 

and SBR 

Encourages adoption in 

clinical tools; needs 

integration with broader 

imaging diagnostics 

 

3. Methodology 

This study proposes a multi-omics predictive framework for PD neurosurgery outcomes. The study started by gathering and 

integrating a dataset of patients receiving neurosurgery for PD. Data pre-processing involves handling missing values, outlier 

detection based on feature skewness, and data type conversion. To address class imbalance, SMOTE was applied, resulting in a 



JMHS 2(1): 42-52 

 

Page | 45  

balanced dataset. Standardization was then performed to normalize the data, followed by RFE to choose the characteristics that 

are most relevant to the target class. 20% of the testing set and a training set were created from the dataset. A two-

convolutional-layer architecture is suggested for a condensed CNN. A sigmoid function was used by the output layer for binary 

classification. An extensive evaluation of the model's capacity to differentiate between PD and healthy instances was carried out 

using accuracy, precision, recall, F1-score, and ROC curves. Figure 1 depicts the suggested methodology's whole structure. 

 

 

Fig 1: Flowchart for Parkinson Disease Detection 

 

Below is an explanation of each phase and procedure in a flowchart and methodology: 

 

3.1 Data Collection 

The speech signal-based PD dataset used in this work for early PD identification was developed and contributed to the UCI ML 

Repository by Oxford University's Max Little.  The 195 biological voices in the voice signal collection are separated into 48 phonetic 

categories for healthy individuals and 147 phonetic categories for PD patients.  The following provides the data analysis and 

visualization: 
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Fig 2: Pie Plot for Data Distribution 

Figure 2 displays a pie chart illustrating the training's class distribution dataset before the SMOTE algorithm. The chart reveals a 

significant class imbalance, with 75.2% of the data representing Parkinson's patients and only 24.8% representing healthy 

individuals. This imbalance indicates a potential bias in model training, as the categorizer might end up favouring the dominant 

group (Parkinson) over the minority class (Healthy), thereby highlighting the need for resampling techniques like SMOTE to ensure 

balanced learning and improve model performance. 

 

 

Fig 3: Correlation Heatmap of Data 

 

Figure 3 illustrates the correlation heatmap of the dataset, highlighting the pairwise relationships between various features. Dark 

red cells deep blue cells have high negative associations, while deep blue cells show significant positive correlations.  Interestingly, 

several MDVP-related features show high intercorrelation, suggesting potential multicollinearity, which is important to consider 

during feature selection or dimensionality reduction in model building. 

 

3.2 Data Preparation  

The act of transforming data processing is the process of transforming raw data into a usable and meaningful format. Processing. 

One of the most important procedures to guarantee the effectiveness of future actions is data analytics. The pre-processing 

involves outlier detection, data balancing, and standardization, which are discussed below: 

 

• Handling missing values: Every feature in the dataset was carefully examined about blanks. Depending on the 

distribution and kind of the corresponding characteristics, suitable imputation methods, such as mean, median, or mode 

replacement, were used when missing values were found. 

• Detecting Outliers: The PD dataset, comprising 23 voice features, was analysed for skewness to detect outliers. Features 

were grouped based on their distribution symmetry. 

• Data Type Conversion: All numerical features in the dataset were confirmed to be continuous variables. The categorical 

feature, status, was converted to an appropriate categorical (object) data type to enable proper handling during analysis. 
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3.3 SMOTE for Data Balancing 

SMOTE is a method that uses using pre-existing data on minority classes to generate new synthetic samples from that 

demographic using linear interpolation in order to enhance class balance and reduce over-fitting [18]. After applying SMOTE get a 

balanced dataset that illustrate in Figure 4. 

 

Fig 4. Pie Chart Balanced Data 

 

Figure 4 depicting the class distribution of the training dataset after applying the SMOTE. The chart shows a perfectly balanced 

dataset, with 50.0% of the instances representing healthy individuals and 50.0% representing Parkinson’s patients. This balanced 

distribution addresses the initial class imbalance and ensures that the ML model can learn equally from both classes, thereby 

enhancing its ability to generalize and improving its performance in detecting both healthy and Parkinson’s cases accurately. 

3.4 Standar Disation  

In order to make certain that every piece of data had a uniform format, the standardisation approach was used.  Equation (1), 

which divides the dataset's standard deviation by the overall average of every single feature's value, was used to standardise the 

dataset. 

 𝑠𝑡𝑎𝑛𝑑 =
𝑥−𝑚𝑒𝑎𝑛

𝑆𝑡𝑑 𝐷𝑒𝑣
 (1) 

where: 𝑥 = the original value of the feature, stand = the standardized value of 𝑥. 

 

3.5 Recursive-Feature Elimination 

Immediately following pre-processing, the connection between the features and the proportion of each feature that is positively 

and negatively correlated must be determined. The RFE algorithm, which seeks to determine the connection between each feature 

and the target feature, is used in this study. When it comes to choosing the most significant aspects that are associated with the 

successful prediction of the target feature and removing those that have a poor association with the status feature, the RFE 

algorithm is user-friendly, efficient, and effective. The association between the target feature and every dataset characteristic is 

shown in Figure 5. 

 

 

Fig 5. Bar Plot for Feature Contribution 

 

Figure 5 illustrates the contribution of various features ranked by their priority percentage. The feature 'MDVP: Fo (Hz)' shows the 

highest contribution at approximately 22%, followed closely by 'spread1' at around 27%. Other significant contributors include 

'MDVP: Fhi (Hz)' and 'MDVP: Flo (Hz)', both contributing over 10%. Features like 'MDVP: jitter (%)', 'MDVP: Shimmer', and 'NHR' 
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show moderate contributions between 2% and 6%, while 'HNR', 'RPDE', 'DFA', and 'D2' have minimal contributions, all falling 

below 2%. This visualization effectively highlights the most influential vocal features for Parkinson's diagnosis. 

3.6 Train-Test Split 

Data splitting refers to the process of dividing the dataset into subsets. The data are separated into sub-datasets containing 

training and testing in the ratio of 80:20.  

 

3.7 Proposed Convolutional Neural Network (CNN) 

CNN is divided into two sections: Two convolutional layers make up the first section, which takes into account 16 filters with 1 × 5 

dimensions. Between the convolutional layers, we added a Max pooling layer in between. This section attempts to identify the key 

characteristics of the inputs [19]. Three completely integrated categorization layers are included in the second section.  To prevent 

overfitting, dropout layers are included after convolutional and fully connected layers. Twenty percent of the weights were inactive. 

This design suggested simplifying the Alex Net CNN [20]. The CNN parameters were trained on a smaller dataset, necessitating 

this reduction [11]. The REL function every convolution layer employed was as its activation function. Along with the decoder and 

encoder, In the hidden layers of both, we used the REL function. You can see the REL function equation in Equation (2). The REL 

function is unique in that it always returns weights that are positive. Equation (3) shows that the output layer makes use of the 

sigmoid function. Following each convolution layer, a 2×2 pool size and 0.2 fallout probability two-dimensional max-pooling 

procedure was implemented [21]. 

 𝑓(𝑥) = max(0, 𝑥) (2) 

 𝑓(𝑥) =
1

1+𝑒−𝑥 (3) 

 

In both cases, 𝑥 represents the input (often a linear combination of weights and inputs, i.e., 𝑥 = 𝜔𝑇 . 𝑖𝑛𝑝𝑢𝑡 + 𝑏) passed through 

activation function 𝑓(𝑥).  

3.8 Performance Matrices of CNN Model 

Accuracy, precision, recall, and F-measure are performance measures used to assess how well the various classification matrices 

work. The following is a definition of these measures: 

 

1) Accuracy 

One way to measure how many samples were correctly recognized is using the accuracy statistic. Here is how the accuracy for 

binary classification is calculated using Equation (4): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+ 𝑇𝑛+𝐹𝑝+𝐹𝑛
 (4) 

Where the – 

• True Positives (𝑇𝑝) reflect the appropriate allocation of illustrative instances, 

• True Negatives (𝑇𝑛) reflect the proper way to assign negative instances, 

• False Positives (𝐹𝑝) reflect the improper categorization of good instances into negative groups, and 

• False Negatives (𝐹𝑛) symbolize the improper categorization of negative instances into positive category. 

 

2) Recall 

The percentage of relevant topics that are located is assessed by the Recall measure. It assesses the classifier's capacity to provide 

all pertinent topics. The recall metrics is expressed below in Equation. (5): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
  

3) Precision 

The accuracy measure determines what category of topics is applicable.  The classifier's capacity to exclude unnecessary topics is 

evaluated. Equation (6) mathematically illustrates the accuracy:  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (6) 

4) F-Measure 

The succeeding is the definition of the F-measure metric, which combines accuracy and recall in Equation. (7). 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
(1+𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

where the degree of relevance of accuracy and recall is specified by β, a real positive weighting factor. To give accuracy and recall 

the same weight in this investigation, β is set to 1 [22]. 
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5) ROC Curve 

A graphical tool called a An example of a binary classification model would be determining whether a patient has PD; the ROC 

curve would be used to evaluate the model's performance in this case.  The True Positive Rate (Sensitivity) may be observed at 

various threshold levels and compared to the False Positive Rate (1-Specificity) by using the ROC curve. 

 

4. Results Analysis and Discussions 

The simulation configuration and experimental findings of the CNN model applied to the PD dataset are presented in this part.  A 

Windows 10 PC with a For this study, the researchers utilized a computer with a Risen 5 3600 (6-core CPU), 24 GB of RAM, an RTX 

2060 Super graphics card, and the TensorFlow and Kera’s Deep Learning Frameworks. The four primary metrics used to assess the 

model accuracy, precision, recall, and F1-score are summarized in Table II. With a high accuracy of 98.05%, the model performed a 

fantastic job at differentiating between individuals with PD and those without the disease. Not only that, it proved to be effective 

in identifying actual PD cases patients with a recall of 96.16% and a precision of 97.69%, indicating a low false positive rate. With 

an F1-score of 96.92%, which strikes a compromise between recall and accuracy, the CNN model's robustness and dependability 

in accurately categorizing PD were confirmed. 

 

Table 2: Results of the proposed cnn for Parkinson’s Disease Detection 

Models CNN 

Accuracy 98.05 

Precision 97.69 

Recall 96.16 

F1-score 96.92 

 

Fig 6: Plot Accuracy Curve for CNN 

 

See Figure 6 for a 12-epoch rundown of the model's validation and training accuracy. Validation accuracy (orange line) and 

training accuracy (pink line) both show a significant increase in the first epochs, suggesting successful learning. While the 

instruction accuracy consistently rises and then stabilizes at a high level (around 0.98), the validation accuracy initially mirrors this 

trend but then surpasses the training accuracy from epoch 8 onwards, reaching a peak of 1.00 at epoch 12. This suggests that, in 

addition to learning well from the training data, the CNN model is also very good at generalizing to new data, potentially 

indicating a robust and well-performing model. Sources 

 

 

Fig 7: Plot Loss Curve for CNN 
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The model's validation and training losses during 12 epochs are shown in Figure 7.  Both the validation loss (orange line) and 

training loss (dark blue line) often decline, suggesting that the model is picking up new information from the data.  However, a 

notable spike in validation loss occurs around epoch 6, after which it resumes a decreasing trend but remains slightly higher than 

the training loss. This suggests that while the model is learning, it might be experiencing some overfitting, particularly around 

epoch 6, where its performance on unseen data temporarily worsens before improving again.  

 

 

Fig 8. Plot ROC Curve for CNN 

 

Figure 8 shows the x-axis Ratio of False Positives (1-Specificity) relative to the y-axis One measure of sensitivity is the true positive 

rate. The blue curve quickly rises to the upper-left corner before continuing along the top edge, signifying a flawless or near-

perfect classification performance, which represents the model's performance.  The fact that the AUC value is 1.00 lends credence 

to this.  On the x-axis, we have the dashed red line representing the false positive rate (1-specificity), and on the y-axis, we have 

the true positive rate (sensitivity). This line extends diagonally from (0,0) to (1,1). The blue curve represents the model's 

performance; it first climbs steeply to the top left corner, and then it continues along the top until it reaches a certain point when it 

is completely accurate. 

4.1 Comparative Analysis 

In this part, we provide a thorough analysis of the alternatives of the proposed CNN model against several established algorithms, 

as shown in Table III. The Decision Tree (DT) model shows relatively modest performance, with an accuracy of 85.5% and lower 

precision (80%) and recall (72.7%), indicating limited reliability in identifying Parkinson's cases accurately. The MLP significantly 

outperforms DT, achieving an accuracy of 95.45% with balanced and high values across all metrics (precision, recall, and F-score at 

95.5%), reflecting a well-rounded and effective model. The CNN model delivers the best performance overall, achieving 98.05% 

accuracy, with high precision (97.69%) and a strong F-score (96.92%). Despite a slightly lower recall (96.16%) compared to MLP, 

CNN demonstrates superior overall classification capability, making it the most effective model among the three for Parkinson’s 

detection in this dataset. 

 

Table 3: Various models’ classification in parkinson Detection using PD Data 

Model Accuracy Precision Recall F-

Score 

DT [23] 85.5 80 72.7 76.2 

MLP[24] 95.45 95.5 95.5 95.5 

CNN 98.05 97.69 96.16 96.92 

 

The proposed CNN-based model offers significant advantages in the early detection of PD by utilizing non-invasive voice signal 

analysis, making it a practical and accessible diagnostic approach. Its ability to automatically learn discriminative vocal features 

without manual intervention enhances diagnostic accuracy and efficiency. The integration of SMOTE for data balancing and RFE 

for feature selection ensures robust model performance, even with limited and imbalanced datasets. Compared to traditional 

classifiers, the CNN model demonstrates superior accuracy, precision, and generalization capability, making it a promising tool for 

real-time, cost-effective, and scalable clinical support systems. 

 

5. Conclusion and Future Work 

The PD, a progressive neurodegenerative disease, affects dopamine-producing neurons severely, leading to a variety of non-

motor problems as well as motor symptoms including tremors, stiffness, and delayed movement.  For successful treatment, early 

discovery is essential.  This research offers a CNN model using speech measures as a very successful method for PD 

identification.  Using speech signal data, the suggested CNN model has shown remarkable accuracy (98.05%), precision (97.69%), 
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recall (96.16%), and F1-score (96.92%) in the early detection of PD.   The prototype performs better than conventional classifiers 

like Multi-Layer and Decision Tree. Perceptron, confirming its robustness and generalization capability, as supported by ROC and 

learning curve analyses. Despite these promising results, the study faces challenges such as potential overfitting during training 

and the limitation of a relatively small and imbalanced dataset. Future research will focus on expanding the dataset with more 

diverse and larger samples, employing cross-domain validation, and exploring hybrid or transfer learning-based deep learning 

architectures to further improve model generalization, reliability, and applicability in real-world clinical settings. 
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