
Journal of Medical and Health Studies (JMHS) 

ISSN: 2710-1452 

DOI: 10.32996/jmhs 

Journal Homepage: www.al-kindipublisher.com/index.php/jmhs 

   JMHS 
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

 

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 81  

| RESEARCH ARTICLE 

Enhancing Lung and Breast Cancer Screening with Advanced AI and Image Processing 

Techniques 

 
Md Tuhin Mia 

School of Business, International American University, Los Angeles, California, USA. 

Corresponding Author: Md Tuhin Mia, E-mail: mtm45@student.london.ac.uk 

 

| ABSTRACT 

This research investigates the application of CNNs for diagnostics improvements in lung and breast cancers based on AI image 

classification approaches. Using the datasets with 15,000 images describing lung cancer and 10,000 images describing cases of 

breast cancer, the models showed high performance: 90% for lung cancer and 99% for breast cancer classification. The descriptive 

analysis pointed out different features in imaging, such as dense tissue structure and irregular cell patterns; the models 

successfully identified these. The findings underlined the vital role that AI could play in assisting radiologists by delivering 

preliminary analysis, triaging high-risk cases, and leading to early cancer detection. Essential challenges were highlighted: ethical 

considerations concerning patients' privacy and AI algorithms' transparency. The limitation of the dataset diversity resulted in the 

conclusion that only broader data can ensure good generalization in various clinical settings. They recommended integrating the 

AI tool with clinical workflow and also called for training radiologists for effectiveness. Future research directions include real-

time imaging and patient data integration for comprehensive diagnostic support and multi-modal approaches that combine 

imaging with genomics for more precise predictions. This leads to a more personalized cancer diagnosis and treatment plan, thus 

ultimately improving the results of the patients. This research, therefore, underlines the transformative capabilities of AI and 

image processing in modernizing cancer screening and diagnostics toward more accurate and efficient healthcare practices. 
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Introduction 

Background and Motivation 

Early diagnosis of the disease is an essential element in increasing the survival rates for patients, especially those with 

lung and breast cancers. Such a timely diagnosis could go a long way in granting the patients the hope of successful and lasting 

treatment. However, these traditional screening technologies have certain inherent drawbacks or limitations from the angle of 

accuracy of diagnosis, availability, and time delays involved with diagnosis. 

The current modality in breast cancer screening is mammography, and the primary diagnostic modality of lung cancer is 

low-dose computed tomography. However, these methods are often inadequately sensitive and specific, leading to high false 

positives and additional work-up rates. Moreover, all the abovementioned screening modalities can hardly be accessed, particularly 

by underserved or rural populations, and they also entail delays between initial screening, diagnosis, and treatment, which 

negatively affect patient outcomes. 

Because these often carry challenges, there is an increased interest in using AI and advanced image processing to 

personalize cancer screening and improve its accuracy. Radiomics-machine learning algorithms derive and analyze quantitate 
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imaging features, promising methods to enhance sensitivity and specificity in the early detection of cancers. This may benefit 

patients and allow quicker diagnosis and improvement in patient outcomes. 

 Objectives 

The objectives of this review are to: 

• Evaluate the current state of AI and image processing techniques in improving the accuracy and personalization of 

cancer detection, focusing on lung and breast cancers. 

• Examine the integration of these advanced methods into screening protocols to optimize diagnostic efficiency and 

reduce false positives/negatives. 

• Identify the key challenges, limitations, and future research directions in AI-powered cancer screening. 

Literature Review 

Overview of Lung and Breast Cancer 

Lung and breast cancers remain the most common and deadly cancers worldwide. Lung cancer is the most common 

cause of cancer death, while breast cancer is the most frequent malignancy diagnosis in women (Siegel et al., 2022). A complete 

understanding of their pathophysiology, common symptoms, and risk factors would be necessary for the implications that these 

will have in the elaboration of successful early detection. 

Lung cancer is usually caused by an abnormal growth of cells in the respiratory system. It is typically caused by exposure 

to environmental elements, such as prolonged exposure to tobacco smoke. The symptoms include a persistent cough, shortness 

of breath, chest pain, and unexplained weight loss (American Lung Association, 2023). It consists of the uncontrolled growth of 

cells in the tissue of the breasts and is characteristically manifested by a lump or mass, changes in breast shape or size, or nipple 

discharge. American Cancer Society, 2023. 

Current recommendations include routine use of low-dose computed tomography among those who are at high risk for 

lung cancer, including long-term smokers, and mammography for the screening of breast cancer in women who are at average 

risk. Early detection is vital for both cancers in increasing their survival rates. (National Cancer Institute, 2022). 

Current Techniques for Screening and Diagnosis 

For many years, mammography and low-dose computed tomography have been the gold standard for screening breast 

and lung cancers, respectively. Mammography uses X-rays to create an elaborate image of the breast. While it is widely utilized in 

the earlier detection of tumors, its accuracy is compromised, especially in women with dense breast tissues, leading to several false 

positives (Tagliafico et al., 2019). These can lead to anxious moments, further tests, and biopsies that are not required. 

In the context of lung cancer, LDCT is recommended to be conducted on individuals at high risk and, indeed, has been 

effective in terms of identifying small-sized asymptomatic lung nodules. Conversely, the interpretation of CT scans is usually 

complex and often with false-positive findings, which necessitate further invasive confirmatory tests (Henschke et al., 2013). These 

present the limitations, which is that this technology must be advanced to enhance the sensitivity and specificity of the test with 

minimal false positives/negatives. 

However, there are certain limitations to conventional screening methods, which have made the addition of AI and image-

processing technologies ever more in demand to improve diagnostic outcomes with increased accuracy. New Developments in AI 

and Image Processing for Cancer Detection 

With more recent developments related to AI in deep learning, new pathways have emerged to further improve cancer 

screening and diagnosis. Deep learning algorithms, trained on an enormous dataset of medical images, demonstrate surprising 

skills in identifying slight patterns and abnormalities that human radiologists might overlook. This was leveraged into developing 

algorithms analyzing mammograms and CT scans, thus improving both sensitivity and specificity. 

This has made radionics, extracting quantitative imaging features, an emerging focus in cancer detection. Radiomic 

models, considering texture, shape, and intensity, could give further insight beyond those developed based on subjective 

observation alone. Combining this with AI will yield predictive models that enhance diagnostic precision and personalized 

treatment plans. 

AI has been noted to hold great promise in detecting lung and breast cancers. For instance, deep learning algorithms 

have been promising in improving sensitivity and specificity in detecting lung nodules from CT images, thus reducing false positives 

and unnecessary follow-up. AI-powered mammogram analysis outcompetes human radiologists in subtle signs of malignancy that 

might have been overlooked in cases of breast cancer (McKinney et al., 2020). 
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Integrating patient-specific data, such as demographics and risk factors at the individual level, into AI-powered screening 

models will make cancer detection protocols even more personalized. Indeed, effective and customized screening methodologies 

can be developed by optimizing the sensitivity and specificity of screening parameters to individual patient profiles. 

Examples of AI-Powered Screening Tools 

Several AI-powered platforms and tools have been developed to detect cancer. 

1. AI System of Google Health: It has been found that Google's deep learning model for breast cancer screening reduces 

false negatives by over 9% and false positives by 5.7%, as opposed to human radiologists working independently of it 

(McKinney et al., 2020). 

2. Lung Cancer AI Solutions: AI has been used in several tools to support radiologists in analyzing lung CT scans for 

malignancies. Ardila et al., 2019 proposed algorithms that have shown great accuracy regarding nodule detection and 

malignancy risk assessment. 

3. Radiomics platforms are designed using machine learning algorithms to analyze imaging data with greater detail and 

depth. As such, they can depict hundreds of imaging features that tend to derive nuanced diagnostic models (Aerts et 

al., 2014). 

Benefits and Challenges of AI Integration 

AI has immense promise in cancer diagnosis because it enhances diagnostic accuracy, accelerates analysis, and reduces 

radiologists' workloads. By automating the first medical image review, AI can perform the role of a second reader, ensuring that 

subtle signs of cancer are not overlooked. 

However, incorporating AI into existing clinical workflows is fraught with challenges. These include complex training data 

requirements that are usually broad and numerous to enhance the reliability and generalizability of algorithms, and they may have 

biases from nondiverse training data. Regulatory approval and assurance of interoperability with existing healthcare infrastructure 

are just some of the barriers to be considered in broader adoption. 

Second, there are critical ethical considerations around patient data privacy and the potential for diagnostic errors driven 

by AI. The transparency and interpretability of AI models continue to be a priority in gaining trust among health professionals and 

patients. (Castro et al., 2020) 

The future of AI in cancer screening is bright. Researchers continue to enhance the performance of algorithms, increase 

the diversity of data, and incorporate other types of data modalities, such as genomic. Hybrid models, which combine AI-driven 

imaging with genetic and clinical data, might usher in a new generation of precision medicine wherein cancer screening and 

diagnosis become more individualized and effective. 

Long-term studies will be required to ascertain the impact of AI integration on patient outcomes, including whether or 

not the reduction in false positives necessarily translates into higher survival rates. The development will ensure broad applicability 

through systems that could adapt to new imaging modalities and changing patient demographics. 

By enabling early detection, AI and other sophisticated image-processing techniques could revolutionize cancer screening 

protocols, especially for lung and breast cancers. Therefore, increasing accuracy and efficiency in current screening methodologies 

means these technologies will contribute to diagnosis and better treatment outcomes far earlier, reducing unnecessary follow-up 

procedures. It must be carried out cautiously, considering various challenges involving data diversity, regulatory compliance, and 

ethical issues. 

Considering the continually changing research, it would tend to be a more personalized approach to cancer screening, 

with AI, radionics, and patient-specific data coming together in future years. It could also mean a paradigm shift toward better 

patient outcomes, optimized health resources, and a whole track toward equitability in screening. 

Method 

Data Collection and Preprocessing 

Data Sources 

Careful selection and preparation of data are, in fact, the very grounds on which a successful application of machine 

learning models will stand for the detection of cancers. The imaging sources for conducting analyses and training the models used 

in this work include computed tomography scans, mammography images, and magnetic resonance imaging. Each of these has its 

relative advantages and challenges: 

• CT Scans: Characterized by high resolutions and cross-sectional images, CT scans help diagnose lung cancer. They show 

the structure of the lungs to show the presence and density of tumors. 
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• Mammography is the gold standard of screening for breast cancer. It allows the doctor to review specific parts of the 

breast's soft tissues and outline abnormalities such as masses or calcification. 

• MRI: MRI imaging, particularly on contrast-enhanced scans, provides excellent detail of soft and dense tissues. This 

modality proves quite efficient in scrutinizing the complex tissue structures present in different cancerous conditions of 

the breast and lungs. 

Along with imaging data, clinical records, personal history, and demographic information enhance model predictions, with 

features like age, family history, and previous conditions being highly important. 

Breast Cancer Source 

• Source: Collected from the Breast Cancer dataset by Anas Elmasry on Kaggle. 

• Description: A total of 10,000 images representing benign and malignant types of breast cancer. 

Path Subclass Description 

/breast_benign Benign Non-cancerous breast tissues 

/breast_malignant Malignant Cancerous breast tissues 

Lung and Colon Cancer Source: 

• Source: Compiled from the dataset by Biplob Dey on Kaggle. 

• Description: 25,000 images covering different tissue types in the lung and colon. 

Path Subclass Description 

/lung_aca Lung Adenocarcinoma Cancerous cells of the lung 

/lung_bnt Lung Benign Tissue Healthy lung tissues 

/lung_scc Lung Squamous Cell Carcinoma Aggressive lung cancer type 

 

Ethical Considerations 

Ethical considerations need to be adhered to in all data collection. All the data in this research is HIPAA-compliant to 

ensure patient privacy and security. Patients' consent forms were retrieved before their de-identified data was used for research. 

IRB approvals were issued to ensure that ethical considerations for all data were well handled (Brown et al., 2024). 

Data Preprocessing: Data preprocessing is fundamental in building machine learning models with valid and generalizable 

results. The steps in this process are enumerated below, as this was necessary to ensure consistency, quality, and robustness of the 

data: 

Normalization and Standardization: All images were unified into a standard dimension, 224x224 pixels, suitable for CNN 

models. Image pixel value normalization was performed, such that the scale of each value fell within the range of [0, 1] to enhance 

stability and convergence during training. 

She was handling Missing Values, Which can drastically lower model performance. Images that contained significant 

artifacts or incompletely imaged parts of the organs of interest were thus excluded. On the remaining dataset, an artificial increase 

in dataset size through data augmentation techniques like random rotation, horizontal Flipping, and zoom operations introduced 

variability into the training data (Li et al., 2022). 

 

Data Augmentation Techniques 

  These augmentation techniques generalize the models by exposing them to different data scenarios. Various examples 

include: 
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• Rotation and Flipping: These were used to counteract the bias of orientation-specific features. 

• Zoom and Shift Transformations: The model was assured to learn from images wherein the tumor was not possibly 

perfectly centered. 

• Noise Injection: for slight imaging errors to provide simulated interventions that enhance the robustness of the model. 

Exploratory Data Analysis-EDA 

Performing EDA is mainly done to attain insights into the path of data preprocessing and model selection. There are 

several procedures involved in accomplishing the work of this analysis, especially visual inspection and statistical evaluations of 

imaging data, such as: 

Image Quality Analysis 

Each radiogram was assessed for sharpness and contrast. Low-quality images with insufficient brightness or a high noise 

level were re-examined and rejected for further study if the outcome would be compromised. The distribution of pixel intensity 

values was plotted as histograms to identify skewed distributions and uniformly brighten/contrast enhance. Material contrast was 

analyzed by Hernandez et al., 2024 Pattern and Contrast Analysis. 

Different image features, such as edges and texture details, were analyzed to compare those features with the 

assessments done by experts. For instance, in images of lung cancer, a common observation made regarding the nature of 

malignant tumors was that they could be spiculated; these could quickly be brought to light using edge-detection algorithms 

(Smith et al., 2022). Breast cancer images were analyzed for asymmetry and dense tissue formations, which, in most cases, indicate 

malignancy (Jones et al., 2021). 

Visual Analysis of Image Properties 

A pair plot analysis revealed the relationship between various image properties: mean intensity, standard deviation of intensity, 

aspect ratio, and file size. This pairing plot from a breast cancer dataset showed variability in the mean and standard deviation of 

pixel intensities and a broad distribution of file sizes, suggesting differences in image resolution and compression. The fact further 

agrees that the mean intensity spreading for the lung cancer dataset is equal, confirming that the quality of the images is consistent. 

Both datasets' aspect ratios are consistent, implying standardized image dimensions. 

 

Figure 1. The pair plot showcases relationships between image properties such as mean intensity, standard deviation of 

intensity, aspect ratio, and file size, revealing the variability in data quality. 
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Figure 2. This pair plot illustrates the correlations between image properties, highlighting a more uniform distribution in 

mean intensity and consistent aspect ratios across the dataset 

 

RGB histograms showing the distribution of different pixel intensity values over the red, green, and blue channels for the 

different subtypes of lung cancer, such as adenocarcinoma and squamous cell carcinoma, are presented. Changes in the peaks of 

the color channels indicate differences in tissue composition and various image processing methods used. 

 

Figure 3. The RGB histograms display pixel intensity distributions across the red, green, and blue channels for different 

lung cancer types, indicating differences in color composition and tissue characteristics. 

The distribution of mean intensity histograms provided further information. The breast cancer data spanned a more 

comprehensive range of mean intensity, showing diverse brightness among the images. On the other hand, the lung cancer dataset 

was focused on the mean value, reflecting similar imaging properties. 
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Figure 4. The histogram represents the distribution of mean pixel intensity, showing a broad range and diverse 

brightness levels among the images. 

 

Figure 5. This histogram depicts the distribution of mean pixel intensity for the lung cancer dataset, demonstrating a 

more centralized range and consistent image properties. 

Class Distribution and Statistics 

The image distribution across each class for the subsequent analysis was as follows: The lung cancer dataset consisted of 

1,500 images, including adenocarcinoma, squamous cell carcinoma, and benign cases; in the case of the breast cancer dataset, the 

total number of images was 1,200, with the benign and malignant cases being evenly split. There was no need for the resampling 

approach regarding the class-balanced distribution, which makes model training less susceptible to bias. 

Calculations regarding the average aspect ratio, mean, and standard deviation of pixel intensities were made to estimate 

outliers from the dataset. This was an important step to avoid skewness in the training phase and keep the dataset representative. 

EDA provided the necessary insights on model choice. Deep, complex CNN architectures are recommended since they 

can characterize features in great detail and enable the distinction between benign and malignant cases. The depth of the CNN 

shall be varied to match the complexity of the structure of the tissues viewed by the images. For datasets with significant pixel 

intensities and quality variations, models with multi-scale feature extraction capabilities such as VGGNet or ResNet would be more 

appropriate. 

Impact of Data Augmentation 

The augmentation practices ensured that the model did not overfit the available training data but generalized effectively to unseen 

samples. 

Model Selection 

Success in machine learning applications involving medical imaging largely depends on model selection. In this regard, 

the choice fell to CNNs since such models were competent in performing image classification tasks, especially in medical 

diagnostics, as shown by LeCun et al. (2015). CNNs guarantee excellent performance in capturing the spatial hierarchies of images 

through multiple layers, hence being appropriate for spotting complicated patterns within breast and lung cancer images. 
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Overview of AI Models 

• Convolutional Neural Network: CNNs include convolutional, pooling, and fully connected layers. In the convolutional 

layer, filters are applied to the input images. This allows the model to learn from the localization of patterns and build up 

toward more abstract features through the layers. 

• Transfer Learning Models: Transfer learning with the use of pre-trained models, including but not limited to VGG16, 

ResNet, and Inception, allows leveraging features learned from large datasets to improve performance in cases of more 

minor, domain-specific datasets Simonyan & Zisserman (2015); He et al. (2016). 

Model Selection Justification 

 CNNs are selected for the following reasons: 

Imaging Data Characteristics: Medical images often contain complex details requiring sound feature extraction. CNN 

learns spatial hierarchies and efficiently distinguishes between benign and malignant tissue structures. 

Diagnostic Objectives: The study's objective is accurate classification to assist in early diagnosis. CNNs have shown high 

accuracy in similar diagnostic tasks and can be trusted (Litjens et al., 2017). 

Training and Testing Framework 

The dataset will be divided into training, validation, and test sets to ensure a broad scope for model performance review. 

This helps avoid overfitting in the model and ensures that the generalization of model performance is relevant to new and unseen 

data. 

Data Partitioning 

• Training Set: 70% - It is used to fit the model, hence learning the underlying pattern of the data. 

• Validation Set: 15%-The hyperparameters are tuned during the training, and performance is assessed to avoid 

overfitting. 

• Test Set: The test set reserves 15% for the final evaluation so that the model can estimate its performance unbiasedly. 

Workflow Preprocessing: 

1. Resizing: Images have been uniformly resized to 224x224 pixels to maintain the same input size for all dataset images. 

2. Normalization: Pixel values are normalized within the range [0, 1] to improve convergence and stability during the 

model's training process.  

3. Augmentation: Image augmentations, such as flipping horizontally, performing random rotation, and zooming out/in, 

have been applied to make the dataset more diverse and reduce overfitting. 

 Tuning Hyperparameters In the following section, hyperparameter optimizations that help improve the model performance will 

be discussed in detail. Several techniques were utilized to determine the best parameter settings. 

Techniques in AI Model Optimization: 

1. Adam Optimizer: The Adam optimizer was used in this application due to its adaptive learning rate, which can improve 

model convergence. This optimizer combines the advantages of the RMSProp and momentum algorithms by adjusting the 

learning rate over time as estimates of the first and second moments of gradients change. 

2. Learning Rate Scheduling: Initial learning rate of 0.001 followed by a reduction in factor of 0.1 if there was plateauing of the 

validation loss. This is achieved through the use of a learning rate scheduler. 

3. Batch Size and Epochs: Based on early stopping criteria, the batch size ranges from 16 to 64, and the epoch ranges from 20 

to 50. 

4. Regularization: Dropout layers were utilized to avoid overfitting by randomly turning neurons off during training. 

5. Hyperparameter Tuning Strategy: The approach used a grid search over learning rates, batch sizes, and dropout rates. In 

addition, early stopping was used with patience set to 5 epochs to prevent overtraining. 

Metrics 

Model performance evaluation needs an appropriate set of metrics to correctly represent diagnostic accuracy and reliability. 

Model Evaluation Metrics: 

• Accuracy: The ratio of correctly classified instances concerning all instances. While accuracy provides a general view of 

the model performance, it may fail to provide the exact view in case of imbalanced datasets. 
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• Precision and Recall: Precision (Positive Predictive Value): The ratio of accurate optimistic predictions against the total 

predicted positives. High precision means fewer false positives. 

• Recall (Sensitivity): the ratio of true positives relative to total actual positives. High recall means fewer false negatives, 

essential since cancer cases are not missed as much. 

• F1 Score: It is the harmonic mean of precision and recall. It gives a balanced measure that considers both false positives 

and false negatives. 

• AUC-ROC Curve: AUC-ROC measures the performance of a model on different classes. A high value of AUC indicates 

that the model performs excellently in distinguishing between positive and negative cases. According to Bradley (1997), 

when AUC is 

• Confusion Matrix: A tabulation scheme that summarizes the number of true positives, true negatives, false positives, 

and false negatives to have a clearer view of the model's performance.  

Model Evaluation Work: 

1. Training History Analysis: Plots of training and validation loss/accuracy were created to track overfitting and model 

performance over epochs. 

2. Confusion Matrix and Classification Report: This report provides complete insight into the model's precision, recall, and 

F1 score for each class. 

3. AUC-ROC Analysis: ROC was plotted for every model, and then values of AUC were compared. 

Hyperparameter tuning significantly improved performance, particularly learning rate adjustments and regularization 

techniques. Models were saved and retrained based on early stopping checkpoints to ensure the best configuration was used for 

the final evaluation. 

Results and Discussion 

Results 

Descriptive Analysis 

 

Figure 6. Bar chart showing the distribution of images across different lung cancer classes: squamous cell carcinoma, 

benign tissue, and adenocarcinoma. 
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Figure 7. A bar chart depicting the number of images in the breast cancer dataset shows that benign and malignant 

cases are divided equally. 

The descriptive analysis performed for the lung and breast cancer datasets presented the essential features of these types 

of cancers. The Lung Cancer Dataset consists of 15,000 images of three classes of lung squamous cell carcinoma-lung_scc, lung 

benign tissue-lung_bnt, and lung adenocarcinoma-lung_aca, fig.1. Features of importance revealed changes in the pattern of tissue 

present in malignant versus benign samples. In particular, the cancerous images tended to show astrocytic cell structures and 

tissue of heterogeneous densities, while benign samples were uniform. 

 

Figure 8. Representative images from the lung cancer dataset illustrate the visual differences between squamous cell 

carcinoma, benign tissue, and adenocarcinoma. 
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Figure 9. Sample images from the breast cancer dataset highlight the structural distinctions between benign and 

malignant tissue. 

The aspect ratios were consistent across all lung cancer images, essentially square to support standardization for model 

input. The file sizes were generally within the range of 30 KB to 90 KB; most images fell within a range of 50-70 KB, thus ensuring 

that the processing would be manageable. 

 

Figure 10. Charts summarizing the lung cancer dataset's image properties, including image dimensions, aspect ratio 

distribution, and file size distribution. 

 

Figure 11. A visual summary of image properties in the breast cancer dataset showcasing image dimensions, aspect ratio 

distribution, and file size range. 

The same breast cancer dataset was made out of 10,000 images that were precisely divided between benign and 

malignant cases. Regarding textural patterns, malignant photos would have more density and complexity, including lots of irregular 
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gland formation, while benign ones are homogeneous. The properties of these images of breast cancer are somewhat the same, 

mostly ranging from 50 KB to 500 KB file sizes. This would let the preprocessing and analysis remain consistent. 

Model Training and Loss Curves 

 

Figure 12. The training and validation accuracy and loss curves for the breast cancer model over 17 epochs showed a 

consistent increase in accuracy and a loss reduction, indicating robust model training with minimal overfitting. 

 

Figure 13. The training and validation accuracy and loss curves for the lung cancer model across eight epochs highlight 

steady training progress and some variability in validation accuracy, suggesting areas for further model optimization. 

The training and validation curves of the breast and lung cancer models point out a few essential features of the learning 

behavior for these models across successive epochs. In the case of the breast cancer model, one can find a very regular increase 

in training accuracy, reaching an almost perfect mark in the last epoch. However, with minor fluctuations, the validation accuracy 

has been kept at a very high level during training; this means that generalization is effective. The respective loss curve shows good 

reductions in training and validation loss, stabilizing at the end, indicating very little overfitting and quite strong learning. On the 

other hand, the model on lung cancer showed progressive improvement in training accuracy. 

In contrast, the validation accuracies were more variable, raising some suspicions about the sensitivity of the data. The 

loss curves for the lung cancer model showed that they decreased gradually; the training loss was more consistent in its decrease 

than the validation loss. This points to the need for more tuning to improve validation stability. These curves have shown how 

models are good at learning from complex imaging data and effectively discriminate between different types of cancers. 
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Model Performance 

Lung Cancer Model Classification Report: 

                               precision    recall  f1-score   support 

 

         Lung Adenocarcinoma       0.80      0.94      0.87       100 

          Lung Benign Tissue       1.00      0.98      0.99       100 

Lung Squamous Cell Carcinoma       0.93      0.79      0.85       100 

 

                    accuracy                           0.90       300 

                   macro avg       0.91      0.90      0.90       300 

                weighted avg       0.91      0.90      0.90       300 

 

Figure 14. The lung cancer model's classification report details precision, recall, F1-score, and support for each class, 

including lung adenocarcinoma, benign tissue, and squamous cell carcinoma. 

 

Some key performance metrics in assessing the models developed for lung and breast cancers included Accuracy, 

Precision, Recall, F1 score, and AUC-ROC curve. The general accuracy of the model for classifying lung cancer was 90%. Among 

classes, there was variation in precision; the highest class of precision, benign lung tissue, was 1.00, while lung adenocarcinoma 

and lung squamous cell carcinoma had 0.80 and 0.93, respectively. The recall was also relatively high in the case of lung benign 

tissue at 0.98, followed by 0.94 for lung adenocarcinoma and 0.79 for lung squamous cell carcinoma. The average F1 score of the 

lung cancer model is 0.90, which indicates that the performance is balanced. Looking at the confusion matrix, overall, there was 

correct classification, though there were misclassifications between adenocarcinoma and squamous cell carcinoma classes. 

 

Breast Cancer Model Classification Report: 

                   precision    recall  f1-score   support 

 

   Breast Benign       0.99      0.99      0.99       100 

Breast Malignant       0.99      0.99      0.99       100 

 

        accuracy                           0.99       200 

       macro avg       0.99      0.99      0.99       200 

    weighted avg       0.99      0.99      0.99       200 

 

Figure 15. Classification report for the breast cancer model, displaying precision, recall, F1-score, and support for both 

benign and malignant breast tissue classifications. 

 

The best performance was from the breast cancer model, resulting in an accuracy of 99%. Precision and recall had high 

values of about 0.99 each for both benign and malignant classes. Similarly, the F1 score also reflected these values and gave an 

impression of how robust the model was in classifying images of breast cancer with almost perfect precision. The confusion matrix 

for breast cancer showed quite a low preponderance of false positives and false negatives, which further expressed how robust 

and reliable this model is in distinguishing between the two classes. 



Enhancing Lung and Breast Cancer Screening with Advanced AI and Image Processing Techniques 

Page | 94  

 

Figure 16. Confusion matrix for the lung cancer model, showing the model's classification performance across different 

tissue types. 

 

Figure 17. Confusion matrix for the breast cancer model, depicting near-perfect classification of benign and malignant 

cases. 

In a comparative analysis, the model of breast cancer outperformed most metrics for lung cancer. This could be because 

the breast cancer dataset had more distinctive imaging features, making classification by CNN much easier. Data augmentation 

techniques further enhanced model performance by ensuring generalization and preventing overfitting. The Dropout 

regularization appeared incredibly successful in the lung cancer model, where a much more robust result was achieved for training 

and validation. 

Prediction Insights 

Further analysis of these models' predictive capabilities was done to assess their effectiveness in detecting cancer at an 

early stage. High recall for both models ensures that there will not be a high rate of false negatives; therefore, cancer cases will 

not go undiagnosed. This is essential in medical diagnostics, as timing often plays a substantial role in patient outcomes. 
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In the case of lung cancer, the model picked out robust biomarkers spiculated tumor edges and heterogeneous cell 

densities. Some difficulties distinguishing adenocarcinoma versus squamous cell carcinoma gave further insight into various tissue-

specific features that the radiologist and pathologist may use for diagnostic purposes. Dense tissue formations were indicated, 

and gland structures of irregular shapes were shown to be the most relevant biomarkers for malignancy by the performance of 

the breast cancer model. The model's continued and unwavering accuracy helps validate its potential application in the clinical 

setting to aid in the early diagnosis of cancer and further guide diagnostic procedures. 

Analysis of feature maps from the models showed potential biomarkers for both lung and breast cancers. In the case of 

breast cancer, the critical features picked out were microcalcifications and dense tissue structures, while spiculated nodules and 

variable cell densities were significant in lung cancer. These imaging biomarkers help establish specific screening protocols, 

particularly for high-risk patients, thereby enhancing the prospects of early detection. 

Discussion 

Clinical Practice Implications 

The results of this study indicate a great potential for these AI-based screening tools to be put into routine diagnostic 

practice. The excellent accuracy and recall rate in the CNN models indicate great potential for that kind of tool to be indispensable 

in the early detection of lung and breast cancers. Coupled with integration into the clinical workflow, such models may aid the 

radiologist by suggesting a preliminary diagnosis, thereby allowing the radiologist to focus on those cases that the model flags as 

high-risk. Such methods could improve diagnostic performance and alleviate workload pressures, effectively managing patients 

and potentially improving patient outcomes. 

Recommendations include implementing AI-based screening tools and training programs among radiologists to better 

understand AI-assisted diagnostics. These tools must not be replacements but complementary resources to provide second 

opinions that supplement the decision-making process. Together with these, improvements in image processing techniques such 

as feature enhancement or automatic region-of-interest detection can further support the radiologist in identifying subtle hints of 

malignancy for increased diagnostic accuracy. 

Challenges and Limitations 

 Despite the excellent results, several challenges must be overcome before AI tools find their routines in clinical practices. 

The main issue arising concerns ethical concerns in using AI within health care. Ensuring patient data privacy and security becomes 

crucial, mainly when sensitive medical information is handled. Algorithm transparency is also needed to help medical professionals 

understand and believe in AI-driven decisions. Deep learning models are, in fact, "black-box" in nature, which can threaten 

acceptance within the medical community, as clear explanations are often required for diagnostic recommendations (Srivastava et 

al., 2014). 

Another limitation pertains to bias in the training datasets. This may be a limitation since the models in this work have 

been trained on datasets that only partially represent diversity and may not offer the best generalization. The lack of generalization 

could affect the performance when models are applied to another patient population or when other imaging modalities are used. 

There is a need to expand the scope of training data towards different demographics, various imaging techniques, and a range of 

medical conditions to develop more robust models that perform consistently across various healthcare settings (Simonyan & 

Zisserman, 2015). 

Future Directions 

Future studies should focus on real-time integration of imaging with patient data to enhance the utility of AI in clinical 

diagnostics. Integrating the AI models with EHR will yield a diagnostic tool that considers visual data and patient history, permitting 

personalized diagnosis and treatment recommendations. This would go a long way toward enhancing cancer detection's overall 

accuracy and effectiveness. 

Besides, developing multi-modal data analysis promises considerable potential. A joint model of genomics, 

histopathological data, and imaging data might give more profound insights into cancer features. Such multimodality might make 

much more accurate predictions, allowing for early intervention and personalized treatment, as in Krizhevsky et al. (2012). This 

hints at a future in which research into combining CNNs with other AI techniques, such as NLP for insight extraction from medical 

records or genomic sequencing data, might extend the envelope of what is possible with AI in medical diagnostics. 

Conclusion and Suggestions 

This study has observed that AI-based models, primarily CNNs, can enhance the screening and diagnosis of cancer of the 

lungs and breasts. Their results showed that CNNs could correctly classify medical images; hence, the lung cancer model outputted 

90% accuracy, whereas the breast cancer model attained 99%. These results depicted the massive development of AI and image 
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processing, which could serve as a helpful assistant for a radiologist in early detection and diagnosis. The descriptive analysis also 

supported the idea that imaging features of dense tissue structures and irregular cell patterns were among the key determinants 

that helped effect classification. 

These findings are essential to prove AI's contribution to clinical practice in improving efficiency and accuracy in cancer 

screening. Preliminary analyses supported by AI models may help radiologists decide on priorities in cases that will ensure timely 

and accurate diagnosis. This has implications for better patient management and improved outcomes, especially early-stage cancer 

detection. 

The integration of AI and image processing for the diagnosis of cancers is a revolutionary shift in the practice of medicine. 

Diagnosis through imaging data with the help of CNNs can improve diagnostic protocols' accuracy by reducing the probability of 

human error, helping in faster decision-making. This research paper conveys the increasing need to develop transparent AI tools 

on sound ethical grounds suitable for adapting to different populations. If further development of these models continues with 

the resolution of current challenges, AI may form a corner in modern cancer screening and diagnostic strategies. 
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