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| ABSTRACT 

In frequentist tests, the significance testing framework for null hypothesis permits dichotomous conclusions alone, and such tests 

do not quantify the strength of the evidence supporting the null hypothesis. Under the Bayesian approach, probability reflects 

their uncertainty or degree of belief, that is, how scientific belief should be modified by data. This paper attempts to demonstrate 

the advantages of the Bayes factor in hypothesis testing that can quantify evidence in favour of the null hypothesis and how the 

prior specification is used for statistical tools, such as independent t-test and Analysis of Variance (ANOVA). Despite the 

advantages of the Bayesian approach, the use of conventional tests that rely on inference by p-values is ubiquitous in medical 

research. The adoption of the Bayesian approach may be seriously hindered by the absence of formulae, algorithms, etc. 

Furthermore, we have attempted to validate our argument by interpreting the application of both the Frequentist and Bayesian 

approaches for dietary intake of calcium mg/day with the help of JASP software. 
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1. Introduction 

The practice of using frequentist tests as a primary choice has become ubiquitous among health and social science researchers 

and scientists over the years. Of late, Bayesian Inference has been extensively used in research under a wide range of disciplines. 

The early development of Bayesian hypothesis testing and the concept of Bayes Factors are discussed in the book "Theory of 

Probability" by Jeffrey [3]. In brief, Bayes Factors have many strengths and limitations under the Bayesian approach. The chief 

limitations of Bayes Factors are their sensitivity to the assumptions in a parametric model and the choice of priors (Kass and Raftery 

1995). The basic idea of Bayes factors, choice of priors, the asymptotic approximation to find the posterior, and various examples 

are explained by (Kass and Raftery 1995). Bayesian tests of two or more independent groups and some selected models are 

described by (Gelman 2005), (Rouder et al. 2009), (Wang et al. 2016), (Morey et al. [7], Wetzels et al. 2012), and others. The main 

objective of this paper is to demonstrate the superiority of the Bayesian Hypotheses Tests when applied in health science research 

and its ability to enhance the distinctiveness of such research work. 

2. Literature Review 

Suppose a model data D, assume that the two hypotheses H0 and H1 according to a probability density P(D/H0) and  P(D/H1). The 

prior probabilities are P(H0) and P(H1), and the posterior probabilities to the models are P(H0/D) and P(H1/D) = 1-P(H0/D). In 

general, using Bayes Theorem, the posterior probability to the data is 
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These are the quantities that are conditional on observed data. Therefore, an appropriate statistic for comparing hypotheses is the 

posterior odds 
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From this, we see that the transformation of the prior odds into the posterior odds is a matter of multiplying by the Bayes factor 
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 Note that the Bayes factor is equal to the posterior odds when the equal prior probability is given to each hypothesis. It has on 

occasion been suggested that the value of the Bayes factor can be interpreted independently of the prior odds. 

The Bayesian Approach, which quantifies evidence instead of forcing an all-or-none decision (in frequentist, either accept or reject 

the null hypothesis), can distinguish between “data support H0” and “data are not diagnostic.” Interpretations of the Bayes factor 

for the null and alternative hypothesis are given in the below table. The results are quantified evidence in Table 1 as four-

component each for both the hypothesis, which is discussed elaborately by  Jeffery (1961), Kass, and Raftery (1995). 

Table: 1 interpretation for Bayes Factor 

log (BF01) Interpretation of Bayes Factor 

<-2 Decisive evidence for H1 

-2 to -1 Strong evidence for H1 

-1 to -0.5 Substantial evidence for H1 

-0.5 to 0 Poor evidence for H1 

0 to 0.5 Poor evidence for H0 

0.5 to 1 Substantial evidence for H0 

1 to 2 Strong evidence for H0 

>2 Decisive evidence for H0 

 

3. Methodology  

In this section, we will discuss the technique used by Jeffreys-Zellner-Siow prior to the selected statistical tools, such as independent 

two samples t-tests and analysis of variance one-way model. 

 

3.1 Jeffreys-Zellner-Siow Bayes Factor for Independence two-sample t-test: 

JZS Bayes Factor for the independent two-sample t-test was developed by (Rouder et al. 2012). Let ix and iy  denote the ith 

observations in the first and second groups, respectively. 
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Where µ and α denote the grand mean and total effect respectively and, 𝑛1and 𝑛2 denote the sample size for the first and second 

groups, respectively. The null hypothesis corresponds to 𝛼 = 0. In the parameterization, the null hypothesis corresponds to effect 

size 𝛿 = 0 and the Jeffrey-Zellner-Siow prior for 𝛿 ~ 𝐶𝑎𝑢𝑐ℎ𝑦 under the alternative hypothesis. Priors needed for µ and𝜎2, these 

parameters are common to both models, the resulting BF is relatively robust to the choice. The Jeffreys noninformative prior on𝜎2, 

i.e., 𝑝(𝜎2) =
1

𝜎2 appropriate. A noninformative prior may also be placed on µ, this prior denoted 𝑝(𝜇) = 1. Jeffreys-Zellner-Siow 

Bayes Factor for two-sample t-test (Rouder et al. 2012) is in equation (5). 
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where 𝑡 = two-sample t value, 𝑁 =
𝑛1×𝑛2

𝑛1+𝑛2
 is effect size and 𝑣 = 𝑛1 + 𝑛2 − 2 degrees of freedom. 

3.2 Jeffreys-Zellner-Siow Bayes Factor for Analysis of Variance One-way model: 

 JZS Bayes Factor for ANOVA was discussed elaborately by (Wetzels et al. 2012). The extending tending Jeffrey's suggestion to 

variable selection in the regression model, (Zellner and Siow 1980) proposed a multivariate Cauchy prior on regression coefficients 

and a flat prior on the common intercept. (Liang et al. 2008) developed the JZS prior as a mixture of 𝑔- priors, i.e., a 
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In the JZS approach, the Bayes Factor comparing the full model to the null model is in equation (7). A drawback of the JZS prior is 

that the Bayes Factor is not analytically available but not vulnerable to the Jeffreys-Lindley- Bartlett paradox nor to the information 

paradox. 

𝐵𝐹01 =
(𝑛 2⁄ )1/2

Γ(1 2⁄ )
∫ (1 + 𝑔)(𝑛−𝑘−1)/2∞

0
[1 + 𝑔(1 − 𝑅2)]−(𝑛−1)/2𝑔−3/2𝑒−𝑛/2𝑔 𝑑𝑔      (7) 

 

4. Results and Discussion 

We discuss an interpretation of both frequentist and Bayesian approaches of independent t-test and Analysis of Variance with 

illustrations. 

4.1 Illustration for Bayesian Independent t-test 

A clinical trial was conducted at the gynaecology unit of a major hospital to determine the effectiveness of drug A in preventing 

premature birth. In the trial, 30 pregnant women were studied, 15 in a treatment group to receive drug A and 15 in a control group 

to receive a placebo. The patients were to take a fixed dose of each drug on a one-time-only basis between the 24th and 28th 

weeks of pregnancy. The patients were assigned to groups based on computer-generated random numbers, where for every two 

patients eligible for the study, one was random to the treatment group and the other to the control group. This example from 

Bernard Rosner [8] was regarding the birth weights in a clinical trial to test a drug for preventing low-birth-weight deliveries of the 

treatment group and control group. Both the treatment and placebo groups were the same sample size 15 pregnant women, the 

treatment group's mean and standard deviation of baby weights (lb) are 7.08 and 0.899, and the placebo group's mean and 

standard deviation of baby weights (lb) are 6.26 and 0.961 respectively. 

 

The test statistic is 2.414, and the corresponding p-value is 0.023, which is less than 0.05, so we reject the null hypothesis. Hence 

we conclude that there is a significant difference between the treatment and placebo group's baby weights (lb). It means that the 

treatment group's baby birth weight is more than the placebo group's baby birth weight. 

 

Table: 2 Descriptive statistics for treatment and placebo group 

 

Group N Mean SD SE 

1 15 7.080 0.899 0.232 

2 15 6.260 0.961 0.248 

 

 

Table: 3 JASP output for two independent samples of treatment and placebo group 

 

t df P Mean Difference SE Difference Cohen’s d 

2.414 28.000 0.023 0.820 0.340 0.881 
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Table: 4 JASP output of Bayesian t-test. 

 

 BF01 error % 

Data 0.358 8.283e-4 

 

In the Bayesian approach, the Bayes factor BF01 value for two independent t-tests is 0.358, i.e., log10 BF01=0.4461, now we refer the 

table 1, Bayes factor value lies 0 to -0.5, it would be poor evidence to support the alternative hypothesis. In other words,  

BF10=1/0.358=2.79 the data support the alternative hypothesis more than 2.79 times the null hypothesis. 

 

 
Figure 1: JASP output shows the prior and posterior distributions. 

 

In the figure, the dotted line represents the prior distribution, and the smooth line represents the posterior distribution indicated 

by graphical for Bayesian independent t-test and also indicates 95% credibility interval for mean differences from 0.017 to 1.460, 

which means that 95% confident that the mean difference lies in that interval and Bayes Factor BF01=0.358. 

 

 
Figure 2: JASP output for Bayes factor for Robustness check for the different prior values. 

 

 If we increase the prior (Cauchy prior) values, the data supports the alternative hypothesis only. If the prior is 0, then the data does 

not support any hypothesis, but it (prior) would be an increase wider the data somewhat support the alternative hypothesis. 
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Figure 3: JASP output for sequential Analysis for an independent t-test. 

 

Interestingly, if the sample size is small, the data does not support any hypothesis. If the sample size is lies between 15 and 20, the 

data is found to somewhat support the null hypothesis, but finally, the Bayes Factor value falls in the Poor Evidence region of the 

alternative hypothesis. 

 

4.2 Illustration for Bayesian Analysis of Variance 

The dietary intake of calcium was investigated by (Ilich-Ernst et al. 2002) among a cross-section of 113 healthy women ages group 

between 20 and 88. The researchers formed four age groupings as follows: 20.0–45.9 years in Group A; 46.0–55.9 years in group 

B; 56.0–65.9 years in group C; and over 66 years in group D. Calcium was measured in mg/day from the food intake. Using JASP 

software, the ANOVA output for calcium intake from food among the different age groups of women was obtained, which is shown 

in table 5. The test statistic value was 9.359, and the corresponding significant value was <0.001. Subsequently, the null hypothesis 

was rejected. Hence, it was concluded that there is a significant difference in the average intake of calcium among the different 

age groups of women. Furthermore, we applied the Post-Hoc test to find which pair of treatment means were significantly different. 

 

Table:5 JASP output for ANOVA one-way classification 

 

Cases Sum of Squares Df Mean Square  F p 

Group 5.931e+6 3 1.977e+6 9.359 < 0.001 

Residuals 2.303e+7 109 211252.293   

 

 

Table: 6 JASP output for Post Hoc Comparisons-Group 

 

Treatments Mean Difference SE t P-value 

A Vs B 455.721 157.136 2.900 0.023 

A Vs C 574.536 129.950 4.421 <0.001 

A Vs D 596.634 118.336 5.042 <0.001 

B Vs C 118.815 149.579 0.794 0.857 

B Vs D 140.914 139.609 1.009 0.744 

C Vs D 22.098 108.100 0.204 0.997 

 

The post-hoc test shows that the average calcium intake of group A (20 to 45.9 years) is different from all other age groups of 

women, such as 46 to 55.9 years, 56 to 65.9 years, and > 66 years. Thus, the average intake of calcium (mg/day) among the above 

46 years of women does not make much difference, but this group is different. 
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Table: 7 JASP output for Bayesian Analysis of Variance 

 

Models P(M) P(M|data) BFM BF10 error % 

Group 0.500 0.999 1463.727 1.000  

Null 

model 
0.500 6.827e-4 6.832e-4  6.832e-4  6.407e-5  

 

In the Bayesian ANOVA table 7, P(M) indicates prior model probabilities, P(M/data) indicates the updated probabilities after the 

data, and BF10 Mindicates the degree to which the data have changed the prior model odds. The Bayes Factor value is 0.006832, 

i.e., log10 (0.0006832)=-3.17, and it indicates that Decisive evidence supports the alternative hypothesis. In other words, the data 

supporting the alternative hypothesis is found to be almost 3.17 times that of the null hypothesis. It provides additional support 

to correctly interpret the results, whereas researchers can detect the tendency of the data instead of accepting or rejecting the 

hypothesis completely.  

 

5. Conclusion  

In this article, we tried to outline and apply a default Bayesian approach to two simple and widely used statistical tools, such as 

independent two-sample t-test and Analysis of Variance with the help of JASP – freely downloadable statistical software. The 

interpretations of frequentist tests are mostly familiar to researchers than the Bayesian tests. We have demonstrated how the 

Bayesian approach would differ when compared to the frequentist test in a two-sample t-test and ANOVA. Under the Bayesian 

approach, researchers may be using different priors to their study, and we preferred the Jeffreys-Zellner-Siow prior for both the 

statistical tests as it directly follows the regression framework (Wetzels et al. 2012). The Bayesian approach to the test offers 

practical advantages over the frequentist approach as it quantifies evidence in favour of the null hypothesis. As observed in the 

illustration, under the frequentist independent two-sample t-test, the treatment group's baby birth weight differs from the placebo 

group's baby birth weight. Whereas, in the Bayesian approach, the data supported the alternative hypothesis by more than three 

times that of the null hypothesis. In ANOVA, under frequentist, there was a significant difference among the average calcium 

(mg/day) intake from the food for various age groups of women, and further, the Post-hoc test showed that calcium intake per 

day of group ‘A’ women are different from the other age groups of women. However, under the Bayesian approach, it was found 

that the data supported the alternative hypothesis by almost 3.17 times than the null hypothesis. From the illustrations, we detected 

Bayesian inferences that there was poor evidence to support the alternative hypothesis in the two-sample t-test and decisive evidence 

to support the alternative hypothesis in ANOVA design. Such inferences would serve as additional support to interpret the results 

whereby medical researchers can practically observe the tendency of the data. This would lead them to more precise conclusions 

instead of accepting or rejecting the hypothesis altogether when they exclusively depend upon frequentist tests. In the future, 

medical and paramedical researchers may apply Bayesian concepts to draw findings with instructive conclusions. 
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