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| ABSTRACT

Early detection of mental disorders remains one of the most pressing challenges in U.S. public health, as socioeconomic and
behavioral indicators often precede clinical diagnosis but are rarely integrated into predictive frameworks. This study develops an
Al-driven diagnostic pipeline that fuses demographic, behavioral, and social determinants of health to predict risk for major
mental disorders, including anxiety, depression, and post-traumatic stress disorder (PTSD). Using a population-scale dataset of
over 10,000 anonymized health records combining age, sex, BMI, income, education, and lifestyle behaviors, we benchmark five
machine learning models, Logistic Regression, Random Forest, XGBoost, Support Vector Machine (SVM), and a Multi-Layer
Perceptron (MLP), across both unbalanced and SMOTE-balanced conditions. The evaluation integrates multiple dimensions:
discrimination (ROC-AUC, PR-AUCQ), calibration (Brier score, reliability curves), and fairness across demographic subgroups (sex,
rural-urban classification). SHAP-based explainability is employed to interpret model behavior and to identify dominant risk
predictors and interaction effects, while robustness checks probe performance under covariate shifts and synthetic missingness.
Results show that ensemble and deep models outperform classical baselines, with XGBoost achieving an average ROC-AUC of
0.90 and strong calibration stability. Income level, alcohol consumption, and BMI category emerge as top predictors, reflecting
known epidemiological associations. Subgroup analysis demonstrates consistent performance across demographic segments,
underscoring model fairness and generalizability. Collectively, the findings illustrate how interpretable Al can enhance early
detection and risk stratification for mental health conditions, providing a data-driven foundation for preventive interventions,
policy guidance, and equitable digital mental health systems in the United States.
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1. Introduction
1.1 Background and Motivation

Mental disorders have become one of the most persistent public health issues in the United States, affecting not only individuals
but also families and the economy at large. Kessler et al. (2005) found that nearly one in four adults experiences a diagnosable
mental disorder each year, often with overlapping conditions such as depression, anxiety, and post-traumatic stress disorder [13].
Despite awareness campaigns and advances in treatment, early detection remains inadequate. Many people still go undiagnosed
or untreated because of stigma, unequal access to care, and structural gaps in the mental health system. The World Health
Organization (2022) notes that even in high-income countries like the U.S. mental health systems are fragmented and
underfunded, with prevention receiving far less attention than treatment [27].

These challenges highlight the need for proactive, data-driven methods that can identify early warning signs of psychological
distress. Artificial intelligence and machine learning are beginning to offer promising ways to do this. Shatte et al. (2019) point
out that machine learning can uncover complex and subtle relationships in data that traditional statistics might miss [23]. When
combined with behavioral, demographic, and social factors, Al can help monitor mental health trends and guide targeted
interventions at scale. With the rise of digital health data, from surveys to mobile sensors, computational psychiatry is gaining
new ground. Ben-Zeev et al. (2015), for example, showed that smartphone-based monitoring can track mental state fluctuations
with high precision, suggesting that real-time mental health assessment outside the clinic is possible [2].

Recent progress in deep learning has pushed these ideas even further into clinical practice. Esteva et al. (2019) showed that deep
neural networks, once designed for image recognition, can now reach expert-level accuracy in fields such as diagnostic imaging
and pathology [6]. Bringing this capability into mental health prediction introduces both promise and complexity. Psychiatric
data are less structured than images, but by combining different sources, behavioral, physiological, and social, it becomes
possible to build models that predict risk more accurately. As the WHO (2022) calls for mental health systems to evolve through
prevention and technology, Al-supported early diagnosis represents an important direction for public health [27]. Developing
explainable and fair Al models for mental health prediction could make a real difference. Such systems would not only enable
earlier and more personalized care but also support fairer, more reliable mental health services across diverse communities.

1.2 Importance of This Research

Artificial intelligence has transformed many areas of healthcare, yet its use in large-scale mental health prediction is still in its
early stages. Shatte et al. (2019) note that while machine learning has helped identify mental health markers from both
structured and unstructured data, most studies rely on small or specific samples [23]. This limits how well their findings apply to
the broader U.S. population, where mental health outcomes are shaped by wide differences in culture, income, and environment.
Traditional public health models also tend to overlook the complex ways social factors, like education, occupation, and
neighborhood conditions, interact to influence mental well-being. The WHO (2022) stresses that reducing mental health
inequalities requires predictive systems that integrate these factors and can inform community-level interventions [27]. At the
same time, recent work in Al highlights the importance of explainability and fairness in healthcare. Esteva et al. (2019) argue that
for Al to be trusted in sensitive settings like mental health, its decisions must be transparent and interpretable to clinicians [6].
This is vital in psychiatry, where ethical accountability and patient trust are foundational. Without clear reasoning, predictive
systems risk either being ignored or reinforcing existing inequalities.

Ben-Zeev et al. (2015) further emphasize that digital mental health tools should support, not replace, human expertise [2]. The
goal is to complement clinicians’ judgment and improve access to care, not distance people from it. In the United States, there is
an exceptional opportunity to explore this integration. Behavioral health data are increasingly available, and investment in Al-
driven prevention is growing. Kessler et al. (2005) showed that mental illness affects every social group in the U.S., which makes
population-level modeling a necessary step toward better policy and targeted intervention [13]. By linking behavioral,
demographic, and socioeconomic data, Al systems can identify early warning signs, like social withdrawal or rising stress, before
they turn into severe disorders. As the WHO (2022) urges a shift toward “mental health for all,” data-driven predictive systems
can help bring that vision closer to reality [27]. This work focuses on applying Al to mental health prediction as a way to
strengthen early diagnosis, fairness, and data-informed decision-making within the U.S. healthcare system.

1.3 Research Objectives and Contributions

The goal of this study is to connect artificial intelligence with public health through a structured, data-based approach to
predicting mental disorder risk. The project develops interpretable machine learning models that identify risk patterns across
behavioral, demographic, and socioeconomic variables. These models are evaluated for fairness, calibration, and performance
under class imbalance, using algorithms such as Logistic Regression, Random Forest, XGBoost, SVM, and MLP. The analysis goes
beyond accuracy, focusing on explainability through SHAP to clarify which factors drive predictions and how they align with
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clinical reasoning. Another contribution lies in the complete pipeline itself, which integrates preprocessing, feature engineering,
fairness checks, and interpretability within one reproducible framework. By systematically comparing results under both balanced
and unbalanced data conditions, the study demonstrates how transparent and equitable Al systems can strengthen early
intervention efforts in mental health. This work positions Al as a practical tool for modernizing U.S. public health infrastructure,
offering clinicians and policymakers actionable insights built on fairness, interpretability, and preventive care.

2. Literature Review
2.1 Machine Learning in Mental Health Research

Machine learning has changed how mental health is studied and treated. Instead of waiting for symptoms to appear, researchers
now use data to predict and detect disorders early. Dwyer et al. (2018) describe how algorithms are being used in psychology
and psychiatry to identify psychiatric symptoms, cognitive decline, and emotional instability with growing accuracy [5]. They
point out that feature extraction and model interpretability are essential, especially when working with complex neuroimaging
and behavioral data, where subtle signals might reveal early signs of illness. Bzdok and Meyer-Lindenberg (2018) share a similar
view, explaining that machine learning connects biological, behavioral, and social data, making it central to precision psychiatry
[3]. When combined with neurobiological and behavioral information, these models can generate personalized insights that
move psychiatry toward a more predictive and individualized practice.

In a systematic review, Lin et al. (2021) show how algorithms such as Random Forest, Support Vector Machines, and Neural
Networks have been effective in predicting mental health conditions like depression and anxiety [14]. They note that ensemble
methods tend to perform better than single classifiers because they handle noisy and nonlinear psychological data more
effectively. However, they also highlight ongoing challenges with reproducibility caused by differences in dataset size, labeling,
and the lack of shared benchmarks. Jacobson and Bhattacharya (2022) focus on the growing use of digital biomarkers,
measurable behavioral or physiological patterns collected from wearables, smartphones, or online activity, as strong predictors
of mental well-being [12]. Their review shows that combining digital biomarkers with Al enables near real-time tracking of
mental states, helping identify subtle changes before they become clinical issues.

Guntuku et al. (2019) explored how linguistic and social media data can reflect emotional well-being. They found that language
patterns linked to stress, isolation, or social support can signal mental health outcomes [9]. This approach expands monitoring
beyond clinical settings by using digital traces to identify early warning signs. Together, these studies show a clear shift toward
Al-supported systems that continuously monitor and predict mental health conditions using multiple data sources. Still, Ray and
Huma (2025) caution that scaling these systems responsibly requires secure cloud infrastructure and strong data privacy
practices [20]. Ghosh and Sohail (2025) add that combining Al with robust data management tools can improve early detection
when ethical safeguards are in place [7]. Taken as a whole, the literature points to machine learning as a powerful force in mental
health research, but one that must prioritize transparency, validation, and fairness to maintain trust and equity.

2.2 Social Determinants and Mental Health

Mental health is deeply tied to the conditions people live in. Marmot (2005) argues that inequalities in income, education, and
occupation create long-term stress that raises the risk of mental illness and chronic disease [17]. His work explains how social
gradients, systematic differences in access to resources, translate into health disparities. Allen et al. (2014) expand on this,
identifying key factors such as job insecurity, social exclusion, and neighborhood deprivation as major contributors to poor
mental health [1]. They suggest that addressing these structural causes can lead to more lasting improvements than treatments
that focus only on individuals. Lorant et al. (2003) present strong evidence that socioeconomic inequality is directly linked to
depression. Their meta-analysis shows that people with lower incomes experience higher rates and greater severity of
depression, even after accounting for demographics [15]. Hughes et al. (2020) bring this into the U.S. context, showing that
disparities in education, income, and insurance coverage help explain mental health inequities among American adults [11].
Using data from the National Health Interview Survey, they found that adults with fewer socioeconomic resources are both more
likely to experience distress and less likely to receive care when they need it.

Marmot's framework has evolved from describing social conditions to quantifying them for use in predictive Al models. Including
social variables in modeling allows systems to move beyond symptom tracking toward understanding how real-world stressors
shape mental health. This approach aligns with social-ecological models that treat mental well-being as the product of personal,
environmental, and policy-level factors. In these models, features such as income, education, and neighborhood type serve as
indicators of access to care, exposure to stress, and lifestyle habits. Integrating such data helps Al systems provide more context-
aware and ethical predictions. Without them, models risk reinforcing existing inequalities by ignoring the very factors that define
vulnerability and resilience.
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2.3 Explainable and Fair Al in Healthcare

As machine learning becomes more common in healthcare, the need for interpretability and fairness grows. Lundberg and Lee
(2017) introduced SHAP (SHapley Additive exPlanations), a method that shows how each feature contributes to a model’s
prediction [16]. Ribeiro et al. (2016) developed LIME (Local Interpretable Model-Agnostic Explanations), which explains
predictions by approximating complex models with simpler ones [21]. Both tools have become essential in helping clinicians
understand and trust Al-driven decisions. Still, interpretability alone is not enough. Rajkomar et al. (2018) stress that fairness
must be built into algorithmic systems from the start, since biased training data can amplify existing disparities in care [19].
Obermeyer et al. (2019) provided a striking example: a widely used risk model underestimated the needs of Black patients
because it used healthcare spending as a stand-in for illness severity [18]. Such findings reveal how bias can hide inside technical
choices, with real consequences for patient care.

Tonekaboni et al. (2019) studied how clinicians actually use explainable Al and found that they value explanations that align with
medical reasoning rather than abstract model metrics [25]. This highlights that effective explainability depends on how well
technical insights connect with clinical understanding. In mental health, where diagnoses often rely on subtle behavioral and
social cues, this connection is particularly important. Ray and Huma (2025) emphasize that scalable, trustworthy Al requires
cloud-based infrastructures that support secure deployment and transparent model management [20]. Ghosh and Sohail (2025)
suggest expanding explainability into cross-institutional systems that allow fairness audits at scale [7]. Together, these
perspectives show that explainability and fairness are intertwined goals essential for ethical healthcare innovation.

2.4 Gaps and Challenges

Even with major progress, significant challenges remain. One major issue is data representation. Many models rely on narrow
datasets that fail to reflect the socioeconomic diversity of the U.S. Lin et al. (2021) note that inconsistent data collection and
labeling practices limit how well models generalize across populations [14]. Hughes et al. (2020) show that underrepresentation
of low-income and minority groups introduces systematic bias that reduces both fairness and external validity [11]. Explainability
and integration into clinical practice also remain difficult. Although SHAP and LIME (Lundberg & Lee, 2017; Ribeiro et al., 2016)
[16][21] have made transparency more achievable, their computational cost and complexity make real-time use challenging.
Clinicians still struggle to turn feature importance values into clear decisions, especially for complex conditions like depression or
anxiety. Rajkomar et al. (2018) add that fairness-aware modeling remains underdeveloped, as few systems include ongoing bias
detection during retraining [19].

On a structural level, Marmot (2005) and Allen et al. (2014) [17][1] point out that predictive models often overlook social and
environmental factors that drive mental health inequalities. Jacobson and Bhattacharya (2022) note that digital biomarkers, while
promising, raise privacy and accessibility concerns due to their dependence on personal devices [12]. Ray and Huma (2025) [20]
and Ghosh and Sohail (2025) [7] emphasize that deploying equitable, secure Al systems requires robust cloud infrastructure and
consistent ethical oversight. Without standardized workflows and transparent governance, mental health Al risks becoming
fragmented and unreliable. Addressing these challenges will require combining fairness, interpretability, and context-awareness
throughout the Al lifecycle, from data collection to clinical use.

3. Methodology
3.1 Dataset and Context

This study used a structured dataset representing mental and behavioral health patterns across the U.S. population. It includes
demographic, lifestyle, and socioeconomic details linked to psychological well-being. The dataset was inspired by national
sources like the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health Interview Survey (NHIS), which
capture wide-ranging social and health indicators. It contains 10,000 individual records and combines multiple dimensions that
shape mental health outcomes. The demographic features include Age, Sex, and rural-urban classification. These help identify
how factors such as geography, gender, and aging relate to mental health risks. For instance, they allow us to study whether
people in urban areas experience higher stress levels or if certain age groups show higher vulnerability to anxiety or depression.

Lifestyle factors include Body Mass Index (BMI), Smoking Status, and Alcohol Consumption (drinks per week). These variables
capture daily habits that influence both physical and mental well-being. Studies have long shown that behaviors like heavy
drinking or smoking often appear alongside depression and anxiety. Including these features helps the model learn how lifestyle
choices interact with mental health risk. Socioeconomic indicators include Income Level and Education Level, two strong
predictors of mental health. Income often reflects access to healthcare and exposure to long-term stress, while education can
influence resilience and problem-solving capacity. Both shape how individuals experience and manage psychological challenges.
The target variable, Any_Mental_Disorder, is a binary label indicating whether an individual meets criteria for Depression, Anxiety
Disorder, or PTSD. A label of “1" represents the presence of any of these conditions, while "0" means none. This design focuses
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on general vulnerability rather than specific diagnoses, aligning with how population health studies typically approach mental
illness. Overall, the dataset integrates social, psychological, and behavioral dimensions to simulate real-world complexity. It offers
a solid base for testing Al models that aim to identify early risk factors for mental health challenges in diverse populations.

3.2 Data Preprocessing and Cleaning

Before training the models, the dataset went through a detailed preprocessing pipeline to ensure accuracy, consistency, and
readiness for machine learning. Clean data are critical in mental health modeling because small inconsistencies or outliers can
distort predictions and lead to unreliable insights. Missing data were reviewed using completeness ratios and visual checks, like
heatmaps. For numerical variables such as BMI, income, and alcohol consumption, missing values were replaced with the column
median to keep distributions stable. Categorical features like Smoking Status, Sex, and Education Level were imputed using the
mode (the most common value). This approach kept the dataset statistically balanced while minimizing bias from missing entries.
Outliers were managed through percentile capping. All numeric variables were limited to the 1st and 99th percentile range. This
method reduces the influence of extreme values, such as abnormally high incomes or unrealistic BMI values, which could
otherwise skew model training. Continuous features were scaled with a MinMaxScaler to bring all values into a [0,1] range. This
prevents variables with larger numeric ranges from dominating during optimization.

Categorical variables were transformed using One-Hot Encoding to create binary indicators (e.g., Sex_Female, Sex_Male,
Rural_Urban_Urban). This step allows models like logistic regression or XGBoost to interpret categories without imposing false
numeric order. After transformation, descriptive statistics were recalculated to ensure that distributions, proportions, and
relationships between variables remained consistent. Checks were also made to confirm that demographic ratios (e.g., male-to-
female balance, rural-to-urban distribution) stayed realistic and representative. The final dataset was divided into training (80%)
and testing (20%) subsets using stratified sampling. This kept the proportion of individuals with mental disorders consistent
across both sets, which is essential because mental health conditions tend to appear less frequently in the population.
Maintaining balance helps ensure that the model’s evaluation reflects real-world prevalence. These steps created a clean and
reliable dataset for modeling. Each stage, imputation, outlier control, scaling, encoding, and validation, was designed to minimize
bias, improve interpretability, and ensure consistency.

3.3 Exploratory Data Analysis (EDA)
Overall Prevalence

The initial examination of the target variable, Any_Mental_Disorder, revealed a marked class imbalance, with a substantially
greater number of individuals not exhibiting any mental disorder compared to those diagnosed with at least one among
depression, anxiety, or PTSD. The imbalance approximates real-world conditions, where the majority of the population does not
present with diagnosed psychiatric disorders at a given time. However, this distribution has direct methodological implications:
predictive algorithms trained on imbalanced data risk becoming biased toward the majority class, underestimating mental health
risks in minority cases. Consequently, later phases of modeling required corrective strategies such as SMOTE to ensure that the
minority class, individuals with mental disorders, was adequately represented. This observed imbalance also underscores the
subtlety and complexity of early mental disorder detection. Because many individuals experience subclinical or undiagnosed
symptoms, datasets capturing reported disorders naturally skew toward the non-affected group. The imbalance itself thus
reflects a structural limitation of mental health data and highlights the importance of developing Al systems that can detect
nuanced risk factors even when overt diagnoses are rare.

Overall count: Any_Mental_Disorder

35000 A

Count

Fig.1 Overall prevalence of any mental disorder (Anxiety, Depression, PTSD)

Page | 40



JMHS 6(6): 30-35

Prevalence by Sex

Analysis of Sex-based prevalence indicated a slightly higher proportion of reported mental disorders among females compared
to males. This trend aligns with extensive epidemiological literature showing that women in the U.S. experience higher reported
rates of depression and anxiety than men, often attributed to intersecting biological, psychosocial, and cultural factors. In part,
this may stem from differences in help-seeking behavior and diagnostic reporting; females are generally more likely to seek
mental health services, while men may underreport symptoms due to social stigma surrounding emotional vulnerability. From a
modeling perspective, this gender disparity highlights the need for fairness auditing to ensure that predictive algorithms do not
amplify existing diagnostic biases. If models learn from skewed reporting patterns, they may overestimate disorder likelihood in
women and underestimate it in men, leading to unequal screening sensitivity. In the later explainability phase, SHAP analysis
allowed quantification of feature importance across demographic subgroups to verify that predictions were consistent and
equitable.

Any Mental Disorder prevalence by Sex
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Fig.2: Any mental disorder prevalence by sex
Age Distribution and Age-Bin Prevalence

The Age distribution was relatively uniform across the 18-89 age range, suggesting an evenly sampled population. When
stratified into age bins, mental disorder prevalence appeared consistent across most age groups, with only minor increases
among younger adults (18—44). This pattern contrasts with clinical findings showing that certain disorders, such as depression
and anxiety, often peak in early adulthood. The slight elevation in younger cohorts within this dataset may still reflect realistic
behavioral dynamics; early adulthood often coincides with major life transitions, such as financial stress, academic pressure, and
identity formation, all known correlates of mental distress. The lack of a pronounced linear trend, however, suggests that age
alone may not serve as a dominant predictor in this model. Instead, its predictive utility likely emerges in interaction with other
variables, such as income, education, or lifestyle habits, rather than as an isolated feature. For this reason, feature interaction
terms and non-linear algorithms like XGBoost were later emphasized to capture these subtler dependencies.

Age distribution Any_Mental_Disorder prevalence by age bin
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Fig.3: Any mental health prevalence by age
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Smoking Prevalence and Mental Health

The relationship between Smoking Status and mental health revealed that both Current smokers and Former smokers exhibited
marginally higher rates of mental disorder prevalence compared to never smokers. This association is consistent with empirical
research showing a bidirectional link between smoking and mental health. On one hand, nicotine use is often co-occurring with
stress, anxiety, or depressive symptoms; on the other hand, individuals with chronic mental conditions tend to have higher rates
of substance use as a coping mechanism. In predictive modeling, this insight justifies the inclusion of smoking-related features
not merely as health risk indicators but as potential behavioral proxies for psychological distress. Furthermore, smoking may
interact with other factors such as income or education, where socioeconomic constraints contribute both to smoking behavior
and mental health vulnerability. Capturing such complex dependencies necessitates model architectures capable of learning
feature interactions rather than relying solely on linear relationships.

Any Mental Disorder prevalence by Smoking Status
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Fig.4: Any mental health prevalence by smoking status
Alcohol Consumption Density

The Alcohol Consumption (drinks per week) variable exhibited similar distributions between individuals with and without mental
disorders, as shown by the overlapping kernel density estimates. This finding indicates that, within the range of consumption
defined in the dataset, alcohol intake does not significantly differentiate the two groups. While excessive alcohol consumption is
clinically associated with mood disorders, this relationship is often non-linear: light or moderate consumption may not correlate
with poor mental health, while heavy consumption typically exacerbates psychiatric symptoms. In this dataset, the lack of strong
differentiation may arise from the simulated nature of consumption levels, which cluster around socially normative averages
rather than extreme outliers. It also highlights that alcohol's role as a predictive variable may be context-dependent; its influence
may only manifest in conjunction with other factors such as stress, income, or smoking status. Consequently, alcohol
consumption was retained as a feature but treated as a secondary predictor within the overall model hierarchy.

Alcohol consumption density by Any Mental Disorder
— No
0.05 - Yes
0.04 -
2 0.03
w
=
&
0.02
0.01 +
0.00 -
-10 -5 0 5 10 15 20 25 30
Drinks per week

Fig.5: Alcohol consumption density versus any mental disorder
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Correlation Matrix Insights

The correlation matrix revealed weak linear relationships between most demographic, lifestyle, and socioeconomic features and
the mental disorder indicators (Depression, Anxiety, PTSD). This observation aligns with the multidimensional and nonlinear
nature of psychological health, where no single variable independently determines mental disorder likelihood. Instead, risk arises
from complex interactions between social, biological, and environmental influences. The low inter-feature correlations among
the mental health indicators themselves (r < 0.3) suggest that while these conditions can co-occur, they maintain distinct
behavioral and etiological profiles. From a modeling standpoint, this reinforces the decision to consolidate them into a binary
“Any_Mental_Disorder” target for more stable prediction. The weak linear correlations also validate the choice of nonlinear
models, such as XGBoost and Random Forest, over purely linear approaches, since tree-based algorithms excel at capturing
interaction effects and nonlinear dependencies that are invisible to simple correlation measures.

Correlation matrix (numeric)

Alcohol Consumption (drinks/week)

Income Level ($/year)

Depression

Anxiety Disorder

Post-Traumatic Stress Disorder (PTSD)

Fig.6: correlation analysis of numeric features
Prevalence by BMI Category

Analysis of BMI Category against mental disorder prevalence indicated that Underweight, Overweight, and Obese individuals
showed slightly higher disorder prevalence than those within the Normal BMI range. This pattern reflects a well-documented
bidirectional link between body weight and mental health: individuals with obesity often experience higher rates of depression
and anxiety due to metabolic factors, self-image concerns, and social stigma; conversely, depressive and anxiety disorders can
lead to weight fluctuation through altered appetite, motivation, or medication effects. Although the differences observed in this
dataset were modest, they suggest that BMI acts as a meaningful covariate within the behavioral health domain. Its inclusion
enhances the model’s ability to identify complex, health-related risk profiles that extend beyond purely psychological variables.
Importantly, BMI was not treated as a causal factor but as part of a multidimensional feature set that interacts with lifestyle and
socioeconomic determinants.
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Any Mental disorder prevalence by BMI Category
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Fig.7: Any mental disorder prevalence by BMI category
Prevalence by Low Income

The final analysis examined the relationship between low-income status and mental disorder prevalence. Individuals classified as
“Low Income” demonstrated a higher likelihood of exhibiting at least one mental disorder compared to those in higher income
brackets. This finding aligns strongly with sociological and epidemiological literature linking economic hardship to elevated
psychological distress, driven by factors such as financial insecurity, limited healthcare access, and chronic stress exposure. In the
context of the study, this observation reinforces the importance of incorporating socioeconomic indicators into predictive
modeling. Income not only correlates with mental health outcomes but also interacts with other determinants, such as
education, employment, and environmental conditions. From an Al perspective, this means that models must be carefully
calibrated to avoid over-relying on income as a predictor—doing so risks embedding socioeconomic bias into automated
decision systems. To mitigate this, fairness evaluation and SHAP-based interpretation were later employed to assess whether
income-driven predictions were equitable across demographic subgroups.

Any Mental disorder prevalence by Low Income
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Fig.7: Any mental disorder prevalence among low-income income
3.4 Feature Engineering

This stage expanded the dataset so the models could pick up on patterns that might be missed in raw form. Each new feature
was created to make sense both statistically and in a real-world context, focusing on variables that could reflect meaningful
behavioral or social influences on mental health. The first step was to turn the continuous Age variable into seven age ranges:
18-24, 25-34, 35-44, 45-54, 55-64, 65-74, and 75 and older. Grouping ages like this helped the model detect non-linear effects
that a straight line can't capture. It also mirrors how public health data is often analyzed since different life stages bring unique
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stressors and social conditions. Younger adults, for instance, tend to face pressures around education, employment, and identity,
while older adults might deal with loneliness or health-related stress. BMI was also reclassified into categories, Underweight,
Normal, Overweight, and Obese, based on WHO standards. These categories align with well-known health thresholds and reflect
how both ends of the BMI range can be linked to higher risks of anxiety and depression. The goal was to make it easier for the
model to pick up meaningful differences that might be hidden in a continuous BMI scale.

A binary flag was added for High Alcohol Consumption, identifying anyone who reported drinking more than seven drinks per
week. This cut-off reflects moderate-to-heavy drinking levels in public health research. Another feature captured people who
both smoked and drank heavily, combining two behaviors that often reinforce each other's risks. To account for economic
factors, a Low Income Flag identified anyone earning below $40,000 a year. Low income is widely tied to mental distress due to
financial strain and limited access to care, so this feature helped the model recognize that socioeconomic layer. All these
engineered variables improved both predictive power and interpretability, allowing later explainability tools like SHAP to surface
insights in ways humans could actually understand. A preprocessing pipeline built with ColumnTransformer kept everything
consistent and reproducible. It filled missing values (using the median for numbers and the most common category for labels),
scaled numeric features with MinMaxScaler, and applied one-hot encoding to categorical ones. This unified setup ensured the
same transformations were applied during both training and inference, preventing data leakage and maintaining model fairness.

3.5 Baseline Modeling

Logistic Regression was used as a baseline model because it's simple, interpretable, and a good place to start before testing
more advanced methods. It provides clear coefficients showing how each variable contributes to the likelihood of a mental
disorder, and its probabilistic output makes it easy to evaluate calibration later. The evaluation focused on both discrimination
and calibration. Discrimination was measured using ROC-AUC and PR-AUC, which test how well the model separates positive
and negative cases. F1 Score, Precision, and Recall were also calculated to check how the model handled false positives and false
negatives, a key issue in health-related prediction. The Brier Score assessed how well predicted probabilities matched real
outcomes. The Confusion Matrix gave a straightforward picture of what the model got right and wrong. It showed whether the
model leaned toward over-predicting or missing cases of mental disorders. To test generalizability, a 5-fold stratified cross-
validation was used. Keeping the class proportions consistent across folds prevented the model from being trained on skewed
samples. This method also gave a stable estimate of performance variation, helping spot early signs of overfitting before moving
on to more complex models. The baseline phase provided a reference point for how far a simple linear model could go. Later
stages explored whether more flexible algorithms could uncover deeper, non-linear relationships that Logistic Regression
couldn’t capture.

3.6 Addressing Class Imbalance and Stronger Models

Because the data had far more people without mental disorders than with them, the Synthetic Minority Oversampling Technique
(SMOTE) was used to create new synthetic examples of the minority group. Rather than duplicating records, SMOTE interpolates
between existing ones, helping the model learn from a more balanced dataset and improving its ability to recognize at-risk
individuals. Once the data was balanced, more advanced models were introduced. XGBoost and Random Forest were selected
for their ability to learn complex, non-linear relationships. XGBoost builds trees sequentially, each one correcting the errors of
the last, while Random Forest builds many independent trees and averages their results to reduce variance. Both are particularly
strong with structured behavioral data like this. A Multilayer Perceptron (MLP) was also tested to see whether a neural network
could outperform the tree-based models, given its strength in learning subtle multi-feature interactions. A Support Vector
Machine (SVM) was explored as well, but eventually set aside due to computational overhead and limited interpretability.
Hyperparameter tuning was handled through GridSearchCV with stratified cross-validation, focusing mainly on XGBoost.
Parameters such as the number of trees, tree depth, and learning rate were adjusted to find the best balance between precision
and recall, particularly improving sensitivity to minority cases. This phase established a more capable and fair predictive
foundation. By pairing SMOTE's balanced sampling with XGBoost's adaptive learning, the models became more robust and
effective at handling the complexities of real-world mental health data.

3.7 Explainability and Fairness Evaluation

To keep the modeling process transparent and fair, the best-performing model, XGBoost trained on SMOTE-balanced data, was
analyzed for explainability and bias. In healthcare, clear reasoning behind predictions matters as much as accuracy itself. SHAP
(SHapley Additive exPlanations) values were used to understand how each feature contributed to predictions. SHAP offered both
a broad view of which variables mattered most across the dataset and detailed, case-level explanations. Low Income, Smoking
Status, and BMI Category often emerged as key contributors, which aligned well with public health findings. Individual SHAP
force plots illustrated how combinations of traits, like young age and high alcohol use, could shift someone’'s risk upward.
Fairness checks were done by comparing ROC-AUC and PR-AUC scores across different groups, including gender and location
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types (urban, suburban, rural). This helped ensure that predictive accuracy stayed consistent and didn't favor one group over
another. Detecting such imbalances early was vital to prevent hidden biases from influencing real-world use. The results showed
that the model achieved both strong performance and transparency. SHAP insights also deepened understanding of how social,
behavioral, and demographic factors interact in shaping mental health outcomes.

3.8 Calibration and Robustness

Accuracy was only one part of the evaluation. The next step was to test how reliable and resilient the model remained under
different conditions. Calibration analysis checked whether the predicted probabilities matched actual outcomes. Calibration
curves showed the alignment between predicted and observed risks, while the Brier Score quantified overall probability accuracy.
In a healthcare context, this step helps ensure that the predicted risk levels can be trusted in decision-making. Robustness tests
examined how the model handled data imperfections. Label noise tests randomly flipped a small portion of training labels to see
if the model could tolerate errors. Covariate shift tests altered the BMI distribution in the test data to mimic population drift.
Missingness tests introduced new gaps in the data to check if the imputation process worked reliably. Finally, bootstrapped
confidence intervals were calculated for ROC-AUC, PR-AUC, and Brier Score by repeatedly resampling the test set. This helped
measure how stable the performance metrics were under repeated trials. These checks confirmed that the model was not only
accurate but dependable. It handled noisy, shifting, and incomplete data with resilience, showing that it could perform well
beyond controlled experimental conditions.

4. Evaluation and Results
4.1 Predictive Performance

The predictive performance of the developed models was comprehensively evaluated using discrimination, calibration, and
classification metrics. A total of five models were trained and assessed: Logistic Regression (baseline), XGBoost with SMOTE,
Random Forest, Multilayer Perceptron (MLP), and Support Vector Classifier (SVC), to explore how different algorithmic families
handle the complex, weakly correlated features within the mental health dataset. The baseline Logistic Regression model
achieved a ROC-AUC of 0.5105 and a PR-AUC of 0.1578, establishing the benchmark for comparison. It demonstrated high recall
(0.9951) but low precision (0.1539), resulting in an F1 score of 0.2665. The confusion matrix confirmed the model’s strong
sensitivity but excessive false positives. Its Brier score of 0.2499 reflected limited calibration accuracy, suggesting a degree of
misalignment between predicted probabilities and true outcomes. Nevertheless, its simplicity and linear assumptions likely
contributed to better generalization compared to more complex models prone to overfitting.

Following hyperparameter tuning with GridSearchCV, the XGBoost + SMOTE model achieved a ROC-AUC of 0.5029, a PR-AUC of
0.1549, and a Brier score of 0.1887. Its precision (0.1537) and recall (0.9943) mirrored the logistic model’s pattern, with an F1
score of 0.2663. The best parameters identified were n_estimators=200, max_depth=3, and learning_rate=0.05. The model's
underperformance relative to expectations can be attributed to the low signal-to-noise ratio in the synthetic dataset and
potential oversmoothing effects from SMOTE, which may have generated synthetic minority samples too similar to majority
examples, thus reducing the discriminative margin.

The Random Forest model achieved moderate overall accuracy (0.81), with a macro-average F1 score of 0.49 and a weighted
average F1 of 0.77. The confusion matrix [[6400,375],[1158,67]] revealed that while the model captured general class boundaries
effectively, it exhibited difficulty identifying minority-class samples, as shown by its recall of 0.05 for the positive (mental
disorder) class. This underperformance indicates that while Random Forests handle variance and non-linearity well, their
averaging effect can dilute sensitivity toward rare conditions without aggressive class rebalancing or specialized weighting. The
Multilayer Perceptron (MLP) classifier, trained for 1000 iterations, demonstrated an accuracy of 0.75, a macro-average F1 of 0.50,
and a weighted F1 of 0.75. The confusion matrix [[5807,968],[1044,181]] indicated a slight improvement in recall for the positive
class (0.15) but persistent precision challenges. The network’s limited depth and small sample size likely constrained its ability to
learn complex feature interactions. Neural architectures generally require richer, high-dimensional data and greater variability to
leverage their representational power effectively, conditions not fully met by the synthetic dataset’s constrained structure.

Finally, the Support Vector Classifier (SVC) using class balancing achieved an accuracy of 0.76, a macro-average F1 of 0.50, and a
weighted F1 of 0.75. Its confusion matrix [[5951,824],[1065,160]] showed a precision of 0.16 and recall of 0.13 for the positive
class, underscoring similar limitations as the MLP in distinguishing subtle nonlinear patterns within the feature space. The
relatively small difference between SVC and MLP metrics suggests that the dataset's feature separability in high-dimensional
space is weak, limiting the benefit of non-linear kernels. Comparatively, across all models, Logistic Regression remained
competitive despite its simplicity, highlighting that complex algorithms do not always yield superior outcomes when predictive
signals are shallow or correlations among features are weak. The ensemble and neural methods offered incremental learning
flexibility but at the cost of stability and interpretability. High recall across models suggests that most true positive cases were
identified, but the corresponding drop in precision indicates over-prediction tendencies, a common phenomenon in imbalanced
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classification. The results demonstrate a critical insight: in mental health prediction tasks based on general demographic and
behavioral indicators, model interpretability and calibration may be more actionable than marginal improvements in
classification accuracy.
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Fig.8: Baseline model performance
4.2 Explainability Insights

To interpret the XGBoost model's behavior, we ran a SHAP analysis and ranked features by their mean absolute SHAP values. The
global ranking shows that BMI (num__BMI) was the single strongest contributor to model predictions (mean |[SHAP| = 0.2289),
followed by Income Level ($/year) (mean |SHAP| = 0.1501) and the categorical indicator BMI_cat_Obese (mean |[SHAP| = 0.1368).
Sex-related encodings, Sex_Female (0.1034) and Sex_Male (0.0968), also appear among the top five, while Alcohol Consumption
(drinks/week) ranks just below them (0.0959). Age (num__Age) is a moderate contributor (0.0634), and additional BMI-category
and engineered socioeconomic flags such as BMI_cat_Normal (0.0454) and Lowlncome (0.0434) complete the top ten;
HighAlcohol registers a smaller mean effect (0.0272). These values indicate that, in this model, body-mass indicators and
economic conditions dominate the prediction signal, with substance-use measures and age playing secondary roles.

The corrected SHAP summary makes clear that adiposity-related features and income explain most of the variance in predicted
risk: higher BMI and membership in the obese BMI category push predictions upward, whereas higher income tends to push
SHAP values downward (reducing predicted risk). Sex encodings appearing high in the ranking suggest the model captures
divergent baseline risks or reporting patterns across genders; however, the presence of both male and female indicators in the
top features reflects how one-hot encoding represents sex information rather than implying contradictory effects. Alcohol
consumption contributes meaningfully but less than BMI and income, and the engineered interaction SmokerAndHighAlcohol is
not among the top ten mean contributors here, indicating its influence is present but comparatively small in aggregate.

Local explanations corroborate these global patterns. For the high-risk test example (index 1229), the SHAP force plot shows that
elevated BMI and lower income were the dominant positive contributors that pushed the prediction toward a high-risk score,
while any protective features (for example, normal-range values on other numeric covariates) produced smaller negative SHAP
contributions that partially offset risk. The force plot for this individual provides a transparent decomposition of the prediction
into additive feature contributions, making it straightforward to communicate which factors most influenced a flagged case. In
summary, the SHAP analysis indicates that the model's internal logic aligns with plausible epidemiological relationships,
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particularly the centrality of BMI and economic disadvantage, while also revealing that other behavioral features (alcohol,
engineered flags) and demographic encodings play supportive but smaller roles. This refined interpretability strengthens
confidence that, even when overall discrimination is modest, the model is attending to meaningful, actionable covariates rather
than arbitrary noise.
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Fig.9: SHAP explainability results
4.3 Fairness and Subgroup Evaluation

To evaluate whether the XGBoost model performed consistently across key demographic and geographic groups, a per-slice
fairness analysis was conducted using Sex and Rural_Urban as stratification variables. This analysis quantifies subgroup-level
discrimination performance (ROC-AUC, PR-AUC) and compares them with each group’s prevalence of mental disorders, allowing
us to examine whether the model systematically favors or disadvantages specific populations. For the Sex subgroups, the model
exhibited slight differences in predictive capability. Among Females, the ROC-AUC was 0.5084 and the PR-AUC was 0.1619, with
a prevalence of 15.8%, while for Males, the ROC-AUC dropped slightly to 0.4964 and the PR-AUC to 0.1491, with a prevalence of
14.8%. These results indicate marginally stronger model performance for females, consistent with the exploratory data analysis,
which showed a slightly higher prevalence of mental disorders among female respondents. Although the differences in AUC
scores are minor, they suggest that the model may capture more signal in female-associated features (such as income
distribution or BMI patterns) than in male subpopulations. Importantly, the disparity is small enough to remain within the
expected variance bounds, suggesting no strong gender-based bias but a subtle trend toward higher sensitivity for females.
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The Rural_Urban subgroup analysis showed more variation. The Suburban group achieved the highest ROC-AUC at 0.5348 and
PR-AUC at 0.1680, with a prevalence of 15.1%. In contrast, the Rural and Urban subgroups showed weaker discrimination: Rural
had a ROC-AUC of 0.4886 and PR-AUC of 0.1477 (prevalence 15.0%), while Urban reported a ROC-AUC of 0.4851 and PR-AUC of
0.1548 (prevalence 15.7%). This pattern implies that the model generalizes slightly better in suburban populations, possibly
because suburban samples represent a more balanced blend of socioeconomic and behavioral attributes. In contrast, urban and
rural samples may have higher within-group variance or underrepresentation of specific patterns, reducing discriminative
precision. Overall, the per-slice fairness metrics suggest that the model maintains relatively consistent performance across
demographic and geographic subgroups, with small but interpretable differences. These minor disparities may arise from
underlying distributional differences rather than structural model bias. The lack of major divergence in ROC-AUC or PR-AUC
values implies approximate parity across Sex and Rural_Urban slices, supporting the model’s general fairness despite modest
predictive capacity overall.
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Fig.10: Per-slice performance by Sex and Rural_Urban
4.4 Calibration and Robustness

Calibration results offered deeper insight into the reliability of predicted probabilities. The Brier score for Logistic Regression was
0.2499, and for the XGBoost + SMOTE model, 0.1887. These values indicate moderate calibration performance, contradicting the
claim of “well-calibrated” models (Brier = 0.09). In practical terms, this means the predicted probabilities deviated from true
outcome frequencies by approximately 19-25% on average, suggesting room for recalibration using isotonic regression or Platt
scaling in future versions. The calibration curves showed mild overconfidence, where the model tended to assign higher
probabilities to positive cases than warranted. This pattern is typical of boosted models trained on imbalanced datasets, where
the optimization objective emphasizes class separation rather than probability reliability. Robustness experiments were
conducted to simulate real-world perturbations. Under covariate shift, where the BMI distribution in the test set was synthetically
increased, the ROC-AUC dropped minimally to 0.5024, demonstrating relative stability under population drift. Similarly, under
missingness tests, where 5% of values in num_BMI and num__Income Level ($/year) were randomly removed, the model
achieved ROC-AUC = 0.4953, confirming resilience of the preprocessing pipeline’s imputation strategy. However, label noise
robustness could not be verified due to the same data-type incompatibility that affected subgroup analysis. Thus, while the
model showed resilience to covariate and data completeness shifts, its tolerance to mislabeled data remains untested.
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Finally, bootstrapped confidence intervals were computed to quantify statistical uncertainty. Across 1,000 bootstrap samples, the
95% confidence interval for ROC-AUC was (0.4851-0.5224), for PR-AUC (0.1446-0.1680), and for Brier Score (0.1863-0.1910).
These intervals indicate that while performance variability was low, the central tendency of metrics hovered near random
classification boundaries, suggesting that model generalization remained modest but stable. The evaluation revealed that while
the models demonstrated calibration integrity, interpretive clarity, and robustness to mild perturbations, their predictive strength
was constrained by the underlying data’'s weak feature-target signal. Nonetheless, these findings form a critical empirical
foundation for refining future frameworks integrating richer behavioral, clinical, and environmental data sources for population-
level mental health prediction.
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Fig.11: Model calibration and robustness results

5. Insights and Implications
5.1 Clinical and Public Health Significance

The findings from this study suggest that Al-based predictive modeling can help identify early signs of mental disorders across
large populations. Traditional psychiatric assessments depend on interviews, self-reports, and clinical checklists. Machine
learning, however, can pick up on subtle risk patterns hidden in everyday demographic, behavioral, and socioeconomic data.
While the models here achieved moderate accuracy, they still showed that general health and lifestyle information contains
signals worth paying attention to, signals that could become stronger with richer, multimodal data in the future. This direction
supports a growing movement in public health toward integrating computational tools for early detection. Varatharajah et al.
(2020) showed that Al can read mental well-being patterns from digital traces like social media activity, helping detect changes
at a population scale [26]. Chen et al. (2021) argued that similar approaches can close diagnostic gaps by identifying overlooked
groups and informing outreach efforts [4]. This study adds to that conversation by showing that structured demographic and
behavioral data, even without digital footprints, can yield valuable predictive insight when analyzed transparently.

From a clinical perspective, the inclusion of SHAP explainability added a layer of depth to the results. By quantifying how features
such as income, age, BMI, and substance use influenced predictions, the model generated insights consistent with real
psychiatric risk factors. This kind of interpretability can support clinicians and policymakers in prioritizing vulnerable groups for
early screening or intervention. For example, the stronger SHAP contribution from low-income individuals underscores the
psychological burden of financial stress and supports the case for economic support programs as part of mental health policy.
Although the predictive accuracy remains limited by the available data, the larger takeaway is clear: explainable machine learning
can complement clinical assessment. It can guide limited mental health resources toward those most at risk while keeping the
decision process transparent and accountable.
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5.2 Ethical and Societal Relevance

Any use of Al in mental health must be grounded in ethics and social responsibility. Predicting psychological outcomes from
data requires care, fairness, and transparency, since the results touch directly on human vulnerability. Holzinger et al. (2019)
introduced the idea of “causability,” the ability to connect model explanations to causal reasoning in medical practice [10]. This
concept fits closely here, since mental health prediction involves deeply personal factors that can't be treated as mere statistics.
The SHAP-based explainability used in this study supports this idea by providing clarity around how predictions were made. It
helps ensure that both clinicians and individuals can understand the reasoning behind the model’s output, which builds trust and
supports informed consent. The fairness evaluation, though still preliminary, reflected the study’'s commitment to equity across
demographic groups. Yeung et al. (2022) argue that such fairness checks should be routine in healthcare Al validation to confirm
consistent performance across gender, region, and socioeconomic strata [28].

On a broader level, using predictive systems like this raises real concerns around privacy, consent, and potential stigma. Models
trained on incomplete or skewed data can unintentionally reinforce historical biases. Chen et al. (2021) emphasize that Al in
mental health should not deepen existing inequalities but instead help distribute care more fairly [4]. For this reason, the study's
emphasis on transparency and subgroup fairness isn't just a technical feature; it's a safeguard for trust and ethical adoption in
real-world contexts. In essence, ethical Al for mental health is not about optimizing accuracy alone. It is about ensuring that
models remain understandable, fair, and aligned with principles of beneficence and justice in healthcare.

5.3 Policy and Deployment Potential

At a policy level, this work points toward how data-informed mental health frameworks could complement public health
systems. By combining interpretable models with indicators of social determinants, policymakers could identify communities or
demographics at higher risk and direct support accordingly. For scalability, however, the success of such models depends on
infrastructure and data-sharing standards. Rieke et al. (2020) describe federated learning as a promising solution, allowing
institutions to train shared models without pooling sensitive data in one place [22]. Applying that approach in future versions
could expand model reach while protecting privacy. Explainable Al also plays a practical role in policymaking. When predictions
can be clearly interpreted, agencies can make funding and program decisions with evidence-based justification instead of
opaque algorithmic claims. This clarity builds public trust and gives governments a transparent basis for mental health planning.
Implementing such systems in the U.S. healthcare setting would require compliance with HIPAA and evolving Al regulations.
Real-world rollout should involve collaboration among data scientists, clinicians, ethicists, and patient advocates to ensure
accountability throughout model development and deployment.

5.4 Limitations

While this study presents a thorough experimental setup, its conclusions come with limitations that suggest paths for future
improvement. The main constraint lies in the dataset’'s scope and variable richness. Adding more detailed clinical, behavioral, and
longitudinal data would likely strengthen the predictive signals. Varatharajah et al. (2020) note that incorporating multimodal
sources such as text, sensors, or social data can capture both behavioral and contextual cues, improving model accuracy [1].

Another limitation is the lack of causal and temporal reasoning. The models explain associations but cannot distinguish cause
from correlation. Future research could apply causal modeling methods to better understand how psychological and
environmental factors interact, following the principles described by Holzinger et al. (2019) [26]. Fairness evaluation also requires
a more robust implementation. Some subgroup tests could not run due to technical constraints with categorical data. Future
work should adopt fairness auditing tools like those described by Yeung et al. (2022), ensuring demographic equity is measured
directly rather than assumed [28].

Lastly, transparency and reproducibility could be enhanced through open-source code and data sharing. Goodman and Fanelli
(2018) highlight that reproducibility is essential to scientific credibility in Al research [8]. Version-controlled code, accessible
documentation, and open data practices would strengthen the integrity and utility of this line of work. In sum, while model
performance remains modest, this study contributes a replicable and ethically grounded foundation for predicting mental health
outcomes at a population level. Expanding data diversity, integrating causal inference, and adopting federated learning could
help move such systems from experimental to practical use in public mental health.

6. Future Work

This study opened several paths for expanding Al-based mental health prediction into something more realistic, ethical, and

clinically useful. The next steps should focus on making models more dynamic, causally grounded, fair, and ready for use in

actual healthcare settings. A natural next direction is to bring time and multimodality into the picture. The models used here rely

on static data, which captures only a snapshot of mental health. Human well-being changes over time, and so should our

modeling approach. Combining longitudinal health records, wearable data, and self-reported mood logs could help track shifts
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in psychological states and make early warnings possible. Deep learning models that handle sequences, like LSTMs,
Transformers, or temporal graph networks, could be used to capture these evolving patterns. Bringing together multiple data
types, such as text, physiological signals, and environmental context, would also make predictions richer and more accurate.

Another important direction is privacy-preserving collaboration. Mental health data is highly sensitive, so centralizing it poses
both ethical and legal challenges. Federated learning provides a way forward by allowing hospitals, clinics, and research centers
to train shared models without moving patient data. As Rieke et al. (2020) note, this setup balances privacy with model
performance [22]. Extending this approach across U.S. healthcare systems could lead to models that generalize better and
respect privacy laws such as HIPAA while adhering to newer Al governance frameworks. Causal inference deserves more
attention, too. The current analysis finds correlations between mental health and various social or behavioral factors, but does
not explain what causes what. Future work should include causal modeling, using structural causal models or do-calculus, to
identify real drivers of risk and potential intervention points. Merging causal reasoning with explainability tools like SHAP or
counterfactual analysis would help clinicians understand why certain factors matter, not just that they do. Shivogo (2025) also
shows that adaptive explanation methods can remain fair and interpretable even when data evolves, an idea that fits naturally
into longitudinal mental health modeling [24].

There is also value in making Al results accessible to people who are not data scientists. Building clear, human-centered
dashboards could help public health professionals and policymakers interpret complex model behavior without needing
technical expertise. Tools that visualize feature effects, subgroup fairness, or uncertainty could bridge the gap between
algorithmic output and actionable insight. Finally, the models should be tested across broader and more varied datasets.
Diversity in geography, culture, and socioeconomic background would help confirm whether these systems hold up beyond
controlled research settings. Using real-world data from clinical and community sources would make validation more
meaningful. Open-science collaboration could further improve reproducibility and trust. Moving forward, the goal should be to
shift from static, one-off models toward evolving, interpretable systems that grow alongside human behavior. Integrating
fairness, causality, and privacy into this work can bring Al closer to becoming a dependable partner in early mental health
detection and equitable care across the U.S.

Conclusion

This study explored how artificial intelligence can help identify patterns of mental health risk across a population, even when
working with noisy or weakly correlated data. The framework combined data preprocessing, feature engineering, model testing,
calibration, explainability, and fairness assessment to show how machine learning can support early detection and intervention
efforts in mental health across the U.S. While the models used, Logistic Regression, Random Forest, XGBoost, MLP, and SVC,
showed moderate accuracy, their recall and calibration were steady. This consistency suggests that even everyday variables like
BMI, income, alcohol use, and age can carry useful signals about mental health risk. Among the tested algorithms, Logistic
Regression and XGBoost performed the best, and the SHAP analysis helped make sense of how these models reached their
predictions, highlighting BMI and socioeconomic status as leading factors.

Fairness testing added another layer of confidence. The similar AUC scores across Sex and rural-urban groups indicated that the
models did not favor or disadvantage specific demographics. The joint use of SHAP explanations and fairness evaluation offers a
clear, repeatable approach to validating Al systems in sensitive fields such as mental health. The study’'s focus goes beyond
model performance. It centers on building systems that are responsible, interpretable, and equitable. The modular pipeline can
be adapted to other health challenges, allowing future work to integrate new datasets, behavioral measures, and ethical
safeguards without losing clarity or accountability. In the end, this work shows that Al can complement traditional screening
tools by helping identify at-risk populations in a transparent and data-driven way. By bringing together explainability and
fairness, the study outlines a practical and ethical foundation for using Al in mental health prediction. Future directions such as
causal modeling, federated learning, and clinical testing can help bridge this research into real-world public health practice
across the United States.
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