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| ABSTRACT 

Federated learning (FL) provides a privacy sensitive model training approach that can be applied to train predictive models in 

more than one hospital without having to share raw patient information. Nevertheless, heterogeneity in hospital data, which is 

created by differences in demographics, diagnostic practices, and treatment procedures, may create bias in algorithms and 

produce unfair or unfair predictive results. The proposed study is aimed at identifying and preventing bias in federated 

healthcare cloud models to provide equal decision-making opportunities to various groups of people. Fairness measures like 

demographic parity and equalized odds are used in bias detection, which is accompanied by model performance audits across 

institutions. Mitigation techniques consist of reweighting data, training with fairness constraints and subsequent calibration of 

post-processing to achieve a tradeoff of predictive accuracy against fairness goals. Secure aggregation methods are also 

examined in order to preserve privacy and make collaborative fairness auditing possible in clouds. The experimental evidence 

shows that the inclusion of bias mitigation measures leads to a large boost in enhancing fairness without reducing the overall 

model utility, which makes federated learning a more trustworthy choice in practical healthcare settings. 
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I. Introduction 

Federated learning (FL) adoption is a significant paradigm shift of privacy-preserving machine learning to enable hospitals and 

research institutions to jointly train predictive models, without sharing patient data with each other (Antunes et al., 2022; Ali et 

al., 2022). This distributed model is particularly essential to the medical field, where sensitive information is spread across 

organizations, and stringent regulatory systems like HIPAA, GDPR, and does not allow centralized data collection (Abbas et al., 

2024; Nguyen et al., 2022). FL enables model training on a wide range of diverse datasets, both geographically spread out, to 

enhance the accuracy of diagnostic outcomes, treatment suggestions, and population health analytics (Ali et al., 2024; Butt et al., 

2023). 

Regardless of such benefits, FL also brings a lot of issues concerning bias and fairness, which have a direct impact on the 

reliability and equity of clinical predictions. Models can frequently be trained on patterns that are biased towards larger 

populations (the majority) and poorer at the minority or underrepresented (Benmalek and Seddiki, 2024; Kim et al., 2024). The 

heterogeneous nature of data across participating hospitals (due to the difference in demographics, sample size, diagnostic 

protocols, and socio-economic backgrounds) can also lead models to learn such patterns. Such discrepancy may cause unequal 

access to correct diagnosis or treatment prescriptions, further increasing healthcare disparities (Chinta et al., 2024; Wang et al., 

2024). Fairness-aware model design is an essential aspect of healthcare AI pipelines because, according to Thomas (2024) and 
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Cherukuri (2020), such algorithmic bias in cloud-hosted AI systems poses ethical and regulatory challenges, and model design is 

a key requirement of such systems. 

Federated systems detection of bias is a new line of research, recent studies suggest a pre-processing and post-processing 

method of fairness. In particular, Siniosoglou et al. (2023) proposed unsupervised post-processing techniques to assess the 

fairness of model performance across distributed locations, and Abay et al. (2020) emphasized bias-aware aggregation 

techniques which dynamically modify the model updates where the data distributions are skewed by the sampling of hospitals. 

In addition, scholars have also investigated personalization techniques in FL to trade-off global model accuracy with local 

population-specific performance, though they may bring trade-offs between fairness and personalization (Wang et al., 2024; 

Djebrouni et al., 2024). 

Having federated models on cloud, further complicates the mitigation of bias, where secure aggregation, explainability, and 

accountability systems have to be implemented into the federated infrastructure (Duran et al., 2023; Raza, 2023). The fact that 

explainable AI (XAI) is crucial to FL systems has also been emphasized by researchers, allowing clinicians and regulators to 

comprehend how decisions are made, as well as the question of whether they are fair (Singh et al., 2022).To address these 

multifaceted challenges, recent studies propose reweighting techniques, fairness-constrained optimization, and collaborative 

fairness audits across hospitals to systematically identify and correct bias before model deployment (Selialia et al., 2024; Benarba 

& Bouchenak, 2025). 

This research explores bias mitigation in federated healthcare cloud models by combining statistical bias detection, fairness-

aware training, and post-processing calibration in a privacy-preserving framework. The goal is to enhance equity in predictive 

outcomes across diverse patient populations while maintaining compliance with security, privacy, and regulatory requirements. 

By focusing on cross-hospital collaboration and integrating secure aggregation protocols, this study contributes to building 

trustworthy federated learning pipelines that support responsible AI deployment in healthcare (Ali et al., 2024; Chinta et al., 

2024). 

II. Problem Statement 

Federated learning (FL) has emerged as a transformative paradigm for collaborative model training across multiple healthcare 

institutions while preserving patient data privacy by keeping data decentralized (Antunes et al., 2022; Ali et al., 2022). Despite its 

potential, the application of FL in healthcare is challenged by algorithmic bias, which arises from the inherent heterogeneity of 

hospital datasets, including variations in patient demographics, disease prevalence, diagnostic tools, and treatment standards 

(Benarba & Bouchenak, 2025; Ali et al., 2024). This heterogeneity leads to models that may perform well on majority groups but 

systematically underperform for underrepresented populations, thereby introducing risks of inequitable clinical outcomes (Kim et 

al., 2024; Chinta et al., 2024). 

Bias in federated healthcare models typically manifests in several forms: statistical bias, caused by imbalanced data distributions 

across clients; aggregation bias, resulting from global model averaging that favors dominant client updates; and systemic bias, 

where institutional practices themselves encode structural inequalities (Benmalek & Seddiki, 2024; Wang et al., 2024). To 

illustrate, in the case where a dataset of one hospital has a mostly urban patient population whereas another has a mostly rural 

patient population, a common model will be trained without fairness constraints, and will overfit to urban health mechanisms, 

resulting in inaccurate predictions of rural patients (Selialia et al., 2024; Abay et al., 2020). 

Non-IID (non-identically distributed) data and uneven participation, in which certain institutions contribute more often or 

provide more data than others, further worsens this issue, such that world models would overly represent the data of a few 

institutions (Djebrouni et al., 2024; Nguyen et al., 2022). Also, the process of cloud aggregation can be biased on its own, when 

no fairness-sensitive mechanisms are used to bring contributions of different sites on the same level (Butt et al., 2023; Durán et 

al., 2023). 

In ethical terms, the inability to identify and address such bias brings up the question of health disparities and the loss of trust to 

AI-supported decision support systems. Healthcare is an extremely stakes field where unjustifiable predictions may result in 

misdiagnosis or prioritization of treatment or even the refusal of life-saving interventions, and vulnerable groups will be 

disproportionately impacted (Thomas, 2024; Cherukuri, 2020). According to Siniosoglou et al. (2023), fairness assessment should 

be an obligatory part of the federated healthcare pipeline but numerous existing systems do not have post-training audit 

processes. 
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Therefore, it is urgent to have a systematic model that can identify, measure, and rectify bias throughout and following the 

process of model training, so as to achieve fairness across different hospitals. This issue is critical to developing credible, fair, and 

ethically sound healthcare AI solutions that are able to extrapolate across heterogeneous patient groups without violating data 

privacy and regulatory compliance (Raza, 2023; Abbas et al., 2024). 

III. Bias Detection Techniques 

Bias detection in federated healthcare cloud models is a critical step to ensure that predictive outcomes are equitable across 

heterogeneous hospital datasets. Due to variations in demographic distributions, diagnostic equipment, and clinical practices 

across institutions, models trained in a federated learning (FL) setting may inadvertently favor or disadvantage specific patient 

subgroups (Wang et al., 2024; Benmalek & Seddiki, 2024). The goal of bias detection is to systematically measure disparities in 

model behavior and identify potential sources of unfairness before applying mitigation techniques. 

1. Statistical Bias Detection Metrics 

Statistical parity-based measures remain one of the most widely used tools for bias detection in FL systems. Metrics such as 

Demographic Parity, Equal Opportunity, and Equalized Odds assess whether model outputs differ significantly across subgroups 

defined by sensitive attributes (e.g., gender, ethnicity, or hospital site). These metrics help uncover whether prediction 

probabilities are systematically skewed toward or against particular cohorts (Kim et al., 2024; Chinta et al., 2024). 

● Demographic Parity: Ensures that the predicted positive rate is equal across groups. 

● Equal Opportunity: Measures if the true positive rate is the same for different subgroups. 

● Equalized Odds: Requires equal true positive and false positive rates across groups, offering a stricter fairness criterion 

(Abay et al., 2020). 

 

2. Cross-Hospital Performance Auditing 

In federated healthcare, hospitals often have non-IID (non-independent and identically distributed) datasets, which may 

introduce skewed model performance. Cross-silo auditing involves evaluating the global model on each hospital’s local 

validation data to highlight performance discrepancies (Djebrouni et al., 2024; Ali et al., 2024). This technique can reveal hidden 

biases that may not appear in aggregate metrics but become visible when disaggregated by site or patient population. 

3. Unsupervised Fairness Evaluation 

Recent studies have explored unsupervised approaches to detect bias in scenarios where sensitive attributes are unavailable due 

to privacy regulations. Techniques such as clustering-based subgroup identification and distributional shift analysis have been 

effective in revealing latent subgroup disparities without explicit demographic labels (Siniosoglou et al., 2023; Benarba & 

Bouchenak, 2025). These methods enable bias detection while maintaining compliance with healthcare data privacy 

requirements. 

1) 4. Explainable AI (XAI)-Driven Analysis 

Explainability techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) can be used to detect bias by highlighting whether sensitive features disproportionately influence model 

predictions (Cherukuri, 2020; Raza, 2023). For example, if a model’s decision-making relies excessively on geographic location 

(hospital site) rather than clinical variables, it may indicate institutional bias. 
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Table 1: Major Bias Detection Techniques in Federated Healthcare Cloud Models 

Technique Description Advantages Limitations Key References 

Demographic 

Parity 

Ensures equal 

predicted positive 

rates across sensitive 

groups 

Simple to compute; 

widely recognized 

fairness criterion 

Ignores true outcome 

distribution; may harm 

model utility 

Abay et al. (2020); 

Kim et al. (2024) 

Equalized Odds / 

Equal 

Opportunity 

Compares true 

positive & false 

positive rates 

between groups 

Captures outcome 

disparities more 

accurately 

Requires access to 

ground-truth labels; 

computationally 

intensive 

Wang et al. 

(2024); Chinta et 

al. (2024) 

Cross-Hospital 

Performance 

Auditing 

Evaluates global 

model on each 

hospital’s local 

validation set 

Reveals site-specific 

disparities; practical 

for FL 

Requires local 

evaluation resources; 

may still mask 

subgroup-level bias 

Djebrouni et al. 

(2024); Ali et al. 

(2024) 

Unsupervised 

Subgroup 

Analysis 

Detects bias without 

explicit sensitive 

attributes using 

clustering methods 

Privacy-preserving; 

suitable for 

GDPR/HIPAA-

compliant settings 

May miss subtle bias if 

clustering fails to 

identify protected 

subgroups 

Siniosoglou et al. 

(2023); Benarba & 

Bouchenak (2025) 

XAI-Based 

Feature 

Attribution 

Uses SHAP/LIME to 

inspect feature 

importance 

Provides 

interpretability and 

actionable insights 

Requires computational 

resources; 

interpretation may be 

subjective 

Cherukuri (2020); 

Raza (2023) 

5. Integration with Federated Monitoring Pipelines 

To operationalize these techniques, bias detection must be embedded into the federated learning lifecycle. This involves 

integrating fairness evaluation at each communication round, enabling early identification of drifts or inequities (Selialia et al., 

2024; Antunes et al., 2022). Continuous monitoring ensures that any retraining or personalization steps do not inadvertently 

amplify bias, a phenomenon known as fairness drift (Wang et al., 2024). 

Bias detection in federated healthcare models is multifaceted, combining statistical fairness metrics, cross-silo evaluations, 

privacy-preserving unsupervised techniques, and XAI-driven interpretability. Together, these tools form the foundation for 

building trust in FL systems and ensuring equitable health outcomes across diverse patient populations. 

IV. Bias Mitigation Strategies 

Bias mitigation in federated healthcare cloud models is a critical step to ensure equitable clinical outcomes across diverse 

hospital datasets. Since federated learning (FL) operates on decentralized, non-IID (non-identically distributed) data, addressing 
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bias requires a multi-pronged approach targeting data heterogeneity, algorithmic fairness, and privacy preservation 

simultaneously. 

1. Data-Level Mitigation 

At the data level, rebalancing techniques can minimize representation disparity among participating hospitals. Methods such as 

data reweighting, oversampling of minority subgroups, and feature normalization are commonly used to harmonize input 

distributions. For example, hospitals with underrepresented demographic groups may assign higher sample weights to those 

patients, ensuring that the global model does not disproportionately favor majority populations (Benmalek & Seddiki, 2024). 

2. Algorithm-Level Mitigation 

Algorithmic approaches integrate fairness constraints directly into the model training process. This includes fairness-aware 

optimization, where loss functions incorporate regularization terms that penalize demographic disparities, and personalization 

techniques, which allow local models to adapt to local data characteristics without compromising global fairness (Wang et al., 

2024). Personalized FL frameworks have been shown to significantly reduce disparate impact in healthcare prediction tasks. 

3. Model Aggregation-Level Mitigation 

Bias can also be mitigated during the model aggregation phase. Techniques such as Fair Federated Averaging (FairFedAvg) 

adjust the contribution of each client’s model update based on fairness metrics, ensuring that hospitals with smaller datasets are 

not overshadowed by those with larger contributions (Djebrouni et al., 2024). Secure aggregation protocols further guarantee 

that fairness audits are performed without compromising data privacy (Ali et al., 2024). 

4. Post-Processing Mitigation 

Post-processing methods correct biased outcomes after training. Techniques include threshold adjustment, equalized odds post-

processing, and recalibration of predicted probabilities to ensure equal false positive and false negative rates across 

demographic groups (Siniosoglou et al., 2023). These approaches are particularly valuable when retraining is expensive or 

infeasible. 

5. Governance and Ethical Oversight 

Technical interventions must be supported by governance frameworks that ensure transparency, accountability, and compliance 

with healthcare regulations. Ethical AI guidelines advocate for regular fairness audits, stakeholder engagement, and explainable 

decision-making mechanisms to maintain trust (Thomas, 2024; Durán et al., 2023). 

Table 2: Major Bias Mitigation Strategies for Federated Healthcare Models 

Mitigation Level Techniques Strengths Limitations Key References 

Data-Level Reweighting, 

oversampling, feature 

normalization 

Improves 

representation 

balance early, simple 

to implement 

Requires careful 

handling to avoid data 

leakage and overfitting 

Benmalek & 

Seddiki (2024), 

Ali et al. (2022) 

Algorithm-Level Fairness-aware loss 

functions, 

personalization 

techniques, adversarial 

debiasing 

Integrates fairness 

during training, 

adapts to local data 

heterogeneity 

Increases training 

complexity, may impact 

accuracy 

Wang et al. 

(2024), Kim et al. 

(2024) 

Aggregation- FairFedAvg, adaptive 

weighting, gradient 

Promotes equitable 

participation across 

Computationally 

expensive for large-

Djebrouni et al. 

(2024), Selialia et 
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Level clipping hospitals, preserves 

privacy 

scale networks al. (2024) 

Post-Processing Threshold adjustment, 

equalized odds post-

processing, calibration 

Model-agnostic, does 

not require retraining 

Limited to output 

correction, may reduce 

predictive power 

Siniosoglou et al. 

(2023), Chinta et 

al. (2024) 

Governance & 

Oversight 

Fairness auditing, 

explainable AI, 

regulatory compliance 

Builds trust, ensures 

ethical alignment 

with healthcare 

standards 

Requires institutional 

buy-in, ongoing 

monitoring 

Thomas (2024), 

Durán et al. 

(2023) 

 

Implementing these mitigation strategies collectively ensures that federated healthcare models deliver fair, accurate, and 

privacy-preserving predictions across heterogeneous hospital environments. A hybrid approach  combining data balancing, 

fairness-aware training, and post-processing adjustments is often the most effective for mitigating systemic biases in real-world 

healthcare applications (Benarba & Bouchenak, 2025; Abay et al., 2020). 

V. Implementation in Cloud-Based Federated Systems 

Implementing bias mitigation strategies in federated healthcare cloud models requires a carefully designed pipeline that 

balances fairness, privacy, scalability, and computational efficiency. This section outlines the core components of such an 

implementation, including system architecture, secure communication, bias auditing, and collaborative model optimization. 

1. System Architecture for Federated Healthcare 

The implementation begins with a cloud-based federated learning (FL) architecture where multiple hospitals act as local nodes, 

training models on their own patient datasets. The central cloud server orchestrates the process, aggregates model updates, and 

distributes improved global models back to participants. This architecture typically follows a hierarchical FL approach that allows 

both edge and cloud computation to coexist, reducing latency and improving fairness performance across heterogeneous 

devices (Antunes et al., 2022; Singh et al., 2022). 

Key architectural components include: 

● Local Model Trainers – hospital-specific computation nodes. 

● Secure Aggregator – cloud-based coordinator for model parameter fusion. 

● Bias Auditing Engine – module for monitoring fairness metrics after each round. 

● Explainability Layer – interprets model decisions for clinicians and stakeholders (Raza, 2023). 

2. Secure Data and Model Exchange 

Given the sensitivity of healthcare data, privacy-preserving protocols such as secure multiparty computation (SMPC) and 

homomorphic encryption are applied during model updates (Ali et al., 2022; Butt et al., 2023). This ensures that no raw patient 

data leaves the local institution. 

 Additionally, differential privacy mechanisms can be incorporated to further protect individual patient contributions while 

maintaining accuracy (Nguyen et al., 2022). 

3. Bias Detection and Auditing Pipeline 

Bias detection is an iterative process integrated into every federated training round. Following each aggregation step, the Bias 

Auditing Engine evaluates fairness metrics such as: 

● Demographic Parity Difference 
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● Equalized Odds 

● False Positive/Negative Rate Balance 

This evaluation is crucial to identifying systemic disparities caused by non-IID (non-independent and identically distributed) data 

across hospitals (Benmalek & Seddiki, 2024). Real-time dashboards can visualize fairness metrics per round, enabling model 

developers to intervene early (Siniosoglou et al., 2023). 

4. Bias Mitigation Strategies 

Bias mitigation is implemented in three complementary layers: 

Mitigation 

Layer 

Technique Implementation Notes References 

Pre-

processing 

Data reweighting, 

over/undersampling 

Applied locally before training to 

rebalance class distribution. 

Abay et al. (2020) 

In-processing Fairness-aware optimization (e.g., 

adding fairness constraints to loss 

function) 

Global model trained with 

regularization terms that penalize 

disparity. 

Djebrouni et al. 

(2024); Kim et al. 

(2024) 

Post-

processing 

Outcome adjustment, threshold 

calibration 

Final model predictions adjusted 

to achieve parity across sensitive 

groups. 

Siniosoglou et al. 

(2023) 

This layered approach is necessary because bias often emerges at multiple stages of the model lifecycle (Benarba & Bouchenak, 

2025). 

5. Personalization for Fairness 

Personalization is an important consideration because different hospitals may have distinct patient demographics. Techniques 

such as clustered FL and meta-learning personalization layers can adapt the global model to local population characteristics 

without compromising overall fairness (Wang et al., 2024). This hybrid approach reduces the risk of underperformance in 

minority subgroups while maintaining generalizability. 

6. Governance, Compliance, and Ethical Oversight 

Federated systems must comply with healthcare regulations (e.g., HIPAA, GDPR) and maintain algorithmic accountability through 

detailed model logs, explainability reports, and reproducible training records (Durán et al., 2023; Thomas, 2024). This ensures 

that bias mitigation efforts are transparent, auditable, and aligned with ethical AI principles. 
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Fig 1: This 

shows how fairness improves across training rounds, with Full Mitigation converging fastest toward near-zero bias. 

 

7. Scalability Considerations 

Finally, the implementation must be scalable to support dozens or even hundreds of hospitals. Cloud-native solutions such as 

Kubernetes-based orchestration, elastic compute allocation, and edge-cloud continuum optimization are recommended for real-

world deployment (Ali et al., 2024; Abbas et al., 2024). 

VI. Evaluation and Results 

The evaluation phase focuses on quantitatively and qualitatively measuring the fairness, accuracy, and generalizability of the 

bias-mitigated federated healthcare cloud model across heterogeneous hospital datasets. Experiments were conducted using 

real-world healthcare data from multiple institutions with varying demographic and clinical distributions. A combination of pre-

mitigation and post-mitigation metrics was used to compare the model’s performance before and after implementing fairness-

aware interventions. 

A. Evaluation Metrics 

To ensure robust evaluation, multiple fairness and accuracy metrics were applied: 

● Fairness Metrics: Demographic Parity Difference (DPD), Equalized Odds Difference (EOD), and Disparate Impact (DI) 

were measured across sensitive attributes such as age, gender, and ethnicity (Kim et al., 2024; Siniosoglou et al., 2023). 

● Performance Metrics: Accuracy, Precision, Recall, and F1-score were recorded to ensure that fairness improvements 

did not significantly degrade predictive power (Wang et al., 2024). 

● Model Robustness: Cross-hospital variance in model outputs was analyzed to identify any persistent institutional bias 

(Benmalek & Seddiki, 2024). 

B. Experimental Setup 

Federated training was carried out in a secure cloud environment using a simulated consortium of five hospitals with non-

identical data distributions. Each hospital trained local models using its data, and model parameters were aggregated via FedAvg 
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with fairness-aware optimization layers (Djebrouni et al., 2024; Abay et al., 2020). Secure aggregation protocols ensured patient 

privacy and prevented model inversion attacks (Ali et al., 2022; Butt et al., 2023). 

C. Results Before and After Bias Mitigation 

Table 3 presents a summary of key fairness and performance indicators before and after implementing the mitigation strategies. 

Table 3: Model Performance and Fairness Metrics (Pre- vs. Post-Mitigation) 

Metric Pre-Mitigation Post-Mitigation Improvement 

Demographic Parity Difference (DPD) 0.21 0.07 ↓ 66% 

Equalized Odds Difference (EOD) 0.18 0.06 ↓ 67% 

Disparate Impact (DI) 0.74 0.93 ↑ 26% 

Model Accuracy 88.4% 87.9% -0.5% 

F1-Score 0.85 0.84 -0.01 

These results indicate that the applied mitigation techniques significantly reduced bias while maintaining comparable model 

accuracy. The slight trade-off in predictive performance is consistent with findings in prior studies that emphasize fairness-utility 

balancing (Benarba & Bouchenak, 2025; Thomas, 2024). 

D. Cross-Hospital Analysis 

The post-mitigation analysis revealed improved performance uniformity across participating hospitals, as shown in Figure 1. 

Institutions with smaller or underrepresented cohorts showed the greatest gains in fairness, aligning with the hypothesis that 

bias mitigation disproportionately benefits minority data sources (Selialia et al., 2024; Chinta et al., 2024). 
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Fig 2: The 

grouped bar chart comparing Pre-Mitigation vs. Post-Mitigation results for all metrics 

E. Discussion of Results 

The evaluation highlights three major insights: 

1. Substantial Fairness Gains: The mitigation strategies achieved measurable reductions in both DPD and EOD, which are 

considered primary indicators of algorithmic fairness (Kim et al., 2024). 

2. Minimal Utility Loss: The slight drop in accuracy and F1-score confirms that fairness constraints were successfully 

integrated without critically harming predictive reliability (Djebrouni et al., 2024). 

3. Privacy and Security Compliance: Secure aggregation and privacy-preserving mechanisms ensured no patient data 

leakage during evaluation, aligning with best practices for healthcare AI governance (Durán et al., 2023; Raza, 2023). 

Overall, the results validate the hypothesis that incorporating fairness-aware optimization into federated healthcare cloud 

models can effectively mitigate bias, ensuring equitable treatment recommendations while preserving high clinical relevance. 

Conclusion 

Bias mitigation in federated healthcare cloud models is crucial for ensuring fairness, reliability, and ethical use of AI in clinical 

decision-making. The heterogeneity of datasets across hospitals, arising from differences in demographics, treatment protocols, 

and data collection methods, introduces significant risks of algorithmic bias that can adversely affect patient care (Wang et al., 

2024; Benmalek & Seddiki, 2024). Addressing these biases requires a combination of pre-processing, in-training, and post-

processing strategies, including data reweighting, fairness-constrained optimization, and outcome calibration, which have been 

shown to significantly reduce disparities in predictive outcomes without compromising overall model performance (Djebrouni et 

al., 2024; Abay et al., 2020; Kim et al., 2024). 

Federated learning is a paradigm that inherently enables privacy-preserving cooperation of institutions; however, it would have 

special requirements in detecting and mitigating bias, which is not uniform in data sets and heterogeneous in devices (Selialia et 

al., 2024; Ali et al., 2024; Butt et al., 2023). Recent developments highlight the need to consider fairness-conscious training 

regimes and the post-hoc assessment models to have fair model behavior in a wide range of patients (Siniosoglou et al., 2023; 

Chinta et al., 2024). In addition, the incorporation of accountability systems and safe aggregation strategies can boost trust and 

compliance in the controlled healthcare setting and simplify the bias audit of collaboration (Thomas, 2024; Duran et al., 2023; 

Raza, 2023). 



JMHS 6(4): 83-95 

 

Page | 93  

Bias mitigation has been shown as both lessening the ethical deployment of predictive models and enhancing the clinical utility 

and acceptance by stakeholders (Wang et al., 2024; Antunes et al., 2022; Ali et al., 2022). Nevertheless, there are still open 

challenges, as the goal of creating a consistent measure of fairness, compensating the heterogeneity of edge devices, and 

striking a balance between precision and equity (Benarba & Bouchenak, 2025; Djebrouni et al., 2024; Cherukuri, 2020). 

Conclusively, the problem of bias reduction in federated healthcare cloud models is a complex task that needs to be properly 

designed, regularly monitored, and evaluated. With the adoption of the latest mitigation measures and ethical AI concepts, 

healthcare organizations will be able to use federated learning to deliver reliable, fair, and accurate predictive analytics, and 

eventually promote equitable healthcare delivery among different populations (Wang et al., 2024; Abay et al., 2020; Kim et al., 

2024). The way forward in future studies should be on the development of adaptive fairness models, studying explainable AI 

methods and creating scalable governance systems to further improve the integrity and inclusivity of federated healthcare AI 

systems (Ali et al., 2024; Chinta et al., 2024; Selialia et al., 2024). 
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