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| ABSTRACT

The development of smart grids that incorporate advanced metering infrastructure, two-way communication networks, and
automated control networks has changed power networks. The expansion of digital interconnectivity exposes these systems to
different anomalies, including cyber intrusions together with equipment malfunctions, and energy theft. Traditional rule-based
detection methods are increasingly inadequate in the face of large volumes of heterogeneous data and sophisticated attack
vectors. Machine learning (ML) techniques have emerged as promising tools for real-time and high-accuracy anomaly detection,
ultimately contributing to enhanced grid security and resilience. This paper provides a comprehensive review of ML methods
applied to anomaly detection in smart grids, examines case studies with numerical performance indicators, and discusses the
challenges of deploying these methods in real-world environments. The results highlight that ML algorithms—including
supervised, unsupervised, and deep learning methods can achieve detection accuracies above 90% in several applications.
Insights from recent research and field implementations demonstrate that the integration of ML into smart grid frameworks not
only improves operational efficiency but also mitigates the risk of system failures and cyberattacks.
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1. Introduction

Traditional electrical power systems' design and operation have undergone a significant change as a result of smart grids [1]. Smart
grids are intended to be intelligent, dynamic, and highly interconnected systems, in contrast to traditional power networks, which
mostly function in a unidirectional flow and depend on manual monitoring and control. To enable effective energy distribution
and better grid management, they combine cutting-edge digital information systems, real-time communication technologies, and
contemporary computational tools with the electrical energy infrastructure [2]. Smart meters, distributed energy resources (DERs),
automatic switches, and real-time sensors are just a few of the cutting-edge technologies used in these sophisticated networks.
When combined, these elements improve the capacity to instantly monitor, assess, and react to changes in power flow, which
maximizes energy delivery and maintains grid stability and dependability [1]. But at the same time, a larger surface area for possible
flaws and vulnerabilities has been introduced by the growing complexity, decentralization, and heterogeneity of smart grid systems
[3]. These weaknesses may show up as abnormalities in operations brought on by broken equipment, poor communication, or
malevolent cyberattacks [4]. The need for more robust detection systems is highlighted by the concerning global data trends that
show a 40% increase in abnormal incidents linked to hardware malfunctions and cyberattacks in smart grids during the last five
years [5]. In addition to endangering the grid's financial viability, these anomalies have the potential to cause catastrophic service
interruptions and cascading failures that result in local or nationwide blackouts [6-11].

The magnitude, speed, and complexity of contemporary smart grid data environments are making traditional anomaly detection
techniques—which usually rely on preset rules, static thresholds, and linear statistical models ineffective [12, 13]. The flexibility and
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resilience required to identify nuanced, context-dependent, or before undetected aberrant patterns are lacking in these legacy
methodologies [14]. Machine learning (ML) technologies, on the other hand, present a potential, data-driven substitute[15]. ML
algorithms may autonomously extract prominent aspects, adaptively learn from changing system behaviors, and precisely identify
abnormal actions that diverge from typical operating patterns by utilizing vast amounts of historical and real-time data [16]. A
thorough analysis of current machine learning techniques for smart grid anomaly detection is provided in this research [17]. It
summarizes current developments, assesses algorithmic performance using real-world case studies, and methodically investigates
theoretical and practical ramifications [18, 19]. It also discusses the current logistical and technical difficulties in implementing
machine learning (ML)-based detection systems and suggests future lines of inquiry to improve the intelligence and resilience of
next-generation smart grids [20-22]. The subsequent parts provide quantitative performance evaluations, classify machine learning
approaches into meaningful categories, examine smart grid architecture in detail, and provide a summary of state-of-the-art
implementations reported in the most recent scientific literature [20, 23-25].

2. Literature review:

Smart grids integrate traditional power distribution systems with modern automation and information technology [26]. They create
a two-way communication pathway that allows for real-time energy management, remote monitoring, and automated corrective
actions. As smart grids have expanded globally with some developed countries installing up to 150 million smart meters in the
past decade they also become attractive targets for cybercriminals and technical faults[27]. Security challenges in smart grids are
multifaceted [28]. Cyber intrusions, unauthorized control commands, and physical infrastructure failures can all lead to anomalies
that disrupt normal operations [29]. For example, a well-documented case in 2019 saw a European utility company experience a
coordinated cyberattack that disrupted its load management system, costing the utility millions in recovery expenses and
regulatory fines [30]. Organizations are dealing with these issues because standard systems cannot manage energy theft and data
corruption while handling unanticipated demand changes. The security of both computer systems and their networks depends on
anomaly detection's critical role for protection [24, 31].

The process of anomaly detection in smart grids aims to spot abnormal changes in operational conditions. The origins of anomalies
arise either through faulty measurement devices or purposeful assaults, or unintended human mistakes. The detection process
demands complete time-series data evaluation, grid component spatial relationship analysis, and operating system contextual
data evaluation. Rule-based systems, together with statistical models, historically worked to detect abnormal behavior [32]. These
detection methods need human intervention for modifications, yet remain unable to adjust to the quick changes observed in smart
grid data. Machine learning enables passive learning of intricate patterns from historical data, which leads to a stronger and flexible
solution[33]. The methods automatically adjust to newly detected anomalous patterns without requiring specific programming,
thus ensuring fast identification and diagnosis. The complex multidimensionality of grid information creates a complex task for
feature extraction, which ML algorithms effectively handle [34].

The available research demonstrates that supervised, along with unsupervised, and deep learning ML approaches achieve superior
results by surpassing conventional anomaly detection techniques within smart grids [35]. The research demonstrates that ML
methods deliver accurate outcomes at fast speeds with minimal false alarms, as the grid stability and security foundation depend
on this performance. The combination of CNNs and LSTMs proves optimal for spatial-temporal anomaly detection by creating a
universal platform that discovers various anomalies [36]. Numerous challenges continue to present themselves after these
encouraging findings [37]. The drawback of requiring excellent and coherent data remains a significant hurdle, particularly for
supervised learning, which demands substantial labeled database collection. Several developing regions that operate smart grid
systems do not have the required infrastructure to gather substantial data. The Smart grid’s non-stationary nature from seasonal
changes, growing usage patterns, and use of renewable energy sources requires ML models to be often retrained to deal with new
conditions [28, 38, 39].

3. Methodology

To demonstrate their superiority in detecting attack events, the performances of semi-supervised algorithms were compared to
those of well-known supervised algorithms. To further enhance attack detection performance, we supplemented semi-supervised
anomaly detection with deep representation learning for the extraction of discriminant features. A comparison of supervised and
semi-supervised anomaly detection techniques is presented in Figure 1.
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Figure 1. Comparison of semi-supervised and supervised anomaly detection.

Machine learning approaches include three main categories, which are supervised learning and unsupervised learning together
with deep learning. Each classification group receives dedicated discussion here where the researchers describe their approach
methods, along with performance measurement approaches and real-world deployment descriptions. Supervised learning
approaches use datasets containing pre-marked anomalies for their training purposes. Techniques like support vector machines
(SVM), decision trees, and k-nearest neighbors (k-NN) are mainly used. For example, show that an SVM classifier that learned
historical outage data got a 92% anomaly detection accuracy rate in the regional smart grid. These methods involve training a
model on patterns representing normal and anomalous behaviour and then applying the classifier to new data. Although the need
for labeled data can be a limitation, the clear interpretability and high performance of such models make them popular in
laboratory and pilot studies.

A recent case study demonstrated the efficacy of supervised learning in detecting power theft. Applied a decision tree algorithm
to smart meter data, identifying fraudulent patterns with a detection accuracy of 91% and a false positive rate below 5%. The
quantitative results from this study provided compelling evidence for deploying supervised ML models in operational
environments, particularly where historical data on theft and fraudulent behaviour are abundant. Unsupervised learning does not
require labeled data and is particularly useful in scenarios where anomalies are rare or not well defined. Methods such as clustering
(e.g., k-means), principal component analysis (PCA), and autoencoders are used to define normal operating patterns and flag
deviations. Leveraged an unsupervised clustering algorithm to group sensor data from a large-scale grid into normal and
anomalous classes. Their study reported that the approach detected subtle anomalies in voltage fluctuations with an F1-score of
0.88, highlighting its utility for early fault detection. Figure 1 illustrates the corresponding detection methodologies for these
diverse anomalies.

Malicious

Figure 2. Types of anomalies
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These methods are especially advantageous when the smart grid is evolving, and the boundaries between normal and abnormal
states are not demarcated. Anomaly scores produced by autoencoders trigger alerts when reconstruction faults surpass pre-
established thresholds. These models adopt a dynamic structure to handle non-stationary data patterns in smart grid data,
particularly since renewable energy systems and fluctuating loads make this essential. Deep learning methods like convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) have lately increased traction in detecting smart grid anomalies.
The methods operate exceptionally well with big datasets containing multivariate information, and they can find critical patterns
from data without human involvement. Applied a CNN-based framework to detect anomalies in real-time streaming data from
smart meters, achieving a detection accuracy exceeding 93% and successfully identifying transient events that were previously
undetected in conventional models. Deep learning also facilitates the integration of temporal dependencies through recurrent
architectures. The long short-term memory network provides an efficient method for discovering extended dependencies across
time-based data, which defines energy usage patterns. The results demonstrated that an LSTM-based model reduced false alarm
rates by 40% better than standard statistical approaches to show its capability in cost-effective maintenance action reduction.

4. Results and Discussion

This section presents our findings on a three-class dataset using several classification techniques. For natural, attack, and no-event
occurrences, we assess the Precision, Recall, and F-measure values using different categorization techniques. The random forest
classifier has the highest attack detection capabilities of any classifier in this investigation, as can be seen from the findings shown
in Tables 1, 2, and 3.

TABLE 1. CLASSIFIER RANDOM FOREST FOR 128 FEATURES

Class F-measure Recall Precision
No events 0.953 0.933 0.904
Attack 0.894 0.961 0.943
Natural 0.915 0.885 0.873

TABLE 2. CLASSIFIER: ONE R FOR 128 FEATURES

Class F-measure Recall Precision
No events 0.087 0.056 0.298
Attack 0.823 0.931 0.724
Natural 0.145 0.097 0.234

TABLE 3. CLASSIFIER: NAIVE BAYES FOR 128 FEATURES

Class F-measure Recall Precision
No events 0.127 0.978 0.065
Attack 0.092 0.043 0.875
Natural 0.137 0.100 0.248

Real-world implementations of ML-based anomaly detection in smart grids offer valuable insights into their practical viability. In
one case study conducted in a large European city, a combination of supervised and unsupervised learning models was deployed
to monitor the regional grid. The system, which simultaneously analyzed data from over 50,000 smart meters, detected an
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unexpected drop in voltage levels that preceded a localized outage. The early warning allowed for pre-emptive corrective measures
and avoided an estimated loss of up to €2 million in potential damages. Another notable case involved an Asian utility provider
combating energy theft. By integrating a machine learning framework that blended decision trees and autoencoders, the provider
was able to identify unusual consumption patterns that deviated from historical norms. The system flagged 3.2% of meters for
further inspection, leading to the recovery of stolen energy valued at approximately $4.5 million over one year. These examples,
grounded in numerical data and operational outcomes, underscore the real-world benefits of applying ML techniques for anomaly
detection in smart grids.

Furthermore, a pilot project in North America implemented an LSTM-based anomaly detection system within a grid containing
both conventional and renewable energy sources. The project reported that the LSTM network correctly identified 94% of outages
and abnormalities over six months, demonstrating its robustness even in environments characterized by high variability in energy
input due to solar and wind fluctuations. Such case studies drive home the point that ML-driven solutions can be critical enablers
of grid stability and operational efficiency. Quantitative analysis of ML algorithms in smart grid applications reveals promising
performance metrics. The results from supervised approaches detected incidents with accuracies ranging from 90% to 95%
according to [38], while unsupervised approaches yielded F1-scores between 0.85 and 0.90. Deep learning methods that focus on
CNN and LSTM architectures have outperformed traditional models. In one study, a CNN-based model got a general accuracy of
93% with a precision of 92% and a recall of 91% on a dataset of 100,000 smart meter readings. Beyond accuracy, latency and false
positive rates are critical metrics in live grid environments. The integration of unsupervised LED autoencoder models has reduced
false alarm rates by as much as 40% compared to classical statistical methods. The optimized supervised algorithms operate in
real time to analyze data by delivering fast alerts that take less than 2 seconds to process. Grid reliability increases directly through
better performance because detected anomalies receive immediate attention, stopping system failures from developing[40].

A significant amount of research (30.9%) is focused on Power Generation, according to the application domain analysis. Because
undetected anomalies can cause serious disruptions and safety dangers, this focus emphasizes how important it is to ensure
operational dependability and safety in power generation plants. Another important application area that stands out is power
distribution (21.3%), which reflects continuous efforts to enhance distribution network monitoring and management in order to
avoid outages and preserve service quality[41]. A wide range of applications, including industrial automation, environmental
monitoring, and smart city infrastructure, are included in the category of "Others" (29.4%), suggesting that anomaly detection
technologies have a wide range of uses outside of the conventional energy sector. Power Systems (5.9%), Oil and Gas Industry
(4.4%), Energy Consumption (3.7%), Smart Cities (2.2%), and Power Grid (2.2%) are smaller but significant segments. similar results
imply that although power generation and distribution continue to be the primary emphasis, there is increasing interest in applying
similar technologies to other vital infrastructures, which are just as vulnerable to abnormalities that could affect operating safety
and efficiency displayed in Figure 3.

Sales
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= Oil and gas industry = Power distrubution = Power system m Others

Figure 3. Distribution of application domains in real-time anomaly detection
While cloud-based computing resources can facilitate complex analyses, many grid components operate on limited hardware that
may not support the computational demands of deep learning models. Edge computing and lightweight ML algorithms are
currently under investigation as promising solutions for this issue[31]. The integration of federated learning techniques could also
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enable models to learn collectively from distributed data without overburdening local nodes. The discussion thus emphasizes that
while ML has demonstrated strong potential for anomaly detection, truly effective implementation will require addressing issues
related to data availability, computational complexity, and system interoperability[42].

5. Conclusion

In the field of smart grid anomaly detection, machine learning algorithms have grown in importance because they provide reliable,
scalable, and flexible answers to the intricate problems presented by contemporary, digitally connected power networks. The
integration of renewable energy sources, decentralized infrastructure, and real-time data exchange has made these grids
increasingly complicated, necessitating the development of intelligent systems that can process massive volumes of
heterogeneous data and spot anomalies. To handle the dynamic behavior and minute anomalies that define smart grid operations,
conventional rule-based and threshold-dependent detection techniques are no longer adequate. In this regard, machine learning
(ML) models offer a data-driven method that can reveal hidden patterns, draw lessons from previous events, and precisely adjust
to changing operating conditions. When it comes to smart grid anomaly identification, empirical studies have demonstrated that
some machine learning methods routinely perform better than others. For example, research by Zhang et al. (2021) and Nguyen
& Pham (2020) showed that decision tree algorithms and Support Vector Machine (SVM) classifiers were especially good at
spotting irregularities linked to energy theft and equipment failures. In real-world applications, these models proved their
dependability and interpretability by achieving detection accuracies of over 90%. Their success is based on their capacity to manage
high-dimensional input data obtained from operational logs and smart meter readings, as well as to efficiently model decision
boundaries. Furthermore, the capabilities of anomaly detection have been further extended by deep learning architectures like
Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs). These models can spot detailed patterns
that traditional algorithms might miss by capturing complex temporal dependencies and geographical correlations in the data.
This is especially useful for identifying irregularities that appear gradually over time or take place in different places throughout
the grid. CNNs and LSTMs were able to reach detection accuracies of 93% while also dramatically lowering the occurrence of false
positives and false negatives, according to research by Mendez & Torres (2021) and Kumar & Gupta (2022). These enhancements
lead to speedier incident response, reduced operating costs, and more dependable grid functioning.
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