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The Algiers Stock Exchange (ASE) is the only stock exchange in Algeria. It’s one of 
the newest and smallest emerging stock exchanges in the world. The focus of this 
paper is to model and forecast monthly returns of the ASE index (DZAIRINDEX) 
using The Box- Jenkins methodology. The period of this study is from June 2010 
to May 2020. We split the data into training and testing returns datasets. 
According to Akaike’s Information Criterion (AIC) estimator, the Seasonal 
Autoregressive Integrated Moving Average SARIMA (2,0,0)(0,0,1)12 with zero 
mean is chosen as the best model for forecasting the monthly DZAIRINDEX 
returns. Diagnostic tests show that the fitted model is adequate, where the 
residuals of this model are normally distributed with no autocorrelation and no 
heteroskedasticity. We evaluate our model forecasts on returns testing datasets 
for 11 steps ahead. We get white noise residuals without heteroskedasticity, 
which confirm the adequacy of our model. Based on different measures of 
forecast accuracy such as ME, MAE, RMSE, MASE, we show that the forecast 
accuracy of SARIMA (2,0,0)(0,0,1)12 is acceptable and this model performs much 
better than a naïve model. The forecast of the whole returns dataset for one year 
ahead using this model shows a slight increasing fluctuations trend. These results 
could be used by the financial communities in Algeria to deal with stock exchange 
risks and to improve their decisions. 
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Introduction 1 
The Algiers Stock Exchange (ASE) is one of the newest and smallest stock exchanges in the world. Due to this fact, there aren’t 
a lot of studies that focused on this emerging stock exchange. According to the ASE official website (http://www.sgbv.dz), the 
official listing of Algiers Stock Exchange for transferable securities includes an equity securities market and a debt securities 
market. Where the market for equity securities comprises a Main market for large enterprises, and Small and medium-sized 
enterprises Market reserved for the Small and Medium Enterprises.  

The main market includes five companies: SAIDAL Group activating in the pharmaceutical sector, EGH EL AURASSI activating 
in the tourism sector, ALLIANCE INSURANCE activating in the insurance sector, NCA-Rouiba activating in the agri-food sector 
and BIOPHARM activating in the pharmaceutical sector. The Algiers Stock Exchange uses a reference index called DZAIRINDEX 
includes the total listing companies in the main market. 

The concept of forecasting stock market returns has become very important in finance, where it help investors to understand 
the stock market trend and make their decisions, minimize investment risks associated with the market and improve their 
returns (Lin and Yu, 2009). There are several methods of forecasting time series such as exponential smoothing methods, 
simultaneous-equation regression models and autoregressive integrated moving average models (ARIMA) models, Neural 
networks models and others (Gujarati, 2004). The most used and popular model in forecasting financial time series over Short 
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time periods is the Box-Jenkins model  or ARIMA model ( Box and Jenkins ,1970). The emphasis of these methods is on 
analyzing the stochastic properties of economic time series on their own (Gujarati, 2004). Box and Jenkins (1976) developed 
an extension of ARIMA model which is seasonal ARIMA (SARIMA) model to forecast seasonal time series. This model requires 
that the data be seasonally differenced to achieve stationarity condition. 
 
Several studies have used the Box-Jenkins methodology for forecasting different stock markets in the world. Al-Shiab (2006) 
used the Box-Jenkins method to forecast the Amman stock exchange. Katircioglu1 and Al-khaza’leh (2016) applied the same 
method for forecasting services sector volatility in the Amman Stock Exchange. Wahyudi  (2017) used also ARIMA model to 
forecast the Indonesia Stock Price. Ashik and Kannan  (2017) forecasted National Stock Exchange in India using the same 
models. There are also many studies have applied this methodology in various fields of forecasting. For example, Wagner  
(2010) compared seasonal ARIMA model and vector time series model for forecasting daily demand in cash supply chains. 
Chang et al (2012) forecasted monthly precipitation in Yantai, China with seasonal ARIMA model. The results of these studies 
show that this model performed well and gives less error compared with other models over short time periods. 

The objective of this study is to fit the best forecasting model for the Algiers Stock Exchange returns using the Box -Jenkins 
methodology. Monthly returns for the index DZAIRINDEX were used in this task over the period (June 2010- May 2020). We 
evaluate the forecast of the chosen model seasonal ARIMA (2,0,0)(0,0,1)12 on a test returns datasets from July 2019 to May 
2020, then we forecast the whole returns datasets for one year ahead. This forecast could be helpful for policymakers and 
investors in Algeria to make their decisions. 

The rest of the paper is outlined as follows: Some literature review in section two. The third section describes the Box-Jenkins 
methodology. The fourth section presents the empirical findings with discussions. Finally, we present the conclusion with 
some perspectives in the fifth section. 

Literature Review 
There is a large literature on forecasting stock exchanges using the Box-Jenkins methodology. Al-Shiab  (2006) used a general 
daily index of the Amman Stock Exchange, over the period (4/1/2004 - 10/8/2004) to examine the univariate ARIMA 
forecasting model. He found that the forecast was not consistent with actual performance since the Amman Stock Exchange 
follow most closely the Efficient Market Hypothesis in its weak form, during the period of the prediction (11/8/2004–
19/8/2004). Similarly, to Al–Shiab (2006), Katircioglu and Al-khaza’leh (2016) forecasted services sector volatility in Amman 
Stock Exchange with ARIMA models, using historical indices data accumulated daily over the period (3/1/2010-10/5/2015). 
They found that the best model for forecasting this stock exchange is ARIMA (0, 0, 1). 
 
Wahyudi (2017) conducted the prediction of Indonesia stock price using Autoregressive Integrated Moving Average model. 
He used the daily Indonesia Composite Stock Price Index (CSPI) over the period (04/01/2010 -05/12/2014). He found that 
ARIMA model has a strong potential for short-term prediction and can compete favorably with the existing techniques for 
stock price prediction. 

Ashik and Kannan (2017) evaluated and predicted the trend of upcoming trading days of the Nifty 50 stock market in India 
using the Box-Jenkins methodology. They found that the prediction accuracy is more suitable for the Nifty 50 closing stock 
price. They concluded that the closing stock price of Nifty 50 taken in this study shows a slight decreasing fluctuations trend 
for upcoming trading days. 

Concerning examples of the other fields of forecasting with the Box-Jenkins method, Wagner (2010) forecasted Daily Demand 
in Cash Supply Chains using a SARIMA model and vector time series model. He found that the seasonal ARIMA model resulted 
in a higher forecasting accuracy compared to the vector time series model. According to the cited author, this result confirms 
the benefit of advanced forecasting techniques for daily forecasts. 

Chang et al (2012) predicted the monthly precipitation in Yantai, China, over the period from 1961 to 2011with seasonal 
ARIMA model. Their results showed that the model fitted the data well and the stochastic seasonal fluctuation was 
successfully modeled. Chang et al (2012) concluded that Seasonal ARIMA model is a proper method for modeling and 
predicting time series of monthly precipitation.  
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Methodology 
This study adopts the Box Jenkins methodology (Box and Jenkins, 1970). This method consists of the following four steps: 

Model identification 
Through this step the degree of ARIMA (p,d,q)(P,D,Q)S model is determined, where: 
S is the periodicity, p is the autoregressive (AR) order, d is the non-seasonal differencing order, q is the moving average (MA) 
order, P is the seasonal AR order, D is the seasonal differencing and Q is the seasonal MA order. 
Recall that ARIMA (p,d,q) model is an integrated ARMA(p,q) including differencing in order to get a stationary time series. The 
general form of the model is written as follow (Box et al, 2015):  

0
( ) ( ) ( )       

d

t t t
B x B x B .                          (1) 
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0  the general model can be written as (Box et al, 2015): 
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The multiplicative seasonal autoregressive integrated moving average model, or SARIMA (p, d, q) ( , , )
S

P D Q  model is given 

by (Box et al, 2015):  
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Stationarity 
The Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979; Said and Dickey, 1984) was employed to determine the 
order of difference d and to check the stationarity of our time series by testing the presence of unit roots in it. 

The objective of this test is to examine the null hypothesis that a unit root is present in a time series
t

x , which means that
t

x

is not stationary. The ADF test is performed in the follows form:  

 
1 1 1

          .      
  

         
t t t p t p t
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Where: α is a constant, β the coefficient on a time trend and p the lag order of the autoregressive process Cheung and Lai, 

1995). If 
t

x has no trend and no drift then the test can be performed as follows:  

                       
1 1 1

   .    
  

       
t t t p t p t

x x x x                     (5) 

According to (Brooks, 2008, page 329) the frequency of the data can be used to determine the optimal numbers of lags p 
for the dependent variable. So, if the data are monthly, we use 12 lags, if the data are quarterly, we use 4 lags, and so on.  

The test of HEGY (Hylleberg et al, 1990) can be used to show if there are some seasonal patterns in our time series. The null 
hypothesis of this test is that a seasonal unit root exists (López-de-Lacalle and Boshnakov, 2019). 

Order selection 

The ACF and PACF plot of a simulated time series can be used to determine the orders p and q of our model. According to 
Tsay (2005), if the   ACF cuts off at lag q, this lag is the order of MA. If the PACF cuts off at lag p, this lag is the order of AR. 

The seasonal MA and AR orders can be determined by showing a significant spike in the seasonal lags of the ACF and PACF 
functions respectively (Hyndman & Athanasopoulos, 2018).  

The Akaike information criteria (AIC) ) (Akaike, 1974) was used in order to fit the best model and get the appropriate orders 
p,d,q and P,D,Q. The model that gives the lowest AIC value would be selected as the best one (Box et al, 2015)‎[7]. The (AIC) is 
defined as follows (Box et al, 2015):  

AIC= (-2) log (maximum likelihood) + 2K
2ˆlog( ) 2 n K . 

Where: 
 K is the number of independently adjusted parameters within the model 
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Model estimation 

Maximum likelihood estimation was used to estimate the parameters of the fitted model. The Gaussian Likelihood for a 
Gaussian ARMA Process with zero mean is given by (Brockwell & Davis, 2002): 
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The maximum likelihood estimators ̂ ,̂  and 
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Where: 
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For further details see (Brockwell and Davis, 2002)‎[8]. 

 Model diagnostic 
The diagnostic checking is necessary to test the adequacy of the selected model. Three diagnostic tests were used in this 
study:  

Autocorrelation test 
We used the Ljung-Box test to check autocorrelation between residuals. The statistic of this test is given as follow (Ljung & 
Box, 1978): 
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Where: ( )Q r  is distributed as
2
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for a large n,  

n is the number of observations and m is the maximum number of lags  (the  degree of freedom),  

k
r is the autocorrelation function (for lag k), given by: 
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 ia is a sequence of independent and identically distributed  2
0,  N random deviates. 

The hypotheses of Ljung - Box test are: 

0 1 2
: ... 0   

n
H r r r (No residuals autocorrelation). 

: 0
a i

H r  (Residuals autocorrelation).  

The decision rule is to reject 
0

H  if 
2

( ) 
m

Q r  (Tsay, 2005). 

. 
Heteroskedasticity test 
The Engle's ARCH test (Engle, 1982) was used to show weather the residuals are heteroskedastic or not. The alternative 
hypothesis of this Lagrange multiplier (LM) test is that ARCH (p) effects are present in a series of residuals (Drachal, 
2017)‎[15]. The procedure of this test consists of the following steps (Engle, 1982, page1000): 
Running the OLS regression and saving the residuals. 

Regress the squared residuals on a constant and p lags and test
2

TR as
2


p

 . 

Where T is the number of observations and
2

R is the coefficient of multiple correlations.  

Normality test 
Different tests of normality were used in this study such as kolmogorov-Smirnov (Frank and Massey, 1951), Shapiro-Wilk, 
Anderson-darling (Stephens, 1986), to check the distribution of our time series and residuals. The null hypothesis of these 
tests is that the sample is normally distributed.       
The Q-Q plot and density plot can be used also to check the distribution of time series and residuals.         
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Forecasting 
Forecasting is predicting the future values of a time series, based on its available current and past values. According to Box et 

al (2015) an observation
t l

x  generated by the ARIMA process can be expressed directly in terms of the difference equation 

as follow: 

 
1 1 1 1 ,... ...                      t l t l p d t l p d t l q t l q t lx x x               (6) 

by taking conditional expectations at time t in the previous equation (6) we get the following forecasts from difference 
equation (Box et al, 2015): 
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Different measures of forecast accuracy were used to evaluate our forecast are (Hyndman and Athanasopoulos , 2018) 
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 Root mean squared error: RMSE=
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The mean absolute scaled error (Hyndman and Koehler, 2006): MASE=mean (| j
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, is the scaled error for a seasonal time series. 

m is the seasonal period. 

Note that the Mean absolute percentage error (MAPE) can’t be used in this case study because our data contains zero 
values. 

Results and discussion 

4.1. Exploratory data analysis 
The data were collected from the official website of Algiers Stock Exchange. Due to a lot of missing values of daily closing 
prices for the ASE index (DZAIRINDEX), monthly observations were used by taking the closing price values of the ASE index on 
each month-end. We split the data into training datasets from June 2010 to June 2019, and testing datasets from July 2019 to 
May 2020.   Following Chou( 1988) and Emenike (2010), Returns (rt) were calculated as follow:  
 

 1
 /




t t t
r log P P . 
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Pt and Pt-1 represent the closing price of the ASE index for the current month and the previous respectively.  
We can see from the plot of training returns time series (rt) in Figure 1, that our time series has no trend and no drift. We 
deduce also easily from the Q-Q plot (Figure 2) that rt time series is not normally distributed. 

 

Figure 1: Time series plot of the monthly DZAIRINDEX training returns 

 
Figure 2: Q-Q Plot of the monthly DZAIRINDEX training returns time series 
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Table1below shows a summary statistics of rt time series. 

 
Table 1: Summary statistics of the monthly DZAIRINDEX training returns 

     Mean    Sd     Median      Min      Max     Range    Skew       kurtosis  

returns        0       0.01        0          -0.03      0.06      0.09       0.89           4.18   

 
The HEGY test (Table 2) shows that rt time series has some seasonal patterns, where all the p-values of this test statistics are 
not significant at 0.05 level. 

Table 2: HEGY test 

HEGY test for unit roots 

Data: rt 

          Statistic    p-value   

t_1       -1.9654     0.2302   

t_2       -1.0452     0.192   

F_3:4     1.2583    0.2411   

 
Before start applying the Box-Jenkins procedure, outliers were replaced using linear interpolation, then training returns time 
series was seasonally adjusted by removing the seasonal component using STL decomposition (Hyndman & Athanasopoulos , 
2018). See also (Hyndman & Khandakar, 2008) and (Hyndman et al, 2019). Figure 4 shows the STL decomposition for rt time 
series. 

These two tasks transform rt into normally distributed time series, which is important in ARIMA model estimation and order 
selection (Burnham & Anderson, 2002) and in the calculation of prediction intervals Hyndman and Athanasopoulos , 2018). 
The result of Kolmogorov -Smirnov test in Table 3 shows that rt can be assumed normally distributed after replacing outliers 
and seasonality adjustment. The assumption of normality is essential to get efficient and consistent maximum likelihood 
estimation. Note that in this case study we can’t use the Box-Cox transformation (Box & Cox, 1964) because our data contains 
zero values. Figure 5 shows the plot of training returns time series rt before and after replacing outliers and seasonality 
adjustment. In the next of this study, the seasonally adjusted time series rt with replaced outliers is noted by yt.  

Table 3: Kolmogorov-Smirnov test of normality for yt time series 
                              

 

 

 

Figure 3: STL decomposition of the training returns rt time series. 

 

Test                                  Statistic            p-value 

Kolmogorov-Smirnov       0.0753             0.5663   
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Figure 4: The training returns rt time series after outliers replace and seasonality adjustment 

The Mann-Kendall test McLeod, 2015)  can be used to check if the time series yt has a trend. The results of this test are given 
in Table 4. At the level of significance 0.05, the p-value of this test statistic is not significant. This leads us to accept the null 
hypothesis that yt hasn’t a trend. 

Table 4: Mann- Kendall trend test 

         Mann-Kendall trend test 

data: yt time series 

n = 109 z = -0.47136 p-value =0.6374 

We can also confirm that yt hasn’t a drift by running an autoregressive model with drift then we check the significance of the 
intercept, as it is shown in Table 5. The result of this procedure shows that the intercept is not significant at the 0.05 level. 
This means that the time series yt hasn’t a drift. 

Table 5: Test regression drift 
 

 

 

 

 

Model identification 
Since yt is a monthly time series with no drift and no trend we have chosen the ADF test with 12 lags and without a trend and 
without a drift. The result of this test is given in Table 6. From this table, we see that all the p-values of ADF test statistics are 
significant at 0.05 level. This means a rejection of the null hypothesis that yt is not stationary. Hence yt is stationary. 

Test regression drift 

Coefficients: 

               Estimate      Std. Error      t value       Pr(>|t|)    

(Intercept)    -0.0002396    0.0009827     -0.244       0.80796    

z.lag.1           -0.7335279    0.2617452     -2.802       0.00633  

z.diff.lag1     -0.0300567    0.2456352     -0.122        0.90291    
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Figure 6 and Figure 7 show the correlograms of the autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) respectively. The summary of the candidate ARIMA models according to the AIC estimator is given in Table 7. Based 
on the results of this estimation, SARIMA (0,0,2)(0,0,1)12 model with zero mean is selected as the best model because it 
shows the lowest AIC value. This means that the time series yt still has some seasonal patterns. 

Table 6: The augmented Dickey Fuller test of stationarity 
 

 

 

 

 

 

 

 

 

 

Figure 5: The autocorrelation function of yt time series             Figure 6:The partial autocorrelation function of yt time series 

 

 

Augmented Dickey-Fuller Test 

Alternative hypothesis: Stationary  

Type: No drift, no trend  

Lag  ADF  p-value  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11   

-7.52     
-4.84     
-4.28     
-3.88     
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-3.64     
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-3.47     
-2.90     
-3.42   
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  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
  0,01 
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Table 7: Summary of the fitted ARIMA models based on AIC estimation. 

Models AIC 

ARIMA(2,0,2)(1,0,1)[12] with non-zero mean 
ARIMA(0,0,0)                  with non-zero mean 
ARIMA(1,0,0)(1,0,0)[12] with non-zero mean 
ARIMA(0,0,1)(0,0,1)[12]with non-zero mean 
ARIMA(0,0,0)                 with zero mean 
ARIMA(1,0,0)                 with non-zero mean 
ARIMA(1,0,0)(0,0,1)[12] with non-zero mean 
ARIMA(1,0,0)(1,0,1)[12] with non-zero mean 
 ARIMA(1,0,0)(0,0,2)[12] with non-zero mean 
 ARIMA(1,0,0)(1,0,2)[12] with non-zero mean 
 ARIMA(0,0,0)(0,0,1)[12] with non-zero mean 
 ARIMA(2,0,0)(0,0,1)[12] with non-zero mean 
 ARIMA(2,0,0)                  with non-zero mean 
 ARIMA(3,0,0)(0,0,1)[12] with non-zero mean 
 ARIMA(2,0,1)(0,0,1)[12] with non-zero mean 
 ARIMA(1,0,1)(0,0,1)[12] with non-zero mean 
 ARIMA(3,0,1)(0,0,1)[12] with non-zero mean 
 ARIMA(2,0,0)(0,0,1)[12] with zero mean 
ARIMA(2,0,0)                  with zero mean 
 ARIMA(2,0,1)(0,0,1)[12] with zero mean 

Inf 
-691.2342  
-699.5073 
-697.1523 
-692.5961 
-700.0314  
-700.7933  
Inf 
Inf 
Inf 
-692.0527 
-703.8522 
-703.233 
-702.2476 
-702.8139 
-702.0572 
-701.4519 
-705.6575  
-704.8566 
-704.6898 
 

 Best model: ARIMA(2,0,0)(0,0,1)[12] with zero mean      
 

 
Maximum likelihood estimation 
The Maximum likelihood was used to estimate the parameters of our model SARIMA (2,0,0)(0,0,1)12. The estimates of the 
parameters are presented in Table 8 below. We see that all the coefficients are significant at different levels. This implies the 
appropriateness of this model. 

              Table 8: Estimation of model parameters 
z test of coefficients 

         Estimate         Std. Error        z value         Pr(>|z|)    

ar1     0.248510        0.093472        2.6587          0.007845 ** 

ar2      0.215048       0.094735        2.2700          0.023208 *  

sma1  -0.244925       0.150485       -1.6276         0.103616    

       Signif. codes: 0  ‘***’  0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1 ‘’ 1 
 
Model diagnostic 
Box-Ljung and Engle’LM tests were used to check respectively the autocorrelation and the heteroskedasticity in residuals of 
the fitted model. The results of these two tests are respectively represented in Tables 9 and 10. We show that both p-values 
of these two tests statistics are not significant at 0.05 level. This implies an acceptance of the null hypotheses that residuals 
have no autocorrelation and no heteroskedasticity respectively.  

Table 9: Box-Ljung test of autocorrelation. 

Box-Ljung test 

Data: Residuals of SARIMA (2,0,0)(0,0,1)12 with zero mean 

 df = 12  -squared =4.4512 p-value = 0.9739 



Modeling and Forecasting the Algerian Stock Exchange Using the Box-Jenkins Methodology 

12 

         Table 10: Engle's LM Test of heteroskedasticity. 
 

 

 

                              
Different tests of normality show also that the residuals of SARIMA (2,0,0)(0,0,1)12 are normally distributed. See Table 11 
below. 

                                              Table 11: Normality tests of residuals 

                                Test Statistic        p-value   

Shapiro-Wilk                 0.9804            0.1097  
Kolmogorov-Smirnov   0.0801            0.4865  
Anderson-Darling          0.6685             0.0788  

All these diagnostic tests confirm the adequacy of our fitted model for forecasting the time series yt.  

Forecast 
We evaluate the performance of our model on the real testing returns datasets from July 2019 to May 2020. The forecasts 
are shown in Figure 8.  

 

Figure 7: Forecasts from SARIMA (2,0,0)(0,0,1)12 with zero mean model fitted to the training returns yt time series. 

Engle's LM ARCH Test 

Data: Residuals of SARIMA (2,0,0)(0,0,1)12 with zero mean 

Alternative hypothesis: ARCH effects of order 12 are present 

 Lag = 12  Statistic= 15.614       p-value = 0.2096 
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Table 12 below shows the actual testing returns and their forecasted values. 

                                        Table 12: Actual test returns vs forecast values 

Actual test returns Forecasts 

  1.466847e-03 
   2.579572e-03 
   3.729525e-03 
   3.126945e-03 
  -1.894320e-03 
   8.516082e-05 
   7.076220e-04 
  -6.215200e-03 
  -1.329369e-04 
   5.730178e-04 
    0.000000e+00 

2.569530e-03 
1.597536e-03 
2.688951e-03 
3.294262e-03 
 3.222428e-04 
6.069131e-03 
7.129408e-05 
3.085934e-03 
-6.928065e-04 
-1.196937e-04 
-5.008601e-03 

We can see by the Box-Ljung test and the Engle's LM ARCH Test in Tables 13 and 14 respectively that the residuals from 
forecasting training returns using this model still white noise and without heteroskedasticity. This implies that there is no 
information left in the residuals which should be used in computing forecasts (Hyndman & Athanasopoulos, 2018). 

Table 13: Box-Ljung test of autocorrelation on residuals from forecasting monthly DZAIRINDEX returns using SARIMA 
(2,0,0)(0,0,1)12 

Box-Ljung test 

Data: Residuals  

 df = 4  Chi-squared = 4.1088 p-value = 0.3915 

 
 
Table 14: Engle's LM ARCH Test on residuals from forecasting monthly DZAIRINDEX returns using SARIMA (2,0,0)(0,0,1)12 

 

 

 

 
The forecast accuracy on the test returns set is represented in Table 15. Different error measurements show that the forecast 
accuracy of our model is acceptable. The MASE value is less than 1, which implies that SARIMA (2,0,0)(0,0,1)12 performs much 
better than a naïve model in this case study (Hyndman & Athanasopoulos, 2018). The normal distribution of residuals is not 
necessary for forecasting (Hyndman and Athanasopoulos, 2018). 

Table 15: Accuracy of forecasting the monthly DZAIRINDEX returns with SARIMA(2,0,0)(0,0,1)12 

Model ME       RMSE     MAE      MASE        
SARIMA (2,0,0)(0,0,1)12 0.0002  0.0025     0.0019      0.79 

 

Engle's LM ARCH Test 

Data: Residuals  

Alternative hypothesis: ARCH effects of order 4 are present 

 Lag = 4   Chi-squared = 5.8303 p-value =  0.2121 
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The forecast of the whole real returns dataset for one year ahead using SARIMA (2,0,0)(0,0,1)12 shows a slight increasing 
fluctuations trend in the upcoming months, see Figure 9 below. 

 

Figure 9: Forecast of the whole returns datasets for one year ahead using SARIMA (2,0,0)(0,0,1)12 

Conclusion 
This study uses the Box-Jenkins methodology for forecasting the monthly DZAIRINDEX returns time series. Based on this 
approach, the seasonal ARIMA (2,0,0)(0,0,1)12 is chosen as the best model to forecast the studied time series. We evaluate 
our model on a testing returns set. Different measures of forecast accuracy confirm that the forecast performance of our 
model is acceptable and it is better than a naïve model. The forecast of monthly returns for one year ahead shows a slight 
increasing fluctuations trend. We conclude from the results of this study that the seasonal ARIMA (2,0,0)(0,0,1)12 model could 
be used by policymakers and investors in Algeria for forecasting the Algiers Stock Exchange, in order to get better investment 
decisions and returns.  

The main limitation of the ARIMA model is the pre-assumed linear form of the model (Kumar & Thenmozhi, 2012). Most 
stock market time series are basically non-linear. So, the use of nonlinear models for forecasting the Algiers Stock Exchange 
might give a better forecast accuracy from the ARIMA model. 
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