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This study aims to introduce and encourage the other to use bootstrap methods in 
statistical survival analysis. We show how to bootstrap the Kaplan-Meier Bayesian 
estimator and pay attention to its advantage unlike the classical Bayesian analysis of the 
Kaplan Meier method. In our study, we essentially try to focus on the application of 
Kaplan Meier Bayesian models in the estimation of unemployment durations of those 
registered with the local employment agency of Ain El Benian, with the aim of to 
determine the role of bootstrap in improving the quality of estimation. We find that the 
choice between the period models of the same family is likely to produce a multitude of 
decisions from the results of the application. A Bayesian survival method based on the 
Kaplan Meier model with the classical nonparametric bootstrap provides realistic 
solutions for a number of individuals of different nature, simple and relatively easy to 
exploit numerically global durations. 
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1. Introduction1 
The Bayesian concept differs from the classical concept, the meaning of which is a random variable whose behavior is assumed 
to be known, by associating it with a probability distribution on the space 𝛩 called a priori distribution and noted 𝜋 (𝜃), and 
with Through this design, the statistical analysis makes it possible to consider all the qualitative and quantitative information 
on the uncertainty in the model. Then, if we use Bayes' theorem which allows to reverse the probabilities, we can deduce the 
a posteriori distribution 𝜋 (𝜃 ⁄ 𝑥) which allows us to build inferential procedures in the most natural way possible, which also 
explains the persistence of this paradigm, against all odds for 250 years. 
 
One of the most frequently used nonparametric methods for estimating survival function is the Kaplan-Meier method. In 
science, we very often have to deal with small samples. There are several reasons for this. In medical science, for example, the 
most common is the rarity of the disease or the difficulty of bringing together patients with the same biochemical parameters. 
In addition, we very often have censored data. Several works have been based on the improvement of this estimator. Khizanov 
and Maĭboroda (2015), proposed a modification based on a mixing model with various concentrations. Kaciroti, et al. (2012) 
presented Kaplan Meier's survival model with informative censorship and in a Bayesian framework. It may happen that Kaplan-
Meier gives the same probabilities of survival for two groups with the same number of events and censored observations, 
although the duration between consecutive events (i.e. wait times ) can vary considerably, Zaman et al (2011) addressed this 
problem. Zieliński (1999) used local smoothing of the Kaplan-Meier estimator based on an approximation by the Weibull 
distribution function. Zieliński (2002), introduces a Kaplan-Meier estimator based on an approximation by the Weibull 
distribution, Zieliński also studied a smoothing of KME such that the resulting estimator is a strictly decreasing function of time, 
the smoothed KME seems be more specific than the original. Shafiq Mohammad et al (2007), presented a weighting of the 
Kaplan Meier estimator under the sine function for heavy censorship data. 
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When a small sample size does not allow us to use classical statistical methods or when they are used, they can give us results 
that are too general and even false. With computer simulation, we can generate many samples based on the original sample 
data and we can more accurately evaluate the parameters determined on the bootstrap. In statistics, bootstrap techniques are 
statistical inference methods based on the multiple replication of data from the data set studied using resampling techniques, 
Hastie et al (2008) defined the word “bootstrap” as a reuse effective sample. They date from the late 1970s, when the possibility 
of intensive computer calculations became affordable. 
 
This contribution, we will give a Bayesian alternative of the classical Kaplan Meier estimator based on the classical 
nonparametric bootstrap method. In our application we will analyze the durations of global unemployment in the National 
Employment Agency (ANEM) of Ain El Benian. We are working on a sample of 1064 unemployed individuals observed between 
01/01/2011 and 15/07/2013. This application allows to practically demonstrate that Bayesian procedures constitute an 
essential element for the improvement of the quality of inference because of the difference which exists in the interpretation 
and the estimation of curves and durations of exiting unemployment. 
 
2. The bootstrap method 
Theorem (Glivenko-Cantelli theorem) 

Sup
𝑥∈𝐼𝑅

|𝐹𝑛(𝑥) − 𝐹(𝑥)|
𝑛→∞
→   0 , 𝑝. 𝑠. 

Definition we call a plug-in estimator of a parameter of 𝐹, the estimator obtained by replacing the function 𝐹 by the empirical 
distribution: 

�̂� = 𝑡(�̂�) 
This principle of substitution (or plug-in) is asymptotically justified since we have almost certainly, according to the Glivenko-
Cantelli theorem. 
The idea of bootstrap is due to B. Efron is based on the following elementary principle: 
If 𝑛 is large 𝐹𝑛 nest close to 𝐹, we will therefore have a good approximation of the distribution of 𝑇 by using 𝐹𝑛 instead of 𝐹. 

The following figure gives an illustrative explanation of the bootstrap principle. 

 
Figure 1 : the bootstrap procedure. 

In figure (1) observed quantities are denoted by solid curves and unobserved quantities by dotted curves. The goal is to estimate 
the true distribution such that the true sampling distribution is calculated by taking new samples from the real population, 
calculating T and then accumulating all the values of T in the sampling distribution. This is the goal denoted by (1), but the 
problem we find in the first step is related to the new samples is expensive, so instead we take a single sample and we use it 
to estimate the population in step (3). We (3) then take samples (on the computer) of the estimated population, calculate T 
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from each (4), and accumulate all of the values of 𝑇 into an estimate of the sampling distribution. From this estimated sampling 
distribution, we can estimate the desired characteristics of the sampling distribution. 
 
We are therefore led to draw samples of 𝑛 values in the 𝐹𝑛 distribution, which amounts to resampling in the sample 
𝑥1, 𝑥2, … , 𝑥𝑛in other words to carrying out draws with replacement of n values among the 𝑛 values observed: the values 
observed 𝑥1, 𝑥2, … , 𝑥𝑛 are therefore repeated according to the realizations of a multinomia1 vector 𝐾1, 𝐾2, … , 𝐾𝑛 of effective n 
and of probabilities 𝑝𝑖  egal to1/𝑛. 
 
We study the properties of 𝑇𝑛 via 𝑇𝑛

∗ = 𝑇(𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗)  where the 𝑋𝑛

∗  are i.i.d variables with distribution function 𝐹𝑛. 
Is  𝑋∗ = (𝑋1

∗, 𝑋2
∗, … , 𝑋𝑛

∗) bootstrap sample. We note indifferently: 

𝑃(𝑋𝑗
∗ = 𝑋𝑖

∗ 𝑋⁄ ) = 1/𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

or  

𝑃(𝑋𝑗
∗ = 𝑋𝑖

∗ 𝐹𝑛⁄ ) = 1/𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

because as soon as we know, we can deduce 𝐹𝑛 and vice versa. 
The expectation of 𝑇𝑛: 

𝐸(𝑇𝑛) = ∫…∫𝑇(𝑥1, 𝑥2, … , 𝑥𝑛)𝑑𝐹(𝑥1)… 𝑑𝐹(𝑥𝑛) 

And thus estimated by: 

𝐸(𝑇𝑛
∗) = ∫…∫𝑇(𝑥1, 𝑥2, … , 𝑥𝑛)𝑑𝐹(𝑥1) …𝑑𝐹(𝑥𝑛) 

It is also written: 

𝐸(𝑇𝑛
∗) =

1

𝑛𝑛
∫…∫𝑇(𝑥1, 𝑥2, … , 𝑥𝑛) ∑ 𝛿𝑋𝑙1

(𝑥1)

𝑛

𝑙1=1

…∑ 𝛿𝑋𝑙𝑛

𝑛

𝑙𝑛=1

(𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛  

1

𝑛𝑛
∑…∑ 𝑇(𝑋𝑙1 , … , 𝑋𝑙𝑛)

𝑛

𝑙𝑛=1

𝑛

𝑙1=1

 

For example, we estimate 𝐸(𝑇𝑛) by the empirical mean over all the prints: 

𝐸𝐵(𝑇𝑛
∗) =

1

𝐵
∑𝑇𝑛

∗(𝑘)
,

𝐵

𝑘=1

 

where 𝐵 is the number of draws with discount made and 𝑇𝑛
∗(𝑘)

  n the statistic obtained in the k-th draw. Similarly, the 
distribution function 𝐺 of 𝑇𝑛 est estimated by: 

𝐺∗𝐵(𝑥) =
1

𝐵
∑1

𝑇𝑛
∗(𝑘)

≤𝑥

𝐵

𝑘=1

 

In the nonparametric bootstrap. The new data is simulated by resampling from the original data (with replacement), and the 
parameters are calculated either directly from the empirical distribution or by applying a model to these surrogate data (see 
Figure 2). 

 
 

Figure 2 : Schematic of the nonparametric bootstrap. 
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3. Kaplan Meier's method and Bayesian statistics 
3.1.  Kaplan Meier estimator for the survival function 
The method of Kaplan and Meier, gives us a non-parametric estimator of the survival function. Which, moreover, does not pose 
any preliminary hypothesis on the algebraic form of the survival function. 
 
If we observed 𝑘 distinct survival times. Arranged in ascending order, which are 𝑡1, 𝑡2, … 𝑡𝑛.  In time 𝑡𝑖   there are 𝑛𝑖  individuals 
who are at risk of dying, and who survived after this period and are not censored. Noting 𝑑𝑖  the number of deaths on the 
date 𝑡𝑖. To simplify the notations, we put 𝑡0 = 0 and 𝑑0 = 0. Then, the Kaplan and Meier estimator for the survival function 
𝑆 (𝑡) is given as follows: 

                                �̂�(𝑡) =∏(1 −
𝑑𝑖
𝑛𝑖
)

𝑡𝑖≤ 𝑡

                                                 (1)  

3.2.  Derivation of the Kaplan and Meier estimator  

The implicit idea of Kaplan and Meier's method is as follows: We have the following recursive equation: 
𝑃(𝑋 > 𝑡) = 𝑃(𝑋 > 𝑡𝑖−1, 𝑋 ≥ 𝑡𝑖) 
= 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖−1⁄ )𝑃(𝑋 > 𝑡𝑖−1) 

                    = 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖−1⁄ )𝑃(𝑋 > 𝑡𝑖−1 𝑋 ≥ 𝑡𝑖−2⁄ )𝑃(𝑋 > 𝑡𝑖−2)…, 
So the probability of surviving until time 𝑡𝑖  is the probability of surviving 𝑡𝑖  knowing that we were alive at 𝑡𝑖−1, that is, 

𝑆(𝑡𝑖) = 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖⁄ ) ∗ 𝑆(𝑡𝑖−1) 
and when the risk of death estimated by 

                                          �̂�𝑖 =
𝑑𝑖
𝑛𝑖
  ,                                                  

this equation is given by: 

𝑆(𝑡𝑖) = 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖⁄ ) ∗ 𝑆(𝑡𝑖−1) 

𝑆(𝑡𝑖) =
𝑛𝑖 − 𝑑𝑖
𝑛𝑖

∗ 𝑆(𝑡𝑖−1) 

𝑆(𝑡𝑖) = (1 − �̂�𝑖) ∗ 𝑆(𝑡𝑖−1) 
With  𝑡0 = 0 and 𝑑0 = 0 

We know that the variable is a continuous and positive variable 𝑇. Therefore, theoretically and under the condition of 
continuity, it is rarely - if not impossible - to find observations for two identical individuals 𝑖 and 𝑗. But in practice, we work on 
data which is measured, generally, over a well-specified period of time (days, weeks, months), therefore the event: 𝑇𝑖 = 𝑇𝑗  is 

possible. 

However, we model the survival time as a discrete random variable taking as values 𝑡1 < 𝑡2, … < 𝑡𝑛. We denote by p_ the 
conditional probability that an individual survives until time 𝑡𝑖, and that he has lived time 𝑡𝑖−1: 

𝑝𝑖 = 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖⁄ ); 𝑖 = 1,…𝑘 

From equation (1) 

                                                                  𝑆(𝑡𝑖) =∏𝑝𝑗

𝑖

𝑗=1

                                  (2) 

The maximum likelihood method is used to estimate the values of 𝑝𝑖 . 

In the date 𝑡𝑖   there are 𝑑𝑖   individuals for each of them, the probability of dying is 1-𝑝𝑖 , 𝑖 = 1,2, … , 𝑘.  With the hypothesis of 
Independence between the survival times of individuals-. On the other hand, there are 𝑛𝑖 − 𝑑 individuals who have - 
independently for each one - a probability of 𝑝𝑖 . 

Therefore, the likelihood function is 

𝐿(𝑝1, 𝑝2, … , 𝑝𝑛) =∏𝑞𝑖
𝑑𝑖(1 − 𝑞𝑖)

𝑛𝑖−𝑑𝑖

𝑘

𝑖=1

, 

                                                  =∏(1 − 𝑝𝑖)
𝑑𝑖𝑝𝑖

𝑛𝑖−𝑑𝑖

𝑘

𝑖=1
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By equivalence the log-likelihood is 

𝑙𝑛𝐿 =∑[𝑑𝑖𝑙𝑛 (1 − 𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)𝑙𝑛(𝑝𝑖)]

𝑚

𝑖=1

, 

Put the first derivatives of the log-likelihood with respect to 𝑝𝑖 , 𝑖 = 1,2, … , 𝑘 as linear equations equal to zero, we find 

𝑑𝑖
1 − 𝑝𝑖

=
𝑛𝑖 − 𝑑𝑖
𝑝𝑖

, 𝑖 = 1,2,… , 𝑛 

These equations will be solved, which gives us as a solution, the maximum likelihood estimators 

𝑝𝑖 = 1 −
𝑑𝑖
𝑛𝑖

 

Replace these estimators in equation (2) 

                                                    �̂�(𝑡) =∏(1 −
𝑑𝑖
𝑛𝑖
)                                     (3)

𝑡𝑖≤ 𝑡

 

Now, if we fix a date 𝑡, and assuming that 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 for some 𝑖 = 1,2, … , 𝑘.  Because, there is no death between the date 

𝑡𝑖  and 𝑡𝑖+1, the survival function s (t), is estimated by �̂�(𝑡) = �̂�(𝑡𝑖). which equation (1) gives us.     

 

3.3. Context of using the Kaplan and Meier method 

This estimator makes it possible to approach the empirical form taken by the risk of leaving the state, without adopting any 
specification of distribution (see Planchet and Thérond, 2006). 

• This estimator requires knowing exactly all the study entry and exit dates of all individuals; which is a drawback if the registers 
are incorrectly entered. 

• this method is relevant if each time interval considered is small relative to the speed of the variation of the survival function. 
This is to ensure that the discretization does not generate a significant bias on the estimate. 

The Kaplan and Meier estimator cannot take into account the effect of individual characteristics by breaking down the study 
population into subpopulations (e.g. sex, PSC, ...)2. 

 

3.4. The Bayesian conception of the Kaplan and Meier method 

We assume that the number of deaths in the interval of time is a Binomial distribution given by 

     𝑑𝑖~𝛽𝑖𝑛(𝑛𝑖, 𝑞𝑖)  

when the outputs in the intervals [𝑡𝑖 , 𝑡𝑖+1[ [being independent of each other, we write 

𝑓(𝑑 𝑞𝑖⁄ ) =∏𝐶𝑛𝑖
𝑑𝑖

𝑚

𝑖=1

𝑞𝑖
𝑑𝑖(1 − 𝑞𝑖)

𝑛𝑖−𝑑𝑖 , 

using the maximum likelihood method, the risk of death estimated by 

                                          �̂�𝑖 =
𝑑𝑖
𝑛𝑖
  ,   

     From a Bayesian perspective, we assume an a priori for q_ (i,), and when the distribution used in the case of 
proportions is that of Beta, we set: 

 𝑞𝑖~𝑏𝑒𝑡𝑎(𝛼, 𝛽) 
 

3.4.1. Jeffreys' distribution 
In the non-informative case the most used method is that of Jeffreys, the a priori measurement of Jeffreys (possibly improper) 
defined by: 

𝜋∗(𝑞𝑖) ∝  𝐼
1 2⁄ (𝑞𝑖)⇒𝜋

∗(𝑞𝑖) ∝ 𝑛
1
2⁄ (𝑞𝑖(1 − 𝑞𝑖))

−1 2⁄  

If we set  𝜋(𝑞𝑖) = 𝐴 ∗ 𝜋
∗(𝑞𝑖), and we integrate the two parts of the equation with respect to 𝑞𝑖 ,, we find: 

1= ∫ 𝐴 ∗ 𝑛
1
2⁄ (𝑞𝑖(1 − 𝑞𝑖))

−1 2⁄1

0
𝑑𝑞𝑖 = 𝐴 ∗ 𝑛

1
2⁄ ∫ (𝑞𝑖(1 − 𝑞𝑖))

−1 2⁄1

0
𝑑𝑞𝑖  

                                                     = 𝐴 × 𝑛
1
2⁄ × 𝛽(1 2⁄ ; 1 2⁄ ) 

 
2 Les méthodes appropriées pour ça sont les modèles proportionnels. 
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So we have : 

A = 1 (𝑛
1
2⁄ × 𝛽(1 2⁄ ; 1 2⁄ ))⁄  

From A, the a priori function is written as follows: 

𝜋(𝑞𝑖) = 𝐴 ∗ 𝜋
∗(𝑞𝑖) =

1

√𝑛𝛽(1 2⁄ ; 1 2⁄ )
𝑛
1
2⁄ (𝑞𝑖(1 − 𝑞𝑖))

1
2⁄ −1 

                                             =
1

𝛽(1 2⁄ ; 1 2⁄ )
𝑞𝑖
−1 2⁄ (1 − 𝑞𝑖)

−1 2⁄ ; 0 < 𝑞𝑖 < 1  

 so  

                                        𝑞𝑖          ~ℬℯ (
1

2
,
1

2
)                                                      (4) 

3.4.2. Uniform distribution 
In the case of a uniform measure with respect to the Lebesgue measure, the a priori distribution is not invariant 
by reparametrization, we generally set 

𝑞𝑖~ℬℯ(1,1), 
This distribution poses a crucial problem because the support is vague with a uniform probability, but in the 
majority of duration models the risk function takes low values. 
 
3.4.3. The vague a priori distribution 
A solution for the previous distribution is vague prior distribution, it is a proper distribution with a very large variance, according 
to this distribution, the prior distribution is considered to be weak informative, it provides solutions in the use of algorithms. 
We ask: 

                                                  𝑞𝑖~𝛽(0,01,0,01)                                               (5) 
3.4.4. La loi a priori hiérarchique 
One of the methods to introduce the relation between the probability 𝑞𝑖_and the independent and unknown causal series is 
the logistic transformation given by: 

𝑙𝑜𝑔𝑖𝑡 (𝑞𝑖) ≝ 𝑙𝑛
𝑞𝑖

1 − 𝑞𝑖
, 𝑞𝑖 ∈ ]0,1[ 

and 
𝜇𝑖 = 𝑙𝑜𝑔𝑖𝑡 (𝑞𝑖), i.e. 

  𝑞𝑖 =
𝑒𝑥𝑝(𝜇𝑖)

1 + 𝑒𝑥𝑝(𝜇𝑖)
, 

    Our problem remains nonparametric, we pose a Gaussian model for 𝜇𝑖  with unknown hyperparameters as follows: 
𝜇𝑖~𝒩(𝜗; 𝜏) 

𝜗~𝒩(0; 0,001) 
     In our case the hyperparameter of the variance 𝜏 is only made up of positive values, so we set the demi-Cauchy distribution. 
𝜏 follows a half-Cauchy distribution if that density is: 

𝜋(𝜏) = 2 𝜋𝜌⁄ [1 + (𝜏 𝜌⁄ )−1], 𝜏 > 0 
we notice 

𝜏~𝐻𝐶(𝜌) 
𝜌 is the median of demi-Cauchy, which means that a priori beliefs are easily expressed. 
      The proposed model is written as follows 

  𝑞𝑖 =
𝑒𝑥𝑝(𝜇𝑖)

1 + 𝑒𝑥𝑝(𝜇𝑖)
 

𝜇𝑖~𝒩(𝜗; 𝜏) 
𝜗~𝒩(0; 0,001), 𝜏~𝐻𝐶(𝐵) 

 𝐵~𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑒(0; 𝒯), on pose ∶ 𝒯 = 100 
 

3.4.5. The parametric empirical prior distribution 
Another way to solve the problem of uncertainty in the a priori measure of beta is the marginal distribution 𝑓𝜋(𝑑𝑖 𝛼, 𝛽⁄ ),  this 
method is called the empirical Bayesian approach. Morris (1983) introduces the parametric concept of this approach. For a 
binomial distribution and a conjugate prior distribution we set 
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𝑓𝜋(𝑑𝑖 𝛼, 𝛽⁄ ) = ∫𝑓(𝑑𝑖 𝑞𝑖⁄ )

1

0

𝜋(𝑞𝑖 𝛼, 𝛽⁄ )𝑑𝑞𝑖 = 𝐶𝑛𝑖
𝑑𝑖
𝐵(𝛼 + 𝑑𝑖 , 𝑛𝑖 + 𝛽 − 𝑑𝑖)

𝐵(𝛼, 𝛽)
 

This provides a beta – binomial distribution for estimating �̂�, �̂� in order to calculate 𝜋(𝑞𝑖 𝑑𝑖 , �̂�, �̂�⁄ ). The binomial beta 

parameters can be estimated, the estimator based on the first two moments is written by 

�̂� =
𝜉0(𝑚 − 1 − 𝜉1)

𝜉0 +𝑚(𝜉1 − 𝜉0)
,   �̂� =

(𝑚 − 𝜉0)(𝑚 − 1 − 𝜉1)

𝜉0 +𝑚(𝜉1 − 𝜉0)
 

or 

𝜉𝑗 =
�̂�(𝑗+1)

�̂�(𝑗)
, 𝑗 = 1,2 

and 
�̂�(𝑗) is the generalized moment of order 𝑗, calculated by 

𝜇(𝑗) =
(−𝑚)𝑗(𝛼)𝑗
(𝛼 + 𝛽)𝑗

(−1)𝑗 , 𝑗 = 1,2, … 

3.4.6. la loi a priori de mélange 
The prior distribution of mixture is written as follows 

𝐿(𝑞𝑖 𝑤, 𝛼, 𝛽⁄ ) =∑𝑤𝑗𝑓(𝑞𝑖 𝑑𝑖 , 𝛼𝑗, 𝛽𝑗⁄ )

𝑘

𝑗=1

 

and 0 ≤ 𝑤𝑗 ≤ 1, ∑ 𝑤𝑗 =
𝑘
𝑗=1   1  

we consider that the probabilities 𝑞 = (𝑞1, … 𝑞𝑚) are i.i.d in the likelihood is 

𝐿(𝑞, 𝑤 𝑑, 𝛼, 𝛽⁄ ) =∏∑𝑤𝑗𝑓(𝑞𝑖 𝑑𝑖 , 𝛼𝑗 , 𝛽𝑗⁄ )

𝑘

𝑗=1

𝑚

𝑖=1

 

∝∏∑𝑤𝑗𝑞𝑖
𝑑𝑖(1 − 𝑞𝑖)

𝑛𝑖−𝑑𝑖

𝑘

𝑗=1

𝑚

𝑖=1

 

if we set the vector of independent parameters 𝜃 = (𝛼𝑗 , 𝛽𝑗), in Bayesian analysis where the inference is based on the posterior 

distribution given by 
𝜋(𝜃, 𝑤 𝑞⁄ ) ∝ 𝐿(𝑞, 𝑤 𝑑, 𝛼, 𝛽⁄ ) 𝜋(𝛼𝑗 𝜉𝑗 , 𝜈𝑗⁄ )𝜋(𝛽𝑗 𝜉𝑗

∗, 𝜈𝑗
∗⁄ )𝜋(𝑤 𝜑1, … , 𝜑𝑘⁄ ) 

∝∏∑𝑤𝑗𝑞𝑖
𝑑𝑖(1 − 𝑞𝑖)

𝑛𝑖−𝑑𝑖𝜋(𝛼𝑗 𝜉𝑗 , 𝜈𝑗⁄ )𝜋(𝛽𝑗 𝜉𝑗
∗, 𝜈𝑗

∗⁄ )𝜋(𝑤 𝜑1, … , 𝜑𝑘⁄ )

𝑘

𝑗=1

𝑚

𝑖=1

 

3.5 The Bayesian estimator of the Kaplan and Meier method based on the nonparametric bootstrap method 

For the bootstrap estimator of the survival function, we take the bootstrap replica of a sample statistic that can be expressed 

for 𝑆(𝑡𝑖) = ∏ 𝑝𝑗
𝑖
𝑗=1  is the weighted multiplication: 

�̂�𝐵(𝑡𝑖) =∏�̂�𝑗

𝑖

𝑗=1

=∏(1 − �̂�𝑗)

𝑡𝑗≤ 𝑡

 

such as 
�̂�𝑗 = �̂�𝑗(𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝) 

choose a random number between 1 and n through the categorial density: 

𝑗(𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝)~𝑐𝑎𝑡(𝜃𝑖);  ∑𝜃𝑖 = 1; 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑛 = 1/𝑛 

𝑛

𝑖=1

 

therefore: 

                              �̂�𝐵(𝑡𝑖) =∏(1 − �̂�𝑗(𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝))                                       (6)

𝑡𝑗≤ 𝑡

 

4. Application 
4.1.  Unemployment durations and the model used 
One of the most effective tools for analyzing lifespans is certainly the survival or stay function estimator. For the case of this 
study, this function relates to the duration of unemployment. Typically, the most widely used estimator for this estimate is the 
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Kaplan-Meier estimator, which allows for right-censored data. This estimator calculates the probability of knowing the event 
in each time interval, and we thus obtain a curve which is interpreted simply as the proportion of "survivors" for each length 
of stay in a given state. In other words, the proportions of individuals leaving unemployment for each period of unemployment. 
 
In this application we will analyze the durations of global unemployment in the local employment agency of Ain El Benian. We 
are working on a sample of 1064 unemployed individuals observed between 01/01/2011 and 07/15/2013. This application 
allows to practically demonstrate that the Bayesian beta mixing procedures are an efficient element to solve label-swetching 
problem and to find estimates of good quality and good precision. By distinguishing those who found a job, the placement of 
the unemployed during this period gives rise to 875 right-censored observations. In this case, the variable i represents the 
indication that the ith unemployed person found a job after his daily period of unemployment 𝑡𝑖. 
 
4.2. Analysis of unemployment durations 

 
Figure 3 : Bayesian survival functions according to the classical nonparametric bootstrap method and the Bayesian method 

with a vague prior distribution Beta (0.01; 0.01). 
 

According to this figure (3) a difference between the Bayesian Kaplan Meier estimator based on the classical nonparametric 
bootstrap method and the Bayesian method with a vague prior distribution Beta (0.0.1; 0.01) .. this difference is clear in terms 
of median survival, 50% of individuals were placed in the labor market after 74 days in the modified model i.e. the Bayesian 
Kaplan Meier estimator based on the classical 50-day non-parametric bootstrap method for the Bayesian model with a vague 
Beta prior distribution (0.0.1; 0.01). But, the exit from unemployment for the rest of the individuals in the sample is spread 
over a long period in both models, for some it even exceeds one year. We also note that a convergence between the proposed 
estimation models occurs gradually after the 400-day duration of leaving unemployment. 
 

 
Figure 4: The credibility intervals according to the classical nonparametric bootstrap method and the Bayesian method with a 
vague prior distribution Beta (0.01; 0.01). 
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Figure (4) shows the difference between the amplitude of the credibility intervals of the two methods, it is clear that the 
Bayesian Kaplan Meier estimator based on the classical nonparametric bootstrap method offers practical, simple and relatively 
easy to use solutions. numerically exploit overall survival times in comparison with the model of the vague prior distribution 
Beta (0.0.1; 0.01). 

 

Figure 5: The trace of the a posteriori distribution for certain estimators of the survival function of in the proposed model. 

In figure (5), we can see graphically a certain stationarity of the a posteriori values throughout the 20,000 iterations for the 
Bayesian Kaplan meier model with a classical nonparametric bootstrap. Also the two chains mix well: convergence is reached. 
Brooks and Gelman in 1998 proposed a generalization of the method of Gelman and Rubin which was introduced in the year 
1992, it is a method of validation of the ergodic sequences of MCMC algorithms. 

 

Figure 6 : The Brooks and Gelman graph "convergence - diagnosis - graph" after 20,000 iterations in the proposed beta mixing 
model. 

In figure (6) the green curve shows the width of the inter-chain credibility interval at 80%. The blue curve displays the average 
width of the within-chain 80% credibility intervals. The red curve indicates the Brooks and Gelman statistic (i.e., the ratio of the 
green / blue curves). The Brooks and Gelman statistic tend towards 1, which means that there is convergence. 
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5. Conclusion 
The objective sought in our contribution is to improve the inferential phase in the estimation of nonparametric survival times 
and in the presence of censorship. In the results of this work, we find: 

• A Bayesian approach to survival based on the Kaplan Meier model with the classical nonparametric bootstrap offers 
practical solutions, simple and relatively easy to exploit numerically global durations for a set of individuals of different 
nature. 
• The use of the MCMC method is relatively easy to implement, it provides a set of techniques very suitable for the 
estimation of complex models with several parameters or with a hierarchical structure. 
• From the results of the application we find that the choice between the duration models of the same family is likely to 
generate a multitude of decisions. 

The limit of this method is the use of Bayesian bootstrappe and the latter represents the future work. 
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Appendices (the code on the OpenBUGS program) 
model 
{ 
for (i in 1:m) { 
d[i]~dbin(q[i],n[i]) 
q[i]~dbeta(0.01,0.01)} 
for (i in 1:m) { 
pr[i] <- 1/m  
} 
for (i in 1:m){ 
pick[i] ~ dcat(pr[])  
qboot[i] <- q[pick[i]]  
} 
for (i in 1:m){ 
ce[i]~dbin(0.01,0.01) 
} 
for (i in 1:m){ 
qc[i]~dbeta(0.01,0.01) 
} 
for (i in 1:m){ 

https://doi.org/10.1081/STA-120002440
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p[i]<-1-qboot[i] 
} 
n[1]<- 1064 
for(i in 2:m){ 
n[i]<-n[i-1]-d[i-1]-ce[i-1] 
} 
for (i in 2:m){ 
s[i]<-s[i-1]*p[i] 
} 
s[1]<-p[1] 
} 
list(m=227, 
ce=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,39,29,42,30,6,5,0,1,1), 
d=c(28,31,23,18,14,20,18,18,16,8,14,15,20,12,7,9,5,11,15,12,11,13,7,10,16,11,6,13,11,9,9,7,5,4,14,9,9,4,5,6,7,12,7,5,3,5,5,11
,5,5,3,1,3,1,2,1,8,2,5,4,5,4,4,5,3,1,3,3,6,3,3,4,3,4,1,4,4,1,4,2,1,3,2,1,1,5,4,4,2,2,1,2,3,4,3,4,2,3,2,2,1,3,1,1,2,4,1,1,1,1,1,3,3,2,3,
1,2,2,1,2,2,1,1,2,4,2,1,2,1,3,1,2,3,1,2,2,1,1,1,2,2,1,2,1,1,3,1,1,2,1,1,2,1,2,2,1,2,1,2,1,2,1,3,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,2,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0)) 
list(q=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.
5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.
5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.
5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)) 
list(q=c( 0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9, 
0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9)) 

 

 


