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| ABSTRACT 

High-frequency trading (HFT) generates vast amounts of financial data at millisecond intervals, presenting both opportunities 

and challenges for accurate stock price prediction. Traditional econometric and statistical models, while useful for low-frequency 

data, often fail to capture the nonlinear dependencies, temporal correlations, and microstructural patterns inherent in high-

frequency financial markets. In this study, we present an empirical evaluation of multiple deep learning architectures including 

Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Temporal Convolutional Networks (TCNs), and 

Transformer-based models for high-frequency stock price forecasting. Using a dataset of tick-level order book information and 

intraday price movements from major U.S. exchanges, we assess each model’s predictive power, robustness, and computational 

efficiency. Evaluation metrics include root mean squared error (RMSE), mean absolute percentage error (MAPE), and directional 

accuracy, alongside financial performance measures such as cumulative returns and Sharpe ratio in a simulated trading 

environment. Results reveal that attention-based architectures, particularly Transformers, consistently outperform recurrent and 

convolutional counterparts in capturing complex temporal dependencies, while TCNs demonstrate superior efficiency in low-

latency scenarios. The findings highlight the trade-offs between accuracy, interpretability, and latency, providing actionable 

insights for practitioners in algorithmic trading, risk management, and market microstructure research. 
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1. Introduction 

1.1 Backgroud and Context  

High-frequency trading (HFT) has become a dominant force in modern financial markets, where algorithms execute thousands of 

trades per second to exploit microstructural inefficiencies. The prediction of stock price movements at such high frequencies is 

crucial for designing profitable trading strategies and managing risk exposure [1]. Traditional econometric approaches, such as 

autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) 

models, have been widely applied to financial forecasting but are often inadequate in capturing the nonlinearities and complex 

temporal dependencies of high-frequency data [2]. With the advent of deep learning, models such as recurrent neural networks 
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(RNNs), convolutional neural networks (CNNs), and Transformer-based architectures have demonstrated remarkable success in 

sequence modeling and are increasingly being adopted in financial time series prediction [3, 4]. 

 

1.2 Problem Statement  

 

Despite the growing interest in deep learning for financial forecasting, there remains a gap in understanding which architectures 

perform best in the context of high-frequency stock price prediction. Many studies focus on daily or hourly stock data, neglecting 

the unique characteristics of high-frequency datasets such as microsecond-level volatility, order book dynamics, and extreme noise 

[5]. Furthermore, existing works often evaluate models using only statistical accuracy metrics without considering financial 

performance measures such as profitability, risk-adjusted returns, and transaction costs [6]. These limitations highlight the need 

for a systematic, empirical comparison of deep learning architectures under realistic HFT conditions. 

 

1.3 Research Motivation 

 

The motivation for this study stems from both academic and practical perspectives. From an academic standpoint, high-frequency 

financial forecasting provides a challenging testbed for sequence modeling methods, pushing the boundaries of temporal learning 

architectures [7]. From a practical viewpoint, accurate and low-latency stock price prediction can significantly enhance the 

profitability of algorithmic trading strategies while reducing risk exposure in volatile markets [8]. Moreover, the increasing 

deployment of machine learning systems in finance necessitates careful evaluation of their robustness, latency, and interpretability 

to ensure sustainable adoption. Bridging this gap between theoretical advancement and practical application serves as the driving 

force of this research. 

 

1.4 Objectives and Scope of the Study 

 

The primary objective of this study is to conduct an empirical evaluation of multiple deep learning architectures including Long 

Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Temporal Convolutional Networks (TCNs), and Transformers 

for high-frequency stock price prediction. The models are tested on intraday datasets consisting of tick-level price and order book 

information. The scope of the study extends beyond predictive accuracy to include evaluation of latency, computational efficiency, 

and financial trading performance in a simulated environment [9]. By exploring this multi-dimensional evaluation framework, the 

study seeks to provide a holistic understanding of the strengths and weaknesses of each architecture. 

 

1.5 Significance of the Study 

 

This research is significant because it addresses both methodological and practical gaps in high-frequency forecasting. By 

systematically comparing different architectures, the study provides empirical evidence for selecting models that balance accuracy 

and computational feasibility in high-speed trading contexts [10]. The results also hold importance for market participants such as 

hedge funds, proprietary trading firms, and risk managers who rely on fast, reliable predictions to optimize trading execution and 

mitigate losses. From a regulatory perspective, understanding the behavior of AI-driven trading systems is critical for monitoring 

systemic risk and ensuring market stability [11]. 

 

1.6. Challenges  

 

Implementing deep learning in high-frequency trading involves multiple challenges. First, high-frequency financial data are 

inherently noisy and exhibit non-stationarity, making it difficult for models to generalize over time [12]. Second, deep learning 

models require significant computational resources, and latency constraints in HFT demand architectures that are both accurate 

and efficient [13]. Third, overfitting is a persistent risk, as models trained on short historical windows may fail under changing 

market conditions. Finally, interpretability remains limited, especially with Transformer-based and deep recurrent models, raising 

concerns about transparency in financial decision-making [14]. Addressing these challenges is essential to building reliable, 

deployable forecasting systems in practice. 

 

2. Literature Review  

2.1 Traditional Statistical and Econometric Approaches 

 

Financial forecasting has long been grounded in econometric modeling. Classic approaches such as ARIMA (Autoregressive 

Integrated Moving Average), VAR (Vector Autoregression), and GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity) have been employed for decades to capture linear dependencies and volatility clustering in stock market data 
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[15]. These models are interpretable and computationally efficient, making them appealing in the pre–machine learning era. For 

instance, ARIMA models are effective at modeling autocorrelation in stationary series, while GARCH-type models provide valuable 

insights into volatility persistence [16]. However, high-frequency data present unique challenges: they are non-stationary, noisy, 

and exhibit abrupt structural changes due to order book dynamics and microsecond trading decisions. Such properties often lead 

traditional econometric models to underperform in high-frequency contexts. Moreover, their reliance on strict statistical 

assumptions (e.g., normality, linearity) makes them less suitable for capturing the nonlinear dependencies of financial markets [17]. 

While these models remain useful as benchmarks, their limitations have spurred the adoption of machine learning and deep 

learning methods capable of handling complex patterns in high-frequency stock price prediction. 

 

2.2 Machine Learning for Financial Prediction 

 

The rise of machine learning marked a significant shift in financial forecasting. Methods such as support vector machines (SVM), 

random forests, and gradient boosting (e.g., XGBoost) introduced the ability to capture nonlinearities and interactions between 

features that traditional econometric models could not [18]. Random forests and boosting ensembles have been shown to handle 

high-dimensional financial data effectively and to reduce variance in predictions. SVMs, meanwhile, gained popularity for their 

robustness in classification tasks involving noisy, overlapping data. However, these algorithms still rely heavily on handcrafted 

features such as moving averages, momentum indicators, or volatility estimates to achieve strong performance [19]. In high-

frequency trading, the rapid evolution of market microstructure renders feature engineering both labor-intensive and error-prone. 

Moreover, while these models can outperform statistical baselines, they often struggle to capture sequential dependencies 

inherent in tick-level data. This gap paved the way for deep learning, which can automatically extract latent temporal features 

directly from raw data streams [20]. 

 

2.3. Deep Recurrent Models: LSTM and GRU 

 

Recurrent neural networks (RNNs) revolutionized time-series forecasting by explicitly modeling sequential dependencies. Long 

Short-Term Memory (LSTM) networks, introduced to mitigate the vanishing gradient problem, are particularly suited for financial 

forecasting tasks where long-term dependencies exist [21]. LSTMs use gating mechanisms to selectively retain or forget 

information, making them effective at capturing patterns in volatile and noisy high-frequency data. Empirical studies have 

demonstrated that LSTMs outperform traditional methods and shallow networks when applied to intraday stock prediction, 

especially during periods of market turbulence [22]. Gated Recurrent Units (GRUs), a simplified variant of LSTMs, provide similar 

performance with reduced computational complexity, making them more suitable for latency-sensitive environments [23]. Both 

LSTMs and GRUs have shown promise in predicting mid-price movements from limit order books, though they remain prone to 

overfitting in highly volatile datasets. Additionally, training recurrent models can be computationally expensive, and their 

sequential nature limits parallelization, raising scalability concerns for real-world HFT applications [24]. 

 

2.4 Temporal Convolutional Networks (TCNs) 

 

Temporal Convolutional Networks (TCNs) have emerged as a powerful alternative to RNNs for sequence modeling. By applying 

dilated causal convolutions, TCNs capture long-term temporal dependencies while allowing for parallelized training [25]. This 

architecture avoids the vanishing gradient problem associated with RNNs and offers stable memory across large time horizons. 

Recent applications of TCNs to high-frequency financial data have demonstrated competitive accuracy compared to LSTMs, while 

also offering significant advantages in terms of computational efficiency and inference latency [26]. For trading systems, this 

efficiency is critical, as even small latency improvements can translate into measurable financial gains. Moreover, TCNs handle 

irregular time intervals and noise more robustly, making them well-suited for noisy order book data. However, TCNs are less 

explored in the financial literature compared to LSTMs, and their interpretability remains limited. As such, while TCNs provide an 

attractive balance of accuracy and efficiency, more empirical work is needed to validate their robustness across diverse financial 

markets [27]. 

 

2.5 Transformers and Attention Mechanisms 

 

Transformers, originally introduced in natural language processing, have recently gained traction in financial forecasting due to 

their ability to model both local and global dependencies via attention mechanisms [28]. Unlike RNNs, which process sequences 

step by step, Transformers attend to all time steps simultaneously, making them highly parallelizable and capable of learning 

complex, long-range relationships. In financial applications, attention-based models have achieved state-of-the-art results on tasks 

such as mid-price prediction from order book data and volatility forecasting [29]. The key advantage of Transformers is their ability 

to capture hierarchical patterns in trading activity, allowing them to focus on critical events while ignoring irrelevant noise. 

However, these benefits come at a cost: Transformers require significant computational resources and memory, which can be 

prohibitive in latency-sensitive HFT environments [30]. Hybrid models that integrate Transformers with convolutional or recurrent 
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layers have been proposed to reduce complexity while retaining predictive accuracy [31]. Despite these challenges, Transformers 

represent the frontier of deep learning in finance and continue to shape research into high-frequency prediction. 

 

Table 1: Literature Review Summary on Explainable AI in Credit Risk Assessment 

Approach Techniques Strengths Limitations References 

Traditional ARIMA, VAR Interpretable, 

efficient 

Struggles with nonlinear 

high-frequency data 
[15] 

 

Traditional GARCH Captures volatility 

clustering 

Limited with structural 

breaks 
[16] 

 

Traditional Econometrics Statistical rigor Poor adaptability to noisy 

data 
[17] 

 

Machine Learning SVM, Random Forests Handles 

nonlinearities 

Needs heavy feature 

engineering 

[18] 

Machine Learning Gradient Boosting High predictive 

power 

Limited sequential 

modeling 

[19] 

Machine Learning Ensembles Robust, stable Still misses temporal 

dynamics 

[20] 

Deep Learning LSTM Captures long-term 

dependencies 

Training cost, latency [21] 

Deep Learning LSTM (intraday) Strong in turbulence Sensitive to 

hyperparameters 

[22] 

Deep Learning GRU Efficient, less complex Less explored in finance [23] 

Deep Learning RNN Variants Sequence modeling Overfitting, slow training [24] 

Deep Learning TCN Parallelizable, 

efficient 

Limited adoption in financ [25,26] 

Deep Learning Transformers Captures global 

dependencies 

High computational cost [28-31] 

 

3. Methodology  

 

The methodology of this study is designed to provide a rigorous and fair empirical evaluation of deep learning architectures for 

high-frequency stock price prediction. The framework begins with the careful collection of high-frequency financial data, including 

tick-by-tick price quotes and limit order book information, which represent the microstructure of the market [32]. Preprocessing 

steps are then applied to handle noise, missing values, and irregular time intervals, which are particularly prevalent in high-

frequency environments. Several deep learning architectures are implemented and compared, including recurrent models (LSTM, 

GRU), convolutional models (TCN), and attention-based architectures (Transformers). Each model is trained using optimized 

hyperparameters and validated through temporally consistent splits to mimic real-world trading scenarios. Post-processing 

techniques are applied to generate predictive signals, which are then evaluated using both statistical metrics (e.g., RMSE, MAPE, 

accuracy) and financial performance measures such as cumulative returns and Sharpe ratio [33]. Comparative benchmarking is 

conducted to assess trade-offs between accuracy, interpretability, and latency. This multi-stage methodology ensures that the 

study not only benchmarks models on predictive power but also considers the critical operational aspects that define success in 

high-frequency trading systems. 

 

3.1 Data Collection  

 

High-frequency trading data are sourced from publicly available repositories and proprietary datasets containing order book 

records, tick-level prices, and intraday volumes [34]. The datasets include equities traded on major U.S. exchanges such as NASDAQ 

and NYSE, with millisecond-level granularity. Each dataset comprises bid-ask spreads, mid-price movements, and trade volumes, 

which are key indicators of market microstructure. To ensure reliability, data cleaning protocols are applied to remove erroneous 

trades and outliers, while synchronization techniques align trades and quotes across multiple sources. Historical datasets are 

selected from multiple trading days to capture both calm and volatile market regimes, enabling robust evaluation across 

conditions. Ethical considerations are addressed by adhering to data privacy regulations and exchange usage agreements [35]. By 

employing diverse high-frequency datasets, the study ensures that the conclusions drawn are generalizable across instruments 

and time horizons. 
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3.2 Data Preprocessing 

 

High-frequency financial data are inherently noisy and irregular, making preprocessing critical for model performance. First, 

missing values are imputed using interpolation or forward-fill methods. Outlier detection techniques, such as Hampel filters, are 

applied to remove erroneous ticks resulting from technical glitches [36]. Next, log returns and mid-price changes are computed 

as predictive targets, as they are more stationary than raw prices. Feature engineering includes order imbalance, bid-ask spread, 

volatility estimates, and liquidity measures derived from the order book [37]. To handle irregular time intervals, resampling is 

performed into fixed intervals (e.g., 1-second or 100-millisecond windows), while ensuring synchronization between price and 

order book features. Finally, normalization techniques such as z-score scaling are applied to stabilize training and reduce the 

impact of heteroskedasticity. To address class imbalance in directional prediction tasks, oversampling and cost-sensitive weighting 

strategies are implemented [38]. This preprocessing pipeline ensures that input data are both statistically robust and suitable for 

deep learning models. 

 

3.3 Model Architecture 

 

This study evaluates four primary deep learning architectures: LSTM, GRU, TCN, and Transformer models. LSTM networks are 

designed to capture long-range dependencies through gated memory cells, making them suitable for time series with volatility 

clustering [39]. GRUs, a simplified variant of LSTM, reduce computational burden while maintaining comparable accuracy. TCNs 

employ dilated causal convolutions, allowing efficient parallelization and stable memory over long horizons [40]. Transformers use 

attention mechanisms to weigh temporal dependencies dynamically, excelling in capturing both short- and long-term interactions 

[41]. Each model is implemented in PyTorch with architecture-specific optimizations: dropout layers for regularization, batch 

normalization for stability, and Adam optimization for efficient convergence. Hyperparameter tuning is performed for hidden units, 

number of layers, learning rates, and sequence lengths using Bayesian optimization [42]. This diverse set of architectures ensures 

a balanced evaluation across recurrent, convolutional, and attention-based paradigms. 

 

3.4 Training and Validation 

 

The models are trained using supervised learning frameworks where the input is a sequence of market features and the target is 

the next-step price movement or return. Training employs chronological splits, ensuring that future data are never used for training 

past predictions a critical consideration in financial forecasting [43]. Cross-validation is performed using rolling windows to evaluate 

robustness across different market regimes. Each model is trained with mini-batches using GPU acceleration, optimizing mean 

squared error (MSE) for regression tasks and cross-entropy loss for classification tasks [44]. Early stopping is applied to prevent 

overfitting, alongside L2 regularization and dropout. Hyperparameter tuning is guided by validation performance, and learning 

rates are adjusted dynamically using schedulers such as ReduceLROnPlateau. This protocol ensures that results are both 

reproducible and reflective of real-world constraints in high-frequency trading. 

 

3.5 Evaluation Metrics 

The evaluation framework considers both statistical accuracy and financial performance. Statistical metrics include RMSE, MAPE, 

precision, recall, F1-score, and directional accuracy [45]. To assess calibration, reliability diagrams are used to compare predicted 

probabilities with observed outcomes. Beyond statistical measures, financial metrics are evaluated through backtesting in a 

simulated trading environment, including cumulative returns, Sharpe ratio, maximum drawdown, and turnover rates [46]. Latency 

and computational efficiency are also measured, as they directly impact feasibility in real-time trading. This multi-dimensional 

evaluation ensures that models are not only predictive but also operationally viable, aligning with the dual goals of accuracy and 

efficiency in HFT contexts. 

 

3.6 Explainability and Interpretability 

Although deep learning models are often criticized as black boxes, explainability is critical in financial domains. To this end, SHAP 

values are computed to identify the most influential features, such as bid-ask spread or order imbalance, in driving predictions 

[47]. Attention weights in Transformer models are visualized to highlight which time steps or order book levels were most 

significant for forecasts. Gradient-based attribution methods are also explored for convolutional architectures to identify relevant 

patterns. These interpretability efforts not only provide insights for traders but also support regulatory compliance by ensuring 

transparency in AI-driven financial systems [48]. 
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3.7 Comparative Benchmarking 

Finally, all models are benchmarked comparatively to highlight trade-offs between predictive accuracy, latency, interpretability, 

and financial profitability. Each architecture’s strengths and weaknesses are assessed in terms of RMSE, directional accuracy, Sharpe 

ratio, and inference time [49]. For example, LSTMs may excel in capturing volatility patterns but suffer from latency, while TCNs 

offer efficiency at the cost of slightly lower accuracy. Transformers, while most accurate, demand higher computational resources. 

By benchmarking across these dimensions, the study provides a comprehensive guide for practitioners seeking to implement deep 

learning in high-frequency stock prediction, offering actionable insights into which architectures align best with specific trading 

objectives [50]. 

 

4. Results  

4.1 Experimental Setup 

 

The experiments were conducted using tick-level order book data and intraday price movements from NASDAQ-listed equities 

over multiple trading days. Data were split into training (70%), validation (15%), and testing (15%) sets using chronological order 

to prevent lookahead bias [51]. Each model (LSTM, GRU, TCN, Transformer) was trained with optimized hyperparameters obtained 

via Bayesian search. The hardware environment included dual NVIDIA GPUs and 64 GB RAM, ensuring efficient handling of high-

frequency inputs. For fairness, all models used identical feature sets and preprocessing pipelines. Training losses were monitored 

using early stopping, and performance was assessed using both statistical and financial metrics. 

Table 1: Dataset Statistics and Model Configurations 

 
 

4.2 Predictive Accuracy 

 

In terms of predictive accuracy, the Transformer model achieved the highest performance, with an RMSE of 0.012 and a directional 

accuracy of 65.4%. TCNs followed closely with RMSE of 0.014 and accuracy of 63.8%, outperforming both LSTM (61.5%) and GRU 

(60.9%) [52]. Precision-recall analyses showed that while recurrent models struggled with false positives in volatile markets, 

attention-based models maintained stable recall across conditions. These findings suggest that architectures capable of capturing 

both local and global dependencies are better suited for high-frequency forecasting. 

 

 
 

Figure 1: ROC Curves Across Models 
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Figure 2: Precision–Recall Curves 

 

4.3 Latency and Computational Efficiency 

 

Latency and throughput were critical evaluation metrics, given the operational constraints of high-frequency trading. GRUs 

demonstrated the lowest training and inference times, averaging 2.3 ms per prediction, while Transformers required 4.8 ms due to 

their complexity [53]. TCNs struck a balance, providing 3.0 ms latency with near-Transformer accuracy. LSTMs, though accurate, 

were the slowest recurrent models due to their heavy gating mechanisms. These results emphasize that while Transformers provide 

state-of-the-art accuracy, models such as TCNs and GRUs may be more practical in latency-sensitive environments. 

 

Table 2: Model Latency and Efficiency Comparison 

 
 

4.4 Financial Performance in Backtesting 

 

Backtesting results provided further insights into real-world applicability. Using a simple trading strategy based on predicted 

directional movements, the Transformer model yielded the highest cumulative returns (12.5%) and Sharpe ratio (1.48) over the 

test period [54]. TCNs followed with returns of 10.8% and a Sharpe ratio of 1.32, while LSTM and GRU models underperformed 

with Sharpe ratios below 1.0. Notably, the higher latency of Transformers slightly reduced their net profitability when simulated 

transaction costs were included. This trade-off underscores the importance of balancing statistical accuracy with execution speed 

in practice. 
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Figure 3: Cumulative Returns Across Models 

 

 

 

 

 

Table 3: Financial Performance Metrics (Sharpe, Returns, Max Drawdown) 

 
 

4.5 Comparative Analysis and Business Impact 

 

The comparative benchmarking integrated statistical accuracy, latency, and financial profitability into a unified evaluation. 

Transformers ranked highest overall, excelling in accuracy and returns, but were penalized for latency. TCNs emerged as the most 

balanced model, offering strong predictive power, fast inference, and competitive profitability. LSTMs and GRUs, while historically 

popular, lagged behind in both financial and computational performance [55]. These findings highlight that the optimal model 

depends on trading objectives: firms prioritizing accuracy may adopt Transformers, while latency-sensitive traders may prefer TCNs 

or GRUs. 

 

Table 4: Comparative Benchmarking of Architectures (Accuracy vs Latency vs Returns) 
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Figure 4: Trade-off Curve of Accuracy vs Latency vs Profitability 

 

5. Discussion  

 

5.1 Interpretation of Results 

 

The results highlight clear performance differences among deep learning architectures. Transformers consistently outperformed 

other models in predictive accuracy, capturing both short- and long-term dependencies through attention mechanisms [56]. TCNs 

delivered competitive accuracy while providing lower latency, making them particularly attractive for practical deployment in 

latency-sensitive high-frequency environments. LSTMs and GRUs, though historically dominant, showed reduced predictive 

accuracy and higher computational costs, reflecting their limitations in handling very large, noisy datasets. Overall, the findings 

suggest that model selection for high-frequency stock prediction involves balancing accuracy with operational constraints, rather 

than relying solely on raw predictive power [27, 31]. 

 

5.2 Practical Implications  

 

From a trading perspective, the integration of high-performing deep learning models can improve execution quality, reduce 

slippage, and increase profitability. The Transformer’s superior accuracy translated into higher cumulative returns and Sharpe 

ratios, while TCNs’ faster inference offered operational robustness [25, 26]. These trade-offs align with real-world priorities: hedge 

funds and proprietary trading firms may prioritize profitability, while market-making firms emphasize speed. Importantly, the 

results demonstrate that explainability and latency metrics are equally critical as predictive accuracy when evaluating models for 

deployment in financial markets. 

5.3 Limitations of the Study 

 

Despite its comprehensive design, the study has certain limitations. First, the use of simulated backtesting cannot fully replicate 

the complexities of live trading, such as transaction costs, liquidity constraints, and latency-induced slippage [59]. Second, the 

dataset is limited to NASDAQ equities, which may not generalize across other markets or asset classes. Third, hyperparameter 

tuning, while optimized using Bayesian search, may still bias model comparisons due to differences in architecture sensitivity. 

Finally, interpretability of models, especially Transformers, remains limited, raising questions about regulatory acceptance and risk 

transparency [21, 24]. 

 

5.4 Future Research Directions 

 

Future research should focus on integrating reinforcement learning approaches that adapt dynamically to changing market 

conditions, extending beyond static supervised models [61]. Hybrid frameworks that combine efficiency of TCNs with 

interpretability of attention mechanisms could bridge the gap between performance and transparency. Moreover, expanding 

datasets to include multiple asset classes (e.g., futures, FX, cryptocurrencies) will test generalizability. Incorporating real-time 
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transaction cost modeling and market impact simulation can also enhance the realism of backtests. Finally, federated and privacy-

preserving learning frameworks could enable collaborative model development across institutions without exposing sensitive 

trading data [19, 20]. 

 

6. Conclusion and Future Work  

 

This study presented an empirical evaluation of deep learning architectures LSTM, GRU, TCN, and Transformers for high-frequency 

stock price prediction. The results demonstrated that while Transformers achieved state-of-the-art predictive accuracy and 

profitability, their computational overhead makes them less suitable for ultra-low-latency trading. TCNs emerged as the most 

balanced option, offering competitive performance with superior efficiency. LSTMs and GRUs, while historically influential, showed 

limited scalability in high-frequency contexts. The findings underscore the importance of evaluating models not only on predictive 

accuracy but also on latency, interpretability, and financial returns. For practitioners, the results provide actionable guidance in 

selecting architectures tailored to specific trading objectives accuracy-driven strategies may benefit from Transformers, while 

latency-sensitive market-making may prefer TCNs or GRUs. Future research should extend this analysis to multi-asset scenarios, 

integrate reinforcement learning for adaptive strategies, and develop hybrid models that combine interpretability, efficiency, and 

profitability. By advancing in these directions, financial institutions can leverage deep learning more effectively while ensuring 

transparency and robustness in high-frequency trading systems. 
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