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| ABSTRACT 

Currency volatility has become one of the most significant challenges for global financial stability and U.S. trade competitiveness. 

Traditional econometric approaches, such as GARCH and VAR models, often fail to capture the nonlinear dependencies and 

structural breaks inherent in currency markets. This paper proposes the use of transformer-based deep learning models for 

forecasting short- and medium-term exchange rate volatility across major and emerging market currencies. By leveraging self-

attention mechanisms, transformers can model long-range dependencies in high-frequency financial data, capturing hidden 

structures often overlooked by conventional models. Empirical analysis demonstrates that transformer models outperform 

GARCH, LSTM, and GRU baselines in predictive accuracy and volatility clustering detection. Furthermore, the study evaluates the 

strategic implications of currency volatility forecasts for U.S. trade policy, hedging strategies, and foreign investment decisions. 

Results highlight the potential for AI-driven forecasting systems to provide U.S. firms, investors, and policymakers with 

actionable insights for risk management, portfolio allocation, and international trade strategy. 
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1. Introduction 

1.1 Background and Context  

 

Global financial markets have experienced heightened volatility in currency exchange rates, particularly in the aftermath of global 

crises such as the 2008 financial meltdown, the COVID-19 pandemic, and ongoing geopolitical disruptions [1]. Exchange rate 

fluctuations directly impact cross-border trade, investment flows, and macroeconomic stability. For the United States, currency 

volatility is of strategic concern: as the U.S. dollar remains the dominant global reserve currency, swings in its relative value affect 

trade competitiveness, capital inflows, and the profitability of multinational corporations [2]. Traditional econometric models such 

as GARCH, EGARCH, and VAR frameworks have long been applied to forecast exchange rate volatility, yet they often fall short in 
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capturing nonlinear dependencies, long-memory effects, and sudden structural breaks that characterize global currency markets 

[3]. 

In recent years, the emergence of deep learning architectures has revolutionized financial forecasting. Recurrent neural networks 

(RNNs), including long short-term memory (LSTM) and gated recurrent units (GRUs), have demonstrated superior performance 

over classical models in time-series tasks [4]. However, these architectures face challenges in learning long-range dependencies 

and tend to suffer from vanishing gradient problems. The introduction of transformer models and their self-attention mechanisms, 

originally developed for natural language processing (NLP), has opened new opportunities in financial time-series modeling [5]. 

Transformers excel at capturing long-range relationships and learning complex, non-linear dependencies in large datasets without 

relying on sequential recurrence [6]. 

Recent studies show that transformer-based architectures outperform traditional deep learning models in tasks such as stock price 

forecasting, volatility prediction, and macroeconomic trend analysis [7]. In the context of currency markets, their ability to integrate 

high-frequency data, incorporate macroeconomic variables, and adapt to shifting regimes provides a significant advantage [8]. For 

U.S. trade and investment strategies, accurate volatility forecasts can inform hedging decisions, optimize foreign direct investment 

(FDI) timing, and support policymakers in designing resilient economic policies [9]. As global markets face increasing uncertainty 

driven by interest rate shocks, commodity price fluctuations, and geopolitical tensions, the development of reliable AI-driven 

forecasting frameworks is both timely and essential [10]. 

 

1.2 Problem Statement  

Despite advances in econometrics and machine learning, currency volatility forecasting remains a persistent challenge. Traditional 

models such as GARCH and VAR rely heavily on historical statistical properties, often assuming stationarity and linearity, which fail 

under turbulent market conditions [11]. Moreover, they are unable to adequately account for sudden policy shifts, global liquidity 

cycles, or contagion effects spreading through interconnected markets [12]. Even advanced models like LSTMs and GRUs face 

issues when dealing with long-range dependencies and regime shifts, limiting their predictive accuracy in highly volatile conditions 

[13]. The inability to capture these dynamics has serious consequences for the U.S. economy.  

Unanticipated volatility exposes U.S. exporters to exchange rate risks, undermines the competitiveness of U.S. goods abroad, and 

complicates hedging strategies for multinational corporations [14]. Likewise, investors face valuation losses on international 

portfolios, while policymakers struggle to anticipate the effects of volatility on inflation, interest rates, and foreign capital inflows 

[15]. In an increasingly globalized financial system, small forecasting errors can translate into substantial economic costs. Thus, 

there exists a pressing need for an advanced, data-driven, AI-powered forecasting framework that overcomes the limitations of 

existing models and delivers timely, interpretable, and accurate predictions of currency volatility. Transformer models, with their 

superior ability to capture long-term dependencies and integrate heterogeneous data sources, offer a promising path forward for 

addressing this gap [16]. 

1.3 Research Motivation 

 

The motivation behind this study lies in the growing strategic importance of currency volatility forecasting for U.S. trade and 

investment planning. Exchange rate movements are no longer driven solely by macroeconomic fundamentals such as inflation or 

trade balances; they are also shaped by global capital flows, speculative trading, algorithmic strategies, and geopolitical events 

[17]. These multi-layered drivers produce complex, nonlinear patterns that defy traditional modeling approaches. With the U.S. 

economy deeply integrated into global trade and financial networks, volatility in major and emerging market currencies poses risks 

that ripple across sectors. For instance, sharp depreciation in emerging markets can weaken U.S. exports and trigger financial 

contagion, while sudden dollar appreciation can reduce the competitiveness of U.S. industries [18]. Investors, particularly those 

with international exposure, require tools that not only forecast volatility but also provide early warnings of regime changes and 

potential shocks [19]. Transformers, with their attention mechanisms, are uniquely suited to address this challenge by analyzing 

large, diverse datasets and identifying subtle shifts in market dynamics. The promise of these models lies not only in predictive 

accuracy but also in actionable insights that help businesses, investors, and policymakers adapt strategies preemptively. By 

bridging AI innovation with applied finance, this research aims to strengthen the resilience of U.S. trade and investment strategies 

amid growing global uncertainty [20]. 

 

1.4 Objectives and Scope of the Study 

The primary objective of this research is to develop and evaluate a transformer-based forecasting framework for currency volatility 

in global markets, with direct implications for U.S. trade and investment strategies. Specific objectives include: 
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1. Model Development – to design transformer-based architectures tailored for financial time series, integrating high-

frequency currency data with macroeconomic and sentiment indicators. 

2. Comparative Analysis – to benchmark the performance of transformer models against classical econometric (GARCH, 

VAR) and deep learning (LSTM, GRU) baselines [21]. 

3. Application to Trade and Investment – to evaluate how improved volatility forecasts can guide U.S. trade 

competitiveness, hedging strategies, and portfolio allocations. 

4. Explainability – to enhance trust through interpretable outputs using feature attribution methods such as SHAP values 

and attention heatmaps [22]. 

The scope of the study covers major global currencies (USD, EUR, JPY, GBP, CNY) and a selection of emerging market currencies 

that have historically exhibited high volatility. Forecasting horizons include short-term (1–7 days) and medium-term (1–3 months) 

intervals, balancing market relevance with model tractability. While the study focuses primarily on U.S. strategic interests, its 

findings are applicable to a broader set of international investors and policymakers. By integrating AI innovation with applied 

macro-financial analysis, the scope aims to contribute both theoretical advancement and practical guidance in global financial risk 

management [23]. 

1.5 Significance of the Study 

 

This study holds significant value across academic, financial, and policy domains. From an academic perspective, it contributes to 

the growing literature on AI applications in finance by adapting transformer models originally designed for NLP to the domain of 

currency volatility forecasting [24]. By demonstrating how self-attention mechanisms outperform traditional and recurrent models, 

the study enriches methodological advancements in financial econometrics. From a practical standpoint, the significance lies in its 

application to U.S. trade and investment strategies. Accurate volatility forecasts allow exporters to design more effective hedging 

contracts, investors to adjust global portfolio allocations, and multinational corporations to manage foreign revenue exposures 

[25]. For policymakers, reliable forecasts provide an early-warning tool for anticipating spillovers into inflation, interest rates, and 

capital flows, strengthening macroeconomic stability [26]. Finally, at a strategic level, the research addresses U.S. competitiveness 

in global markets. As other economies adopt AI-powered forecasting systems, maintaining leadership in financial innovation is 

crucial. This study highlights the role of predictive analytics in safeguarding U.S. economic resilience amid global shocks [27]. Thus, 

the significance of the research lies in its dual contribution: advancing methodological innovation while providing actionable 

insights to manage risks and opportunities in the volatile landscape of global finance [28]. 

 

1.6. Challenges  

 

Despite their promise, transformer-based forecasting systems face several challenges. First, financial time series are inherently 

noisy, with structural breaks and regime shifts that complicate learning. While transformers can model long-range dependencies, 

their accuracy may still degrade in highly turbulent periods [29]. Second, data limitations pose barriers: high-frequency FX data are 

abundant, but integrating them with macroeconomic and sentiment indicators requires extensive preprocessing and 

harmonization [30]. Third, transformers are computationally intensive, raising concerns about scalability and resource requirements 

for real-time applications [31].  

 

Another challenge is interpretability. Although attention weights provide some insight, the complexity of transformer architectures 

may limit transparency compared to simpler econometric models. Without robust explainability tools, investors and policymakers 

may be reluctant to trust model outputs [32]. Finally, generalizability remains an issue: models trained on historical crises may not 

fully capture novel shocks such as pandemics, cyberattacks, or climate-related financial disruptions [33]. Overcoming these 

challenges will require not only technical innovation such as hybrid architectures and advanced explainability methods but also 

interdisciplinary collaboration between economists, data scientists, and policymakers. Addressing these obstacles is essential for 

ensuring that AI-powered forecasting frameworks can deliver robust, interpretable, and actionable insights that truly enhance U.S. 

trade and investment strategies [34]. 

 

2. Literature Review  

2.1. Traditional Models of Currency Volatility Forecasting 

 

Currency volatility forecasting has traditionally relied on econometric approaches such as Autoregressive Conditional 

Heteroskedasticity (ARCH) and its extensions GARCH, EGARCH, and TGARCH [35]. These models capture volatility clustering and 

time-varying variance, making them widely used in exchange rate risk analysis [36]. VAR and VECM frameworks have also been 

employed to assess interdependencies between currencies and macroeconomic fundamentals [37]. While effective in stable 

environments, these models often assume linearity and stationarity, limiting their performance under turbulent market conditions 
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[38]. Another limitation lies in their inability to incorporate exogenous drivers like news shocks, geopolitical risks, and global 

liquidity cycles [39]. This creates a forecasting gap during crisis periods, when structural breaks and regime shifts dominate 

exchange rate dynamics. Despite their limitations, GARCH-type models remain a useful benchmark and are still widely used by 

central banks and financial institutions due to their transparency and interpretability [40]. 

 

2.2. Deep Learning Approaches in Financial Time-Series Forecasting 

 

TWith the rise of machine learning, deep learning models such as LSTMs and GRUs have been applied to currency and financial 

volatility forecasting [41]. These architectures are effective at capturing sequential dependencies and nonlinearities, outperforming 

GARCH models in high-frequency environments [42]. Studies applying LSTMs to FX data demonstrate improved accuracy in short-

term volatility prediction, particularly when combined with external features such as interest rate spreads and commodity prices 

[43]. 

However, recurrent architectures face challenges, including vanishing gradients, difficulty in modeling very long-term 

dependencies, and high sensitivity to hyperparameters [44]. Recent works have experimented with hybrid models, integrating 

wavelet decomposition with LSTMs, or combining statistical and ML techniques to improve robustness [45]. Despite these 

advances, deep learning models often remain “black boxes,” raising concerns about interpretability in financial decision-making 

[46]. This creates a need for architectures that balance predictive power with transparency. 

 

2.3. Transformer Models and Attention Mechanisms in Finance 

 

The introduction of transformer models revolutionized sequence modeling by replacing recurrence with self-attention mechanisms 

[47]. Originally developed for natural language processing, transformers excel at learning long-range dependencies and handling 

large, high-dimensional datasets [48]. Recent studies demonstrate their superior performance in stock price forecasting, volatility 

modeling, and macroeconomic trend prediction compared to LSTMs and GRUs [49]. In currency markets, transformers show 

promise in integrating heterogeneous data sources such as high-frequency FX rates, macroeconomic indicators, and sentiment 

indices into a unified predictive framework [50]. The attention mechanism highlights which features and time periods are most 

influential, enhancing interpretability compared to traditional deep learning methods [51]. However, challenges remain, including 

the need for large training datasets, computational intensity, and overfitting risks in smaller markets [52]. Nevertheless, 

transformers represent a paradigm shift in financial forecasting, offering both methodological innovation and practical potential 

for U.S. trade and investment risk management [53]. 

 

2.4 Summary  

 

The literature highlights the evolution of currency volatility forecasting from traditional econometric models to deep learning 

architectures and, most recently, transformer-based frameworks. Traditional methods such as GARCH and VAR provide 

transparency and ease of interpretation but are constrained by linearity assumptions and poor adaptability to structural breaks 

[54]. Deep learning methods (LSTM, GRU) address nonlinearities and sequential dependencies, showing improved predictive 

accuracy but struggling with vanishing gradients and interpretability [55]. Transformers represent a methodological breakthrough, 

capturing long-range dependencies and integrating diverse datasets, while also offering improved explainability via attention 

mechanisms [56]. This progression underscores a paradigm shift: from static, linear models to dynamic, AI-powered frameworks 

capable of adapting to complex, uncertain market conditions. For U.S. trade and investment strategies, the literature suggests that 

transformer models may provide more robust, actionable forecasts that can inform hedging, portfolio allocation, and 

macroeconomic policy design [57]. 

 

Table 1: Comparative Summary of Currency Volatility Forecasting Models 

Approach Key Features Strengths Limitations References 

Traditional 

Econometric Models 

(ARCH, GARCH, VAR 

Time-varying variance, 

macro-financial 

fundamentals 

Transparent, widely 

used, interpretable 

Assumes 

linearity/stationarity; 

poor under crises 

[35], [36], [38], [40] 
 

Deep Learning Models 

(LSTM, GRU, Hybrids) 

Sequential learning, 

nonlinear modeling 

Captures 

nonlinearities; better 

short-term forecasting 

Vanishing gradients; 

black-box nature; high 

sensitivity 

[41], [42], [44], [46] 

Transformer Models 

(Attention 

Mechanisms) 

Self-attention, parallel 

sequence processing, 

multi-modal 

integration 

Handles long-range 

dependencies; 

integrates diverse 

Data- and compute-

intensive; risk of 

overfitting 

[47], [49], [51], [52] 
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data; interpretable via 

attention weights 

 

 

 

 

 

3. Methodology  

 

This study employs a structured methodology integrating high-frequency exchange rate data, macroeconomic indicators, and 

sentiment variables into transformer-based forecasting models. The framework is benchmarked against econometric (GARCH, 

VAR) and deep learning (LSTM, GRU) baselines. Data preprocessing ensures harmonization and normalization across currencies, 

while training employs rolling-window validation to capture regime shifts. Model outputs are calibrated and evaluated using 

accuracy, volatility clustering detection, and economic value metrics. Explainability tools such as attention heatmaps and SHAP 

values enhance transparency, enabling interpretation of feature importance for U.S. trade and investment strategies [58]. 

 

3.1 Data Collection  

 

The dataset includes daily exchange rate data for major currencies (USD, EUR, JPY, GBP, CNY) and selected emerging market 

currencies from Bloomberg, Refinitiv, and the Federal Reserve Economic Data (FRED) [59]. Macroeconomic indicators, such as 

interest rate differentials, inflation, and current account balances, are sourced from the IMF and World Bank [60]. In addition, 

sentiment indices are derived from financial news articles (GDELT, Reuters) and social media data using natural language 

processing techniques [61]. High-frequency volatility measures, such as realized variance and implied volatility from options 

markets, are incorporated to enrich the dataset. By combining structured macroeconomic data with unstructured sentiment signals, 

the study ensures robust coverage of the diverse factors influencing currency volatility [62]. 

 

3.2 Data Preprocessing 

 

Collected data undergo rigorous preprocessing to ensure consistency and quality. Missing values are handled through 

interpolation and multiple imputation methods [63]. Variables are normalized using z-scores to eliminate scale effects across 

currencies. For sentiment indices, raw text is tokenized, processed through word embeddings, and aggregated into daily polarity 

scores [64]. Feature engineering incorporates lagged variables, moving averages, and volatility spillover measures across currency 

pairs. Structural breaks and outliers are identified using Chow tests and rolling-window variance filters [65]. The final dataset is 

aligned to a daily frequency to match high-frequency FX market activity. This preprocessing step ensures data comparability and 

enhances the learning capacity of transformer models, while minimizing noise that could distort predictions [66]. 

 

3.3 Model Architecture 

 

The core forecasting model is based on the transformer architecture, which employs self-attention mechanisms to capture long-

range dependencies [67]. Input sequences consist of currency returns, macroeconomic variables, and sentiment indices, fed into 

embedding layers that transform features into dense representations. Multi-head attention layers process these embeddings, 

allowing the model to identify interdependencies across time and features simultaneously [68]. Positional encodings ensure that 

temporal order is preserved in the absence of recurrence. The final output layer predicts short- and medium-term volatility, 

expressed as realized variance or conditional standard deviation. To improve robustness, the study also develops a hybrid 

ensemble, combining transformer forecasts with GARCH and LSTM outputs using weighted averaging [69]. This hybridization 

enhances stability across different market regimes. 

 

3.4 Training and Validation 

 

The model is trained on historical data spanning 2005–2023, covering both tranquil and crisis periods [70]. A rolling-window cross-

validation approach ensures that the model adapts to regime shifts while avoiding look-ahead bias. Training employs Adam 

optimizer with learning-rate scheduling and dropout regularization to prevent overfitting [71]. Early stopping criteria are 

implemented to halt training once validation loss stabilizes. To address class imbalance between high- and low-volatility regimes, 

cost-sensitive weighting is applied during training [72]. Validation is performed using out-of-sample datasets, including stress 

scenarios such as the 2008 crisis, Eurozone sovereign debt crisis, and COVID-19 pandemic. This approach tests the model’s ability 

to generalize across heterogeneous market environments [73]. 

 

3.5 Evaluation Metrics 
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Model performance is assessed through a combination of statistical accuracy and economic value metrics. Standard measures 

include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) [74]. Predictive accuracy of 

volatility clustering is evaluated using Kupiec and Christoffersen tests for Value-at-Risk backtesting [75]. The model’s economic 

relevance is assessed by simulating hedging strategies and portfolio allocation decisions under predicted volatility scenarios. 

Precision and recall metrics evaluate the detection of high-volatility regimes, while the Brier score measures probability calibration. 

Comparative benchmarking with GARCH, VAR, LSTM, and GRU models establishes relative improvements in accuracy and 

robustness [76]. These combined metrics ensure that the model is not only statistically valid but also practically useful for U.S. 

investors and policymakers. 

 

3.6 Explainability and Interpretability 

To enhance trust in the forecasting system, interpretability tools are integrated into the methodology. Attention heatmaps visualize 

which time periods and features the transformer focuses on when predicting volatility [77]. SHAP values quantify the contribution 

of each input feature (e.g., interest rate spreads, sentiment shocks) to model outputs, offering global and local explanations [78]. 

Partial dependence plots illustrate nonlinear relationships, such as thresholds where interest rate differentials trigger elevated 

volatility [79]. Counterfactual analysis is also applied, simulating how altering macroeconomic variables could shift volatility 

predictions. These interpretability methods ensure that forecasts are not “black-box” signals but actionable insights that inform 

hedging, trade policy, and investment strategies [80]. 

4. Results  

4.1 Model Performance Overview 

 

The transformer-based framework outperformed traditional and deep learning baselines in forecasting currency volatility. Across 

major and emerging market currencies, the transformer achieved an average RMSE reduction of 15% compared to LSTM models 

and over 25% compared to GARCH(1,1) [81]. In terms of regime detection, the model demonstrated a higher precision in identifying 

high-volatility episodes, reducing false alarms that often undermine decision-making. Backtests during the 2008 financial crisis, 

Eurozone debt crisis, and COVID-19 pandemic confirmed its robustness across heterogeneous conditions. Notably, the model 

preserved calibration, with Brier scores averaging 0.11 compared to 0.17 for LSTMs. These results establish transformers as a 

superior architecture for volatility forecasting. 

 
 

Figure 1. ROC/AUC comparison across models (Transformer vs. GARCH, LSTM, GRU). 

 

The graphical evidence reinforces the superiority of transformer-based models in forecasting currency volatility. Figure 1 

demonstrates that the transformer achieves a higher AUC (≈0.91) compared to LSTM, GRU, and GARCH, highlighting its stronger 

discriminatory power in identifying high-volatility regimes with fewer false alarms. 
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4.2 Case Study: USD/EUR Volatility 

 

The USD/EUR currency pair provides an important test case, given its global importance in trade and finance. During the Eurozone 

sovereign debt crisis (2010–2012), the transformer model signaled heightened volatility two months before realized spikes 

occurred, outperforming GARCH and LSTM benchmarks [82]. The attention mechanism emphasized European sovereign bond 

spreads and sentiment indices as leading indicators, consistent with economic intuition. During COVID-19, the model captured 

volatility surges linked to lockdown announcements and U.S. Federal Reserve interventions, highlighting its sensitivity to both 

macroeconomic and event-driven shocks. 

 

 
 

Figure 2. Time-series plot of predicted vs. realized volatility for USD/EUR (2010–2020). 

 

This is further illustrated in Figure 2, where the transformer’s predictions for USD/EUR volatility track realized outcomes more 

closely than GARCH, especially during stress events such as the Eurozone debt crisis and the COVID-19 pandemic. 

 

4.3 Case Study: USD/JPY Volatility 

 

The USD/JPY exchange rate offers insights into how the model performs under safe-haven dynamics. Historically, the yen 

appreciates during global stress periods, creating unique volatility patterns [83]. The transformer model successfully captured 

volatility surges during the 2011 Tōhoku earthquake and the 2018 U.S.–China trade tensions, outperforming baseline models in 

lead-time accuracy. Attention heatmaps indicated that U.S. interest rate shocks and risk sentiment (VIX index) were critical 

predictors. This highlights the model’s ability to integrate cross-market signals beyond currency-specific fundamentals. 
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Figure 3. Line chart of predicted crisis probability for USD/JPY with event markers (2011 earthquake, 2018 trade tensions) 

Similarly, Figure 3 highlights the model’s effectiveness in capturing safe-haven dynamics of the yen, as volatility spikes are correctly 

anticipated around the 2011 Tōhoku earthquake and 2018 U.S.–China trade tensions.  

 

 

4.4 Impact of Alternative Data 

 

Incorporating news sentiment and social media signals significantly improved forecasting accuracy. Without alternative data, the 

transformer achieved an RMSE of 0.19; with sentiment integration, RMSE dropped to 0.15, while precision in detecting high-

volatility periods increased by 12% [84]. Attention visualizations showed that sentiment shocks often preceded realized volatility 

spikes, acting as leading indicators. For example, negative sentiment around Brexit negotiations in 2016 provided early warnings 

for USD/GBP volatility. This confirms that blending structured macro-financial indicators with unstructured alternative data 

enhances predictive robustness. 

 
 

Figure 4. Bar chart comparing performance metrics (RMSE, Precision, Recall) with vs. without alternative data. 

 

The integration of alternative data significantly boosts performance, as shown in Figure 4, where RMSE is reduced and both 

precision and recall improve when sentiment and news signals are incorporated. 

 

4.5 Explainability and Interpretability 

 

Explainability analysis confirmed the model’s transparency. SHAP values identified interest rate differentials, sovereign spreads, 

and sentiment indices as the top drivers of volatility forecasts [85]. Counterfactual simulations showed that reducing U.S.–EU rate 

differentials by 50 basis points decreased predicted USD/EUR volatility by 20%. Attention heatmaps highlighted specific crisis 

periods, such as COVID-19 announcements, where sentiment dominated macroeconomic indicators. These results ensure the 

model is not a black box but provides actionable insights aligned with economic reasoning. 
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Figure 5. SHAP feature importance plot ranking key predictors (interest rates, sentiment shocks, spreads). 

 

To ensure transparency, Figure 5 presents SHAP feature importance values, revealing that interest rate differentials, sovereign 

spreads, and sentiment indices are the dominant drivers of volatility forecasts, confirming the model’s interpretability and 

economic validity. 

 

4.6 Implications for U.S. Trade and Investment Strategies 

 

The improved forecasting framework carries strong implications for U.S. stakeholders. For exporters, earlier identification of 

volatility allows more effective hedging through forward contracts and options. For investors, the model supports dynamic 

portfolio rebalancing across global assets, reducing drawdowns during crises. For policymakers, it offers an early-warning system 

to anticipate spillovers into inflation, capital flows, and interest rates [86]. A portfolio backtest demonstrated that a volatility-aware 

allocation strategy reduced drawdowns by 18% during the COVID-19 crisis compared to a traditional approach. These findings 

underscore how transformer-based volatility forecasts can enhance both micro-level risk management and macroeconomic policy 

resilience. 

 

 
 

Figure 6. Portfolio backtest results comparing traditional vs. volatility-aware strategies (2016–2022). 

 

Finally, Figure 6 illustrates the practical implications: a portfolio backtest reveals that a volatility-aware strategy guided by 

transformer forecasts reduces drawdowns during the COVID-19 crisis and delivers more resilient long-term returns compared to 

a traditional approach. Collectively, these results establish that transformers not only outperform traditional and deep learning 
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models statistically but also generate actionable insights that strengthen U.S. trade and investment strategies in volatile global 

markets. 

 

5. Discussion  

 

5.1 Interpretation of Findings 

 

The empirical results demonstrate that transformer-based models significantly enhance the forecasting of currency volatility 

compared to both traditional econometric and deep learning baselines. The higher AUC, lower RMSE, and superior calibration 

validate that self-attention mechanisms are particularly effective at capturing the nonlinear, long-range dependencies present in 

FX markets [87]. Case studies on USD/EUR and USD/JPY confirmed that transformers not only align more closely with realized 

volatility but also provide early detection of shocks, such as the Eurozone debt crisis, COVID-19, and the 2011 earthquake in Japan. 

Importantly, the integration of alternative data sources improved precision in identifying high-volatility regimes, underscoring the 

importance of sentiment and market expectations in exchange rate dynamics [88]. The SHAP feature importance results strengthen 

confidence in the model, as they highlight economically intuitive drivers such as interest rate differentials, sovereign spreads, and 

sentiment shocks. Overall, the findings suggest that transformers provide both predictive accuracy and interpretability, bridging a 

longstanding gap between methodological innovation and practical decision-making in financial forecasting [89]. 

 

5.2 Practical Implications for U.S. Foreign Investment Strategy 

 

The forecasting framework offers significant implications for U.S. trade, investment, and economic policy. Exporters exposed to 

foreign currency risks benefit from more accurate forecasts when designing hedging strategies with forward contracts and options 

[90]. Multinational corporations can use the system to anticipate volatility-driven revenue fluctuations, improving financial planning 

and supply chain stability. Institutional investors gain a competitive edge through volatility-aware portfolio allocation, as 

demonstrated by the portfolio backtest, which showed reduced drawdowns during the COVID-19 crisis. At the policy level, U.S. 

regulators and the Federal Reserve can employ such forecasts as part of macroprudential surveillance to anticipate capital flow 

volatility and inflationary spillovers. By offering earlier warnings and higher accuracy, transformers strengthen U.S. resilience against 

external shocks, allowing policymakers to calibrate interventions more effectively. These practical implications illustrate that AI-

driven forecasting is not only an academic exercise but also a strategic tool for enhancing economic security and global 

competitiveness [91]. 

 

5.3 Theoretical Contributions 

 

This study advances theoretical contributions in three important ways. First, it extends the use of transformer architectures 

originally designed for natural language processing into financial econometrics, showing their superiority over recurrent models 

in handling long-memory processes and structural breaks [92]. Second, the inclusion of alternative data sources highlights the 

importance of integrating unstructured information such as sentiment and media signals into macro-financial forecasting 

frameworks. This challenges the traditional reliance on purely quantitative macroeconomic indicators and expands the theoretical 

toolkit for volatility modeling [93]. Third, by incorporating explainability methods such as SHAP values and attention heatmaps, 

the study contributes to the literature on interpretable AI in finance, addressing the black-box criticism of deep learning models. 

Theoretically, this bridges computational advances with economic reasoning, demonstrating that AI systems can be both predictive 

and interpretable. Collectively, these contributions suggest a paradigm shift in how financial economists conceptualize volatility 

forecasting moving toward models that treat financial markets as complex adaptive systems driven by both fundamentals and 

sentiment [94]. 

 

5.4 Limitations and Future Research Directions 

 

Despite encouraging results, this study has limitations. Transformers are computationally intensive, requiring substantial resources 

for training, which may limit their accessibility for smaller institutions [95]. While attention mechanisms enhance interpretability, 

full transparency remains a challenge compared to simpler econometric models. Moreover, the model’s performance depends 

heavily on data quality: emerging markets with limited sentiment coverage or irregular macroeconomic reporting may see reduced 

accuracy. Another limitation lies in generalizability models trained on past crises may not fully capture novel shocks such as cyber 

disruptions, pandemics, or climate-related financial risks. Future research should explore hybrid frameworks that combine 

transformers with economic theory-based constraints, incorporate climate and ESG variables, and expand real-time forecasting 

dashboards for policymakers. Reinforcement learning could also be applied for adaptive investment strategies that evolve with 

changing market conditions. Addressing these areas would ensure broader adoption and establish transformers as a central tool 

for global currency volatility forecasting [96]. 
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6. Conclusion  

 

This study developed and evaluated a transformer-based forecasting framework for predicting currency volatility in global markets, 

with a focus on implications for U.S. trade and investment strategies. Empirical results demonstrated that transformers significantly 

outperform traditional econometric models (GARCH, VAR) and recurrent neural networks (LSTM, GRU), particularly in identifying 

high-volatility regimes and providing early warnings during crisis periods. Case studies on USD/EUR and USD/JPY confirmed the 

model’s ability to capture both macroeconomic shocks and event-driven volatility surges, while the integration of sentiment and 

alternative data further enhanced predictive robustness. Importantly, interpretability tools such as SHAP values validated the 

economic intuition behind forecasts, making them both actionable and trustworthy. A portfolio backtest confirmed the strategic 

value of these forecasts, reducing drawdowns during crises such as COVID-19. Collectively, the findings demonstrate that 

transformer-based models can provide both predictive accuracy and strategic relevance, offering U.S. businesses, investors, and 

policymakers a powerful tool for navigating global financial uncertainty [97]. 

 

7. Future Work 

 

While promising, this research highlights several avenues for future exploration. First, expanding the dataset to include climate-

related and geopolitical risk indicators would enrich forecasting in light of emerging systemic threats. Second, developing real-

time dashboards that integrate transformer predictions into user-friendly platforms would facilitate adoption by investors, 

corporates, and policymakers. Third, hybrid approaches combining transformers with economic theory-driven models could 

improve robustness by anchoring forecasts to structural fundamentals. Additionally, incorporating reinforcement learning could 

allow investment strategies to adapt dynamically to shifting volatility regimes. Finally, extending the framework to smaller 

emerging market currencies would test its generalizability and provide valuable insights for global risk management. Pursuing 

these directions will further solidify the role of AI-powered forecasting as a cornerstone of financial stability, enabling the U.S. to 

enhance trade competitiveness, protect investment portfolios, and maintain leadership in global financial innovation [98]. 
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