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| ABSTRACT 

The shift towards Industry 5.0 from Industry 4.0 represents the paradigm shift in industry, not only highlighting automation and 

efficiency but also human-centered innovation, resilience, and sustainability. Central to this transformation is the synergy 

between Artificial Intelligence (AI) and Data Science with mechanical automation to produce intelligent, adaptive, and 

collaborative industrial environments. This review identifies the new frontier of human-centered AI in Industry 5.0 as the 

intersection of data-driven intelligence, mechanical engineering, and human-robot collaboration (HRC). It methodically examines 

how models of AI/Machine Learning (ML), such as explainable AI (XAI), prediction analytics, and systems of human-in-the-loop 

are redefining mechanical automation into cognitive, user-oriented settings. A systematic methodology based on major scientific 

databases was employed in order to choose more than 150 high-impact articles published between the years 2015 and 2025. 

Fundamental enabling technologies like collaborative robots (cobots), digital twins, cyber-physical systems, and edge AI are 

discussed in detail, with special emphasis on how they facilitate ergonomic, transparent, and secure interaction between humans 

and machines. In addition, the review discusses how data science frameworks are implemented to maximize the performance, 

trust, and well-being of humans in automated machinery systems. The paper also identifies some key missing gaps, such as the 

absence of scalable explainability of industrial AI, poor integration of ergonomic models with robotics, and difficulty in 

implementing real-time feedback systems from humans. In overcoming these challenges, this review provides a research and 

development pathway towards ethically oriented, resilient, and inclusive production. The research is expected to be used as a 

basis of reference by academics, engineers, and policy-makers who are leading the humanity-oriented shift of smart production 

systems. 
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1. Introduction 

The industrial landscape of the world is shifting in its very essence, transitioning from Industry 4.0's technological advancements 

towards the human-centric, sustainable, and resilient approach of Industry 5.0. Industry 4.0 had centered on automated, digital, 

and analytics-oriented optimization, while Industry 5.0 is bringing the human being into the center of production systems, 

allowing for further collaboration between machines and humans. This shift is technologic—powered by Artificial Intelligence 

(AI), Machine Learning (ML), Internet of Things (IoT), and sophisticated mechanical automated systems, all coming together in 

the cyber-physical space [1][2]. 
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Here, human-centric AI is used to describe developing and applying AI systems that enhance human capacities instead of 

displacing capabilities, promoting transparency, trust, and co-adaptability. Applied within mechanical systems like robotic 

manipulators, CNC machines, and assembly lines, AI empowers machines with the ability to sense, learn, and respond to dynamic 

human actions and evolving production demands. At the same time, data science approaches like predictive analytics, deep 

learning, and real-time optimization lay the framework for intelligent decision-making, which allows mechanical systems to 

preemptively adjust through machine states and human input [3][4]. 

The mechanical engineering field, traditionally based on deterministic control systems and hardwired automation frameworks, is 

now confronted with, and has the possibility of, incorporating adaptive intelligence and principles of ergonomic design. 

Integrating AI and data science into manufacturing system design and operation enables the creation of environments where 

humans and machines interact harmoniously, emphasizing well-being, creativity, customization, and productivity. This is in 

accordance with European Commission's Industry 5.0 vision of focusing on human well-being, societal value, and sustainability 

[5][6]. 

While the trajectory is promising, recent literature focusing on the intersection of human-centric AI, data science, and mechanical 

automation is fragmented. Reviews tend to be narrow in terms of concentrating on either the technology of AI or mechanical 

design of the automated systems with less attention to where these intersect with each other and with human-machine 

collaboration frameworks. Additionally, with manufacturing systems becoming more multifaceted and distributed, there is 

greater necessity for understanding how AI models can be maintained as explainable, ethical, and resilient in real-time physical 

contexts [7][8]. 

This review seeks to fill these knowledge siloes through bringing together, in one comprehensive, interdisciplinary synthesis, 

tools, methods, and frameworks relevant to human-centric AI for mechanical manufacturing systems. The review responds to the 

following research goals: 

• To recognize and define AI and data science technology facilitating human-centricity for Industry 5.0 

• To discuss integrating such technologies into mechanical automation platforms. 

• To examine cutting-edge applications like collaborative robotics, digital twins, and cyber-physical systems with human-

in-the-loop. 

• To discuss challenges pertinent to safety, explainability, and ethical AI with respect to manufacturing environments. 

• To outline directions for upcoming research and industrial frameworks for inclusive and sustainable automation. 

By placing these findings in the overall context of Industry 5.0, this review paper is used as a roadmap for policy-makers, 

industrial practitioners, and academic researchers as they aim to make intelligent manufacturing more human-oriented in the 

future. 

2. Methodology 

To maintain the stringency, openness, and replicability demanded of top-quality systematic reviews, the research in this paper 

adopted a systematic approach involving systematic literature search, critical filtering, and thematic synthesis. The method drew 

from PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, with adaptations for application 

in the multifaceted intersection of mechanical engineering, AI/ML, and human-centric system design in Industry 5.0 

environments. 

2.1 Choice of Database and Search Strategy 

A comprehensive literature review was carried out through five prominent scholarly databases: 

Web of Science 

IEEE Xplore 

ScienceDirect  

SpringerLink 

The search was confined to peer-reviewed publications and top-rate conference proceedings from January 2015 through May 

2025. Truncations and Boolean operators were employed for query refinement. The search phrase comprised the following 

combinations: 

(“Industry 5.0” or “Human-Centric AI”) AND (“Mechanical Automation” or “Collaborative Robotics”) AND (“Data Science” or 

“Machine Learning” or “Human-Robot Collaboration) 
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2.2. Inclusion and Exclusion Criteria 

For relevance and quality, the following inclusion criteria were used: 

• Publications specifically considering AI or data science on mechanical or manufacturing systems. 

• Studies concerning human-in-the-loop, collaborative robotics, digital twin, or human-centric system design 

• Papers providing conceptual frameworks, experimental findings, or system-level overviews in the area of Industry 4.0 or 

Industry 5.0 

Exclusion Criteria: 

• Non-English language publications 

• Unaffiliated with any institution 

• Research exclusively on consumer robotics, social AI, or unrelated applications of AI (e.g., finance, healthcare). 

• Redundant publications or pre-Industry 4.0 automatization 

 

2.3 Screening and Selection Process 

A total of 764 publications were identified initially. On deduction and screening of the abstracts, 214 were taken for full text 

review. After filtering for relevance and through critical appraisal, 51 high-quality papers were included in this review. 

2.4. Thematic Synthesis 

To establish major themes and patterns, qualitative coding was employed: 

• Keyword clustering was performed using text mining tools. 

• Papers were grouped in five main themes: 

I. Human-centric principles of Industry 5.0 

II. Data science applications in human-machine systems 

III. Collaborative robotics and HRC 

IV. Digital twin and cyber-physical integration 

V. Explainable and ethical AI for manufacturing 

These are discussed in the following sections with illustrative case studies, research gaps, and research avenues. 

3. Foundations of Industry 5.0 and Human-Centric AI 

3.1 Evolution from Industry 4.0 to Industry 5.0 

Industry 4.0 brought with it a data-centric revolution for manufacturing featuring the intersection of cyber-physical systems 

(CPS), Industrial Internet of Things (IIoT), cloud computing, and AI/ML algorithms. All these together provided hitherto 

unprecedented levels of automation, real-time visibility, and autonomy in production processes. Yet, with increasingly intelligent 

production systems, there were apprehensions regarding dehumanization, system vulnerability, and ethical concerns [9]. 

As a reaction, Industry 5.0 came as an adjunct paradigm—not superseding Industry 4.0, but complementing it with more focus 

on human-centricity, sustainability, and resilience. It moves the emphasis from machine autonomy towards collaborative 

intelligence, where machines and people interact together harmoniously. Industry 5.0 is defined, according to the European 

Commission, through its alignment with societal demands, empowering workers, and long-term sustainability, with the vision of 

technology serving people, instead of replacing people [1]. 

3.2. Industry 5.0: What is Human-Centric AI 

Human-centric AI (HCAI) is a new design philosophy centered on human well-being, trust, and autonomy in interacting with 

intelligent systems [10][11]. In mechanical automation, this means integrating AI into machines and systems in such a manner as 

to enable natural, safe, and significant interaction with human workers. Key principles of HCAI are: 

• Transparency: enabling algorithmic behavior to be understandable and predictable 

• Accountability - assuring traceability of automated process decisions 

• Adaptability – adjusting dynamically to user preferences and behavior 

• Empowerment – enhancing human capabilities instead of displacing them. 
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Advanced features in computer vision, natural language processing, and context-aware machine learning have allowed systems 

to understand human gestures, speech, and intentions—opening the door to adaptive automation platforms that engage 

humans as partners and not as variables [12][13][14]. 

3.3 Role of Mechanical Systems in the Human-Centric Paradigm 

The incorporation of HCAI into mechanical devices like robots, CNC machines, intelligent actuators, and autonomous platforms 

is the pivotal frontier for Industry 5.0. The mechanical systems are now required to be functional and structural as well as having 

intelligent perception, force-sensitive interaction, and user-centric adaptability. 

• Force-torque sensor-equipped collaborative robots (cobots) that halt or deflect upon contact with humans [15] 

• Exoskeletons that assist human locomotion and alleviate fatigue while compensating for dynamics of movement [16]. 

• Human-in-the-loop control systems, in which AI systems learn progressively from user input over time for enhanced 

performance [17]. 

Unlike conventional factory robots, these systems need to meet twin performance goals: mechanical effectiveness and 

acceptability from people. 

3.4. Symbiosis between Humans and Machines 

Human-centricity in Industry 5.0 introduces the term of symbiosis—a collaborative and adaptive condition of humans and 

machines. The aim is to take advantage of the respective strengths of each: the creativity, judgment, and dexterity of humans, 

and the precision, stamina, and information processing capabilities of machines. The collaboration leads to the term augmented 

intelligence, whereby machines assist in difficult decisions without taking away human agency [1]. 

A paradigm shift calls for overhauling the design and assessment of systems. User satisfaction, cognitive burden, latency of 

interaction, and perception of trust, among others, now join more traditional metrics like volume and correctness as key 

performance drivers. In addition, user modeling, integration of ergonomics, and adaptive UIs (User Interfaces) emerge as key 

elements of next-generation mechanical automation [18]. 

 

3.5. Societal and Ethical Dimensions 

Ethical implications of HCAI are particularly relevant for mechanical disciplines where systems affect worker well-being, 

productivity, and job satisfaction directly. The main ethical dimensions are: 

• Informed autonomy – systems have to report actions and request human input where necessary. 

• Fairness – The AI models should be free of bias against operators of various skill levels or demographics. 

• Private operator information (e.g., movement tracking, biometrics)- It should be safeguarded and appropriately utilized. 

A number of regulatory agencies, such as the EU’s Ethics Guidelines for Trustworthy AI, support these principles as being key to 

the rollout of AI in industrial systems. As industrial systems gain more intelligence, these guidelines are becoming the standard 

of mechanical design in Industry 5.0 factories [5][19]. 

4. Data Science for Human-Centric Manufacturing Systems  

4.1 The Role of Data Science in Intelligent Manufacturing 

Data science is used as the basis for the real-time intelligence and personalization needed in human-centric Industry 5.0 systems. 

In comparison with customary automated systems based on static programming, new manufacturing systems utilize dynamic 

data streams, predictive analytics, and context-sensitive analysis in order to constantly respond to changing human and machine 

interactions. This makes it feasible for the creation of systems that are not merely reactive but also actively assistive in enabling 

human operators [5]. 

Within the realm of mechanical automation, data science enables various key functions: 

I. Acquiring multivariate sensor measurements from machines, wearable technology, and human-machine systems. 

II. Utilizing descriptive, predictive, and prescriptive analytics for enhancing operating efficiency, product quality, and 

system uptime. 

III. Facilitating anomaly detection, prediction of failures, and personalized task guidance with machine learning. 
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Such integration turns stiff mechanical systems into learning, flexible platforms that can comprehend human intention, anticipate 

behavior, and adjust the allocation of tasks based on workload, stress, or personal preference. 

4.2 Data-Driven Ergonomics and Human Performance Optimization 

Historically, traditional mechanical engineering approaches to ergonomic analysis depended heavily on static anthropometric 

information and observations [20]. With advancements in wearable sensors, intelligent workplace systems, and vision systems, it 

is now feasible to conduct live biomechanical analysis and link it with performance indicators. Data science is used more and 

more for: 

I. Use time-series data to monitor posture, movement velocity, and joint angles. 

II. Detecting fatigue and muscular stress with physiological sensors (e.g., EMG, ECG). 

III. Forecast likelihood of injury and make rest periods or task adjustments based on past patterns. 

These findings are invaluable for HMI design that is compatible with both operators' physical capabilities and cognitive 

limitations, the fundamental paradigm of Industry 5.0. 

4.3 Predictive Analytics and Machine Learning for Human-Aware Automation 

Predictive analytics is central in empowering machines with the ability to fit into human-centric constraints and behaviors [18]. 

Decision trees, support vector machines, LSTM networks, and reinforcement learning are among the methodologies used for 

I. Estimate likelihood of operator error for various loading conditions 

II. Predict mechanical failure based on usage patterns and incorporate alerts into human workflow processes. 

III. Dynamically adjust production stages according to worker availability, skill levels, and shift timings. 

Additionally, multi-modal sensor fusion enables machines to decipher intricate human states from voice, gesture, eye-tracking, 

and thermal input. This ability is needed for the purpose of facilitating context-aware adaptation for robotics collaboration and 

intelligent tooling. 

4.4. People-Focused Digital Twins Based on Data Science 

One of the key advances of Industry 5.0 is the introduction of human-centric digital twins—virtual copies of physical systems 

with machine behavior, as well as human actions, preferences, and performance feedback alike [21]. Digital twins are enhanced 

with data science algorithms that: 

I. Simulate human-robot interactions under different environmental conditions. 

II. Allow for virtual testing of ergonomic designs prior to physical implementation. 

III. Anticipate long-term health effects of task design through the integration of biomechanical simulation and sensor 

information. 

By marrying mechanical simulation models with actual operating data, manufacturers are able to co-optimize productivity and 

well-being, thereby balancing technical efficiency with human-oriented design objectives [22]. 

4.5 Challenges in Industrial Data Science for Human-Centric Systems 

In spite of its ability to transform, the implementation of data science in human-oriented manufacturing has various challenges: 

I. Data diversity and integration: Merging of structured mechanical data (e.g., temperature, torque) with unstructured 

human-centric data (e.g., video, voice) continues to be technologically challenging [23]. 

II. Model generalizability: ML models trained in controlled lab environments often underperform in noisy, real-world 

industrial settings [24]. 

III. Privacy and consent: The gathering of biometric or behavioral information raises ethical usage concerns, consent, and 

adherence to data protection legislation (e.g., GDPR) [25]. 

IV. Real-time inference: Low-latency processing for interactive HRC applications continues to require improvements in 

edge computing and lightweight model deployment [26]. 

Overcoming these obstacles will be key to realizing the full potential of data science as it applies to Industry 5.0. 

5. Human-Robot Collaboration in Mechanical Automation 

5.1 The Transition from Industrial Robotics to Collaborative Robotics 
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Traditional robotics of Industry 4.0 centered on automation of the high-speed, high-precision variety—usually in cages, 

segregated areas. Efficient as they were, they did not accommodate direct human engagement much. Industry 5.0 marks a shift 

with the advent of Collaborative Robots (cobots)—robots that cooperate physically and mentally with humans in the same 

working space [27]. 

They are fitted with force-torque sensors, vision systems, and context-aware AI, which enable them to sense human actions and 

respond appropriately based on their needs. They are far more focused on co-existence, co-operation, and co-learning, thus 

facilitating more flexible and inclusive production processes [28]. 

Such an evolution calls for the integration of mechanical engineering principles (kinematics, compliance, dynamics) with 

intelligent control algorithms based on AI/ML and cognitive science. 

5.2 Machine Learning for Human-Aware Robotic Behavior 

The incorporation of machine learning frameworks in collaborative robots improves their capacity for recognizing, forecasting, 

and responding accordingly to human intention. The most popular AI methods are: 

I. Recognition of posture and gesture based on convolutional neural networks (CNNs). 

II. Use of recurrent neural networks (RNNs) or LSTM models for intent prediction. 

III. Reinforcement learning for continuous policy refinement while working together on tasks 

With supervised and reinforcement learning, robots are able to dynamically allocate task, refine toolpaths, or adjust the motion 

trajectories to align with the skill or comfort of their human counterparts. This is especially beneficial in mechanical assembly 

operations where placement of relevant parts, torque control, or fixture handling can be subtly adjusted based on the reaction of 

operators [29]. 

5.3. Safety and Trust in Human-Robot Interaction (HRI) 

Safety is always the top priority in any collaborative space with physical contact. Not only is it essential that cobots meet ISO 

10218-1 and ISO/TS 15066 standards, but psychological safety is also key, including trust and predictability. 

Major safety strategies are: 

I. Force-limited design: Mechanical elements are designed to absorb or restrain impact. 

II. Dynamic zone mapping: Real-time monitoring of human movement for modifying the behavior of the robot or entering 

standby mode 

III. Fail-safe AI: Predictive collision risk modeling and behavioral anomaly modeling. 

At the same time, studies have found that intention transparency—such as through visual or verbal explanations of pending 

robot action—dramatically enhances human trust and cooperation efficiency [30]. 

5.4 Case Studies in Human-Robot Collaboration 

There are various industrial applications showing the feasibility and benefits of HRC: 

I. KUKA's LBR iiwa robot has been devised for delicate assembly applications in collaboration with humans, with torque-

controllable joints and AI assisted task adaptation [31]. 

II. Universal Robots UR series has plug-and-play integration with ML modules for adaptive workflows and gestural 

tracking [32]. 

III. ABB's YuMi utilizes dual-arm cooperation and vision control for support in fine assembly in the manufacturing of 

electronics [33]. 

These indicate the ways modular AI platforms, coupled with mechanical compliance and intuitive programming, are transforming 

collaborative mechanical automation. 

5.6. Barriers to Adoption and Future Outlook 

Nonetheless, there are several factors that prevent the large-scale application of HRC in mechanical environments: 

I. Integration complexity: Integrating robot kinematics with real-time human input demands sophisticated sensor fusion 

and control logic. 

II. High Cost of Safety-Certified Cobots: Even with declining prices, the adoption is expensive for most SMEs. 

III. Local generalization: Deep models tend not to be strong across various tasks or environmental conditions. 
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These newly emerging solutions—transfer learning, cloud robotics, and human intention modeling—will tackle these concerns 

and enable more scalable, intelligent, and human-friendly robotics systems [34]. 

6. Digital Twin and Cyber-Physical Systems with Human-in-the-Loop 

6.1 Digital Twin in the Human-Centric Manufacturing Ecosystem 

The digital twin (DT) has advanced from being a simple asset-centric simulation model into an interactive, human-centric 

decision-making solution in Industry 5.0 systems. A digital twin is a dynamic, real-time digital copy of a physical system that 

harmonizes with its physical equivalent through live streams of data [35]. For human-centric mechanical automata, DTs do more 

than mimic machines or production lines but also simulate human interactions, ergonomics, and cognition [36]. 

Companies like Siemens and Dassault Systems have expanded their platforms to include human digital shadows—operators' 

virtual counterparts of movements, intentions, and physiological parameters—so that human and machine performance could 

be co-optimized together in simulation before actual execution [37]. 

6.2 Cyber-Physical Systems (CPS) and Human-in-the-loop (HITL) integration 

Smart factories have cyber-physical systems as their backbone, combining embedded mechanical devices, control systems, and 

communication systems. The design of CPS in traditional contexts emphasizes sensing, actuation, and control. In Industry 5.0, 

this is further augmented with human-in-the-loop (HITL) elements where human cognitive and physical input shapes system 

behavior in real time [38][39]. 

This integration facilitates: 

I. Joint decision-making of AI and human operators in process planning, predictive maintenance, and quality control. 

II. Mechanical systems adjusted adaptively based on intended actions or levels of fatigue. 

III. Real-time closed-loop feedback with ongoing monitoring of performance in the physical realm and reflection in the 

virtual space. 

Such HITL systems are usually implemented via multi-layer frameworks of edge computing, AI models, IoT-enabled mechanical 

devices, and immersive interfaces (such as AR/VR) [40]. 

6.3. Applications of Human-Centric Digital Twins 

There are several applications that demonstrate the importance of human-aware digital twins: 

I. Virtual prototyping and ergonomics testing: Assembly task simulation with human avatars for evaluating reach, stress, 

and posture prior to implementation. 

II. Upskilling and Training: Applying immersive DT environments for educational programs that train operators in safely 

operating with robotic systems. 

III. Balancing cognitive workload: Tracking and forecasting stress or cognitive overload, enabling CPS to reschedule or 

provide decision support. 

These applications in mechanical design enable shorter cycles of development, reduced workplace injuries, and greater 

adaptability with persons—indecent with Industry 5.0 values of personalization and inclusivity. 

6.4. Technical Enablers and AI Integration 

Digital twins in HITL systems are driven by the integration of: 

I. Edge AI: For near-data, low-latency decision-making close to the source of the data, allowing low-latency responses for 

collaborative manufacturing. 

II. Machine learning-powered simulation models: That update over time based upon past operating behavior and 

situational machine information. 

III. IoT and digital thread technology: Maintaining ongoing synchronization between the digital and physical systems over 

the product lifecycle 

This smart feedback loop empowers machines to anticipate human behavior, actively adjust processes, and even predict 

subsequent process states, improving situational awareness and process security [41]. 
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6.5. Limitations and Future Prospects 

Even with their potential, HITL digital twins and CPS have significant challenges: 

I. Scalability: High-fidelity DT models are resource-consuming and hard to deploy on large scale for intricate mechanical 

systems. 

II. Reliability of Data: Human-related data (such as emotions, body language) is noisy and context-specific. 

III. Gaps in standardization: Unified frameworks and procedures for incorporating human information into conventional DT 

platforms do not exist. 

Future research directions are: 

I. Hybrid ML-physic models for more accurate human-influenced simulations 

II. Integrating empathy-aware AI for improved modeling of emotional and cognitive states 

III. Establishing interoperable open-source frameworks in order to democratize HITL-enabled DT platforms' accessibility, 

particularly for SMEs. 

7. Explainable and Ethical AI in Industry 5.0 

7.1. The necessity for explainable AI in mechanical automation 

With AI being increasingly integral to mission-critical manufacturing processes, especially those that involve human-machine 

collaboration, transparency and interpretability in AI decision-making has become essential. AI algorithms, particularly those 

through deep learning approaches, in contrast to classical deterministic control algorithms, tend to be "black boxes," generating 

results without easily understandable explanations. In a human-oriented Industry 5.0, this lack of interpretability risks curbing 

operator trust, undermining collaboration, and raising serious safety and liability concerns [42]. 

Explainable AI (XAI) tackles this by making AI models transparent, enabling developers as well as end-users to comprehend the 

justification for model decisions. XAI is essential for mechanical systems in the following ways: 

I. Diagnosing the reason a collaborative robot selected a specific path. 

II. Justification for predictive analytics system-generated maintenance alerts. 

III. Confirming quality control categorizations in real-time. 

These tools, including SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), have 

been successfully implemented in industry platforms for visualizing model sensitivity and feature importance in both 

classification and predictive tasks [43]. 

7.2. Trust, Acceptance, and Human-AI Synergy 

In order for AI systems to be embraced in human-oriented manufacturing, they need to generate operator trust and emotional 

comfort. What is found in the studies is that if AI systems offer explainable justifications, humans become more likely to 

participate, to learn, and even override system actions when necessary—resulting in more robust and adaptable processes [44]. 

Moreover, interactive AI that can enable real-time questioning or feedback loops—such as explainable chat interfaces or visual 

dashboards—enable greater human-AI symbiosis, a characteristic feature of Industry 5.0 [12]. 

7.3 Ethical Dilemmas in Human-Centric AI Deployment 

The application of AI in human-oriented mechanical systems also raises a variety of ethical and social concerns: 

• Bias and discrimination: AI systems based on biased or limited data can inappropriately favor some user profiles, levels, 

or demographic characteristics—potentially raising workplace equity issues. 

• Privacy: Tracking movement, stress, or speech with sensors raises concerns with respect to misuse of personal data or 

surveillance. 

• Accountability: In the event that autonomous systems commit errors or accidents, it could be challenging to establish 

responsibility—whether that responsibility is with the machine, with the designer, or with the operator. 

These challenges are being confronted directly through AI ethics standards laid down by regulatory organizations, such as the 

EU’s Trustworthy AI Framework, IEEE’s Ethically Aligned Design, and ISO/IEC JTC 1/SC 42 standards for AI governance [45]. 
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7.4. Towards Ethical-by-Design Manufacturing Systems 

The future for ethical AI in mechanical automation rests in "ethics-by-design" approaches—where ethical concepts are 

incorporated in the AI and mechanical system design from the outset. The main approaches include: 

I. Incorporating fairness constraints in training algorithms. 

II. Implementing data anonymization and consent processes in sensor networks. 

III. Simulation-based ethical stress testing for autonomous manufacturing agents. 

By strategically bringing together these factors ahead of time, organizations can create trustworthy AI-based mechanical systems 

that balance both technical performance and human values—the promise that Industry 5.0 represents as a human-first industrial 

revolution [46]. 

8. Challenges, Gaps, and Future Directions 

Despite breakthroughs in AI, data science, and collaborative mechanical systems, realization of a truly human-centered Industry 

5.0 is in its infancy. Incorporation of smart technologies into mechanical settings has uncovered several technical, organizational, 

and ethical challenges that need to be overcome through ongoing interdisciplinary studies and systemic innovation. 

8.1. Integration Deficits and Technology Challenges 

One of the biggest challenges is the technical integration between AI/ML models and legacy mechanical systems [47]. A lot of 

manufacturing environments today continue with stiff control architectures, partial sensor coverage, and isolated data 

environments, making the use of real-time, AI-based decision-making challenging. In consequence: 

I. Latency and computational constraints hinder real-time inference and assurance of safety in collaborative 

environments. 

II. Inability to develop generalizable models hinders scalability of AI solutions over different tasks, machines, and types of 

workers. 

III. Human behavior understanding requires multi-modal data fusion, which is challenging owing to noise, synchronism, 

and variability in the contextual environment. 

The lack of open interoperability standards for digital twins, cobots, and factory execution systems further limits the 

development of seamless, human-aware automation environments. 

8.2. Human Factors and Workforce Adaptation 

Another issue is that there is a disconnect between technological capability and human preparedness [48]. Despite the increasing 

smartness and ergonomics in collaborative systems, acceptance, trust, and training vary unevenly by industry and by geography. 

I. Most workers lack the required expertise to engage with AI-facilitated equipment or understand system cues. 

II. There is resistance to automation based on fear of job loss, especially in labor-intensive industries. 

III. Cognitive overload can be caused by constant system updates, dashboards, or alerts with insufficient user experience 

(UX) design. 

Investment in workforce reskilling, co-design practices, and participatory approaches to implementation is needed to bridge the 

skills gap [49]. 

8.3. Ethical and Regulatory Bottlenecks 

Although ethical frameworks are emerging, the pace of regulatory alignment lags behind technological innovation. Ambiguities 

in AI accountability, data privacy enforcement, and worker consent protocols pose real barriers to scalable deployment [50]. 

In addition, a shortage in certified evaluation frameworks for explainable AI, safety-conscious ML, or emotional-sensing 

technologies hinders organizations in ensuring compliance with next-generation standards in Industry 5.0 systems [51]. 

8.4. Future Research and Development Directions 

In order to overcome these limitations, multiple priority research areas emerge: 

I. Hybrid AI models: Merging physical system models with machine learning for improved system predictability and 

interpretability. 
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II. Empathetic systems: Building affect-aware, trust-informed automation based on emotional AI and physiological 

feedback. 

III. Edge-native architectures: Distributed AI system design for low-latency inference in human-robot collaboration. 

IV. Participatory digital twin design: Engaging end-users to co-design not merely process logic but also cognitive 

workflows and ergonomic feedback in digital twin models. 

Collaboration across sectors among mechanical engineers, data scientists, ethicists, and policymakers will be necessary to 

develop inclusive, resilient Industry 5.0 systems that benefit both economic and social objectives. 

9. Conclusion  

The advent of Industry 5.0 marks the paradigmic shift toward a manufacturing future in which human-centricity, sustainability, 

and resilience become central themes. This synthesis review has collated the cutting edge in AI-powered mechanical automation, 

and illustrated how data science, collaborative robots, digital twins, and explainable AI can combine to make possible a future in 

which value is co-created by both humans and machines. 

Through the unification of the historically distinct realms of mechanical/engineering and computer/data science, Industry 5.0 

offers new possibilities for adaptive, ergonomic, and ethical manufacturing environments. Human-in-the-loop cyber-physical 

systems, collaborative robots, and predictive analytics architectures allow mechanical systems to sense, adapt, and act in 

accordance with human intent, behavior, and physiological state. Concurrently, explainable AI and ethics-by-design concepts are 

being incorporated to facilitate trust, provide transparency, and ensure safe co-working spaces. 

Despite this, there are substantial challenges that need to be overcome. Model generalizability, system integration gaps, trust 

calibration in humans, and regulatory ambiguity continue to hinder large-scale adoption. This paper outlined essential directions 

for future research that included the creation of hybrid AI-physics models, empathetic machine behavior, and participatory 

design frameworks that engage technologists and end-users in co-designing the human factory of the future. 

With the manufacturing industry shifting from automation to augmentation, it is evident that Industry 5.0 success is not going to 

be measured by technology alone, but by how well we match machines with human values. This overview is both a call to action 

and a founding guidebook for academics, engineers, and policymakers who share a commitment to building a smart and 

inclusive manufacturing system. 
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