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| ABSTRACT 

With the pace of the global transition toward smart grid technologies, more precise and responsive energy forecasting systems 

are essential to securing sustainable and effective power distribution. Smart grids, defined by their bidirectional communications 

and built-in sensing technologies, depend on time-series data analytics to control energy flow, forecast consumption patterns, 

and counter fluctuations. The chief objective of this research was to leverage the potential of machine learning algorithms to 

maximize the precision and flexibility of energy demand prediction within smart grid networks. The data used for this study 

consisted of high-resolution, time-stamped energy consumption data captured at 15-minute intervals for two years, both 

residential and commercial usage patterns. Every record contained the precise timestamp of consumption, which made it 

possible to undertake fine-grained temporal analysis that captures strong hourly cycles, daily patterns, and seasonal variations 

that are representative of user behavior and climatic factors. The authors selected three different models for effective energy 

demand level classification in this study. Our models received a time-based train-test split for their dataset to guarantee their 

robustness. A complete set of performance metrics for assessing our classification models included Accuracy alongside Precision, 

Recall, and F1-Score in addition to implementing a Confusion Matrix evaluation. Both KNN and SVM demonstrated a strong 

balance in precision against recall because their Accuracy and F1 Score bars overlap almost completely in the evaluation graph. 

The results indicate that KNN and SVM perform superior to Logistic Regression with very equivalent outcomes in this 

classification activity. One of the most direct and significant advantages of using machine learning-based energy demand 

forecasting for smart grids is improved operating efficiency through more intelligent scheduling of energy delivery. Furthermore, 

machine learning-driven operational efficiency makes an important contribution to cost savings throughout the energy value 

chain. By being able to forecast short-interval demand fluctuations, utilities are better positioned to more efficiently execute 

their procurement strategy, such as strategically selling and buying energy on wholesale markets. Load management is another 

essential function where machine learning-based forecasting greatly improves smart grid operations. Preplanning for grid 

expansion and maintenance is another strategic advantage that arises from the predictive potential of machine-learning-

powered smart grids. In the future, various opportunities exist for enhancing the functionality of machine learning-based energy 

forecasting for the smart grid. First, incorporating more contextual sources of data, including online meteorological information, 

IoT sensor streams (e.g., appliance usage patterns, occupancy levels), and local grid status monitors, holds the potential to add 

to the feature inventory available to models. 
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1. Introduction 

Background 

According to Hasan (2024), the last decade of the energy sector in the USA has been shaped by the transition from one-way, 

centralized power systems to decentralized, intelligent, and interactive smart grids. These new infrastructures feature advanced 

communications protocols, sensor technologies, and automated controls integrated to form a seamless environment where 

electricity is generated, distributed, and consumed dynamically. Biswal et al. (2024), highlighted that one of the fundamental 

characteristics of smart grids is their ability to forecast and respond to variable energy consumption, an ability that is vital for 

smoothing power outages, reducing energy losses, and leveraging renewable energy. This capability also depends on the grid 

being capable of predicting energy consumption for multiple time frames and geographies. 

 

A multitude of factors—such as time of day, meteorological conditions, behavior of consumers, economic activity, and policy 

measures—affect energy demand inherently and make it variable. These interdependencies are too complex for traditional 

methods of forecasting such as autoregressive integrated moving average (ARIMA) models and exponential smoothing, which are 

limited both in their adaptability and effectiveness (Anonna et al., 2023). Machine learning models, on the other hand, are 

paradigm-shifting by learning large quantities of heterogeneous data and extracting latent patterns that are difficult for traditional 

statistical methods to discover. Time-series machine learning models, specifically, have been shown to hold tremendous potential 

to model temporal dependencies and non-linear interactions within energy consumption data and thus emerge as crucial smart 

grid forecasting tools (Albogamy et al., 2021). 

 

Problem Statement 

Aderibigbe et al. (2023) stated that despite the complexity of current grid management techniques, energy providers remain 

plagued by issues of the uncertainty of demand, operational inefficiency, and adaptability in real-time. Conventional energy 

demand forecast models using linear or rule-based techniques are not capable of delivering the desired accuracy against changing 

and irregular patterns of consumption. Cebekhul et al. (2022), added that these models are designed to presuppose stationarity 

of data and are mostly not tailored to accommodate high-frequency, high-dimensionality, and frequently non-linear data 

generated by smart meters and IoT devices integrated within smart grids. Consequently, energy providers are repeatedly surprised 

by sudden surges or falls in demand, resulting in energy shortages that threaten blackouts or overproduction that wastes resources. 

 

The increased complexity of electricity consumption patterns, fueled by expanding urbanization, the spread of electric vehicles, 

and the infusion of intermittent renewable energy sources, makes the forecasting task even more challenging. Absent precise 

forecasting methods that can dynamically respond to these changing patterns, smart grids risk losing their potential for reliability, 

sustainability, and efficiency (Mostafa et al., 2022). Machine learning, which can learn and adapt to new information without 

programming, holds considerable potential as an alternative. However, the effective application of ML models to energy demand 

prediction relies on careful design, solid feature engineering, and coordination with existing grid management systems—tasks that 

this study proposes to tackle systematically (Choksey et al., 2023). 

 

Research Objectives 

The main aim of this research is to utilize the potential of machine learning algorithms to maximize the precision and flexibility of 

energy demand prediction within smart grid networks. Using time-series data obtained from smart meters, weather sensors, and 

system logs, the research aims to create models that are capable of predicting energy consumption across a wide range of time 

scales from hourly to seasonal. This research will emphasize comparing and assessing various machine learning methods, both 

traditional and deep learning models, and then select those that are more appropriate for capturing the non-linear and complex 

energy consumption patterns. Besides developing and analyzing models, this study seeks to investigate how these predictive tools 

are integrated to support real-time decision-making for grid operations. Some of the specific objectives include the optimization 

of load distribution throughout the grid, enhancing energy storage system scheduling, and supporting more responsive demand-

side management programs. The success of the project will not only be assessed based on predictive performance, but also on 

the usefulness of the models in actually aiding effective, reliable, and sustainable grid operations. 
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Relevance to Smart Grids 

 

Nazir et al. (2023) asserted that the importance of precise energy demand prediction to smart grid infrastructure cannot be 

overemphasized. Within the grid system, where supply always needs to equal demand, predictive analytics are the foundation for 

anticipatory energy management. Through forecasted demand peaks and troughs in real-time, grid managers can pre-emptively 

schedule resources, load up generation assets, and initiate demand response measures. This advanced vision reduces grid stress 

risks and facilitates the ease of incorporating variable renewable energy sources like wind and solar, which are intermittent and 

more difficult to regulate without predictive assistance in real-time. Additionally, machine learning-based forecasting improves the 

smarts of smart grids by enabling the transition from reactive to predictive operations. This feature is crucial for advanced 

capabilities such as self-healing grids, automated voltage management, and dynamic pricing models that are aligned to real-time 

conditions from the markets. Oprea & Bara (2019) indicated that predictive models enable stakeholders such as utility providers, 

policymakers, and consumers to make data-driven decisions that enhance energy conservation, optimize operating expenses, and 

advance the process of decarbonizing the energy sector. Energy demand forecasting via machine learning is not so much a 

technology upgrade but a strategic imperative for future smart grid systems. 

 

2. Literature Review 

Smart Grid Infrastructure and Challenges 

The smart grid is an evolutionary upgrade to the traditional electrical grid, marrying advanced information and communications 

technologies (ICT) with energy systems to maximize the efficiency, dependability, and sustainability of power delivery. Unlike 

traditional grids, which are based on unidirectional energy flow and labor-driven control, smart grids allow bidirectional 

communications between consumers and utility providers via advanced metering infrastructure (AMI), supervisory control and 

data acquisition (SCADA), and distributed energy resources (DERs). This interconnectedness makes possible precise monitoring 

and control of energy flow throughout the entire grid, supporting actions such as demand response, outage detection, voltage 

control, and distributed generation management (Rawal & Ahmad, 2022). Key technologies within this framework are smart meters, 

sensors, synchrophasors, and intelligent electronic devices (IEDs), all of which produce an enormous amount of real-time data 

continuously. This data-rich environment provides greater insight than ever before into patterns of energy usage, supporting 

dynamic and responsive grid operations tailored to actual conditions (Saglam et al., 2023). 

Notwithstanding, the heterogeneity and complexity of smart grid infrastructure bring several challenges of their own. Chief among 

these challenges is the processing and management of big data from many sources at high temporal resolutions. Allaying concerns 

regarding data quality, consistency, security, and interoperability across devices from various vendors and regions is a continuing 

challenge. Moreover, the decentralized and dynamic characteristics of contemporary grids—growing renewable energy 

contributions and prosumer participation only add to these challenges—are making it increasingly difficult to maintain grid 

operating conditions (Solyali, 2020). Conventional centralized control approaches are no longer appropriate, and new data-driven, 

decentralized frameworks for making decisions are to be embraced. Moreover, the smart grid needs to be made secure from both 

physical faults and cybersecurity risks, requiring sound planning of the infrastructure, expert analytics, and online monitoring of 

system conditions. The melding of operational technology (OT) and information technology (IT) within the smart grid highlights 

an imperative need for more advanced predictive tools that can glean useful insights from the steady stream of multivalued data 

(Syed et al., 2021). 

 

 Machine Learning Energy Forecasting 

 

Wang et al. (2024), contended that the application of machine learning (ML) for energy demand forecasting has accelerated over 

the last several years because of its ability to identify subtle, non-linear interactions between consumption patterns that may be 

overlooked by conventional approaches. ML models are capable of learning from historical consumption and outside variables, 

such as temperature, time, weekday or holiday, and socio-economic factors, to create predictive models that are more accurate 

and flexible. The most prevalent types of ML models used for this application are decision tree-based models (e.g., Random Forest, 

Gradient Boosting Machines), support vector machines (SVMs), artificial neural networks (ANNs), and deep learning structures such 

as Long Short-Term Memory (LSTM) networks. These models have been utilized to great effect across an array of energy 

forecasting applications, from short-term load forecasting for homes to longer-term demand planning for utilities. Their capability 

to analyze large data and adapt to evolving patterns makes them ideally placed for the fast-changing environment of smart grids. 

While these benefits are significant, using ML for energy forecasting is not without its shortcomings. A major challenge is the need 

for high-quality, labeled training data—something that may not always be readily available or evenly spread across various grid 

segments (Rahman et al., 2023; Rana et al., 2023).  

 

Moreover, while higher accuracy models such as deep neural networks are available, they are often plagued by interpretability 

challenges, and operators may struggle to explain the underlying reasoning behind individual predictions. This absence of 

transparency can complicate trust and regulatory compliance for mission-critical energy systems. Furthermore, ML models may be 
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susceptible to overfitting, particularly in the case of non-representative future conditions or where there is a lack of adequate 

regularization techniques (Jui et al., 2023). Finally, their implementation within the confines of real-time operating domains requires 

marrying these models to existing SCADA and energy management systems, which themselves may represent technical and 

infrastructural challenges. Notwithstanding these challenges, however, the literature continues to mature, with advances being 

evident within hybrid modeling methodologies, transfer learning applications, and using ensemble methods to enhance robustness 

and generalizability within ML-based forecast systems (Akter et al., 2023). 

 

Methods of time-series demand forecasting 

 

Traditional time-series methods like the Autoregressive Integrated Moving Average (ARIMA) model, Holt-Winters' exponential 

smoothing, and seasonal decomposition of time series (STL) have been the mainstay of load forecasting within the energy industry 

for many years. Assuming linearity and stationarity, these models are easy to use and understand. ARIMA, for instance, models 

temporal interdependence using autoregressive and moving average terms, while moving averages use weighted averages of past 

observations to forecast future values (Diedonne et al., 2023). These methods have been very effective within the context of steady-

state and repetitive consumption patterns and tend to produce fairly accurate predictions without significant computer overhead. 

Their mathematical tractability and low data usage have been preferred tools among grid operators and analysts for many decades 

(Hrnjica & Mehr, 2020). 

 

Nonetheless, the constraints of conventional time-series models are evident while handling the increasingly volatile, non-

stationary, and multivariate characteristics of energy consumption patterns across smart grids. Conventional models are unable to 

accommodate non-linear effects, nested seasonality, and external covariates like meteorological fluctuations or socio-economic 

variables. Machine learning and deep learning models, on the other hand, can absorb varying input features, learn complex 

relationships automatically, and learn to cope with new patterns without human involvement. Recurrent neural networks (RNNs) 

and LSTMs are particularly tailored to learn long-term relationships within sequential data and are best for energy demand 

prediction across various horizons (Javanmard & Ghaderi, 2023). Comparative studies have consistently proven that ML-based 

models perform better than conventional time-series approaches in high-variability and rich-data scenarios. However, both 

methods have their applications based on the environment, whereas conventional models still hold for steady, short-term 

predictions, the future of energy demand forecasting hinges on hybrid and machine learning-based approaches that address 

interpretability, scalability, and predictive ability (Biswal et al., 2024). 

 

Research Gaps 

One noteworthy gap that exists within the literature is the scarcity of comprehensive studies comparing multiple machine learning 

classification models that are specifically designed for short-duration energy demand forecasting. Whereas regression models like 

support vector regression, gradient booster, and deep neural networks have been thoroughly assessed for their predictive 

performance for energy forecasting, classification models, particularly those used for their ability to predict demand levels (e.g., 

low, medium, high), are not well-explored. This type of strategy would be useful for grid management applications where it is not 

so much a matter of predicting an absolute numeric load but of categorizing consumption patterns into useful demand bands. 

Forecasts for short intervals like 15 minutes or an hour are especially important for smart grid operations, for example, load 

balancing and dynamic tariff settings. Nevertheless, these classification models like decision trees, random forest, k-nearest 

neighbor, or ensemble methods are seldom compared to one another within this category of applications by existing literature, 

and therefore, a significant knowledge gap remains regarding their relative suitability, shortcomings, and usefulness. 

 

Furthermore, the small body of existing studies that utilized classification methods are neither methodologically diverse nor are 

they based on sound evaluation frameworks. These studies commonly address one specific algorithm or a limited data set, which 

makes the findings difficult to generalize and minimizes the applicability of the study to various grid conditions. Moreover, how 

the temporal attributes, feature extraction methods, and handling data imbalance influence classification performance for short-

term energy forecasting is not commonly addressed systematically. Not only do these omissions stifle the development of more 

effective prediction systems, but they also leave utility companies without an accurate idea of which methodologies might best 

cater to their operations. Closing this gap is crucial for predictive analytics to reach its full potential in smart grids and to deliver 

nimbler, classification-based demand response applications. 

 

3. Data Collection and Preprocessing 

Data Description 

 

The data used for this study consists of high-resolution, time-stamped energy consumption data captured at 15-minute intervals 

for two years, including both residential and commercial usage patterns. Every record contains the precise timestamp of 

consumption, which makes it possible to undertake fine-grained temporal analysis that captures strong hourly cycles, daily 
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patterns, and seasonal variations that are representative of user behavior and climatic factors. The data shows clear patterns like 

morning and evening peaks and higher usage in the summer and winter months due to heating and cooling loads. Other contextual 

information, like temperature, humidity, weekday, and holiday flags, is available, which makes it possible to analyze external factors 

on demand intricately. The highly annotated data makes for a solid platform to train machine learning models that are capable of 

identifying and predicting short-term energy consumption variations to very high precision. 

 

Preprocessing Steps  

The implemented Python code outlined a series of data pre-processing steps commonly employed for time series forecasting, 

presumably for energy consumption (‘kWh). It first converts the ‘Time_stamp’ column to an appropriate date-time format, orders 

the data chronologically, and makes this timestamp the DataFrame index, which is important for time-based computations. Missing 

values are then handled using a forward-fill strategy. Second, the data are resampled to hourly frequency by computing the mean 

‘kwh’ across every hour. Third, feature engineering then includes extracting time components such as hour, day of week, and 

month, and defining a binary ‘is_weekend’ indicator. To reflect temporal relationships, lag features (values from previous time 

steps, i.e., 1 and 24 hours before these steps) and rolling mean features (averages of ‘kwh’ across 6-hour and 24-hour intervals) 

are created. Last, any rows with NaN values from the lag and rolling operations are dropped, the index is optionally reset 

(presumably for easier visualization or compatibility with particular modeling libraries), and the first several rows of the pre-

processed DataFrame are printed to verify the output. 

 

Exploratory Data Analysis (EDA)  

Exploratory Data Analysis (EDA) refers to the exploration, visualization, and summarization of a dataset to identify hidden 

structures, identify anomalies, check assumptions, and identify patterns or inter-relationships between variables before using any 

formal modeling methods. It is an important initial stage of the data analysis process, which helps data scientists recognize the 

distribution, trend, and consistency of the data, which further informs decisions regarding data preprocessing, feature subset 

selection, and model choice. The application of statistical methods (e.g., mean, median, standard deviation, correlation analysis) 

and graphical tools like histograms, boxplots, scatterplots, time-series charts, and heatmaps is usually involved in the process. By 

these, missing values, outliers, seasonality, and correlations are revealed, and tests are done to check if the assumptions of the 

concerned model are apt to hold. By offering a data-driven basis for further analysis, EDA improves the performance of the models 

and minimizes the risk of invalid inferences due to data quality issues or dismissed insights. 

 

a) Energy Consumption Over Time 

The employed Python code snippet was related to data analysis and data visualization and aimed to plot the trend of energy 

consumption versus time. It begins by loading the libraries: matplotlib.pyplot for the general plotting and seaborn for possibly 

more refined visualizations (but not for this particular plot). It then makes a figure of a specific size (14x6 inches) to give enough 

room for the plot. The main activity is to use plt.plot to plot a line graph, mapping the index of the DataFrame (presumably the 

time axis, maybe previously defined in previous data preprocessing steps) on the x-axis and the 'kwh' (kilowatt-hour) values on 

the y-axis. The plot is then modified to add a title "Energy Consumption Over Time", x-axis and y-axis labels ("Time" and "kWh", 

respectively), and a legend to indicate the plotted line to be 'kWh Consumption'. Last but not least, plt.tight_layout() is used to 

spare labels from collision, and plt.show() shows the created graph so that the trend of energy consumption may be visually 

inspected. 

Output: 

 
Figure 1: Energy Consumption Over Time 
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The graph above shows the pattern of energy consumption in terms of consumption measured in kilowatt-hours (kWh) from 

March 2018 to March 2019. There is an initial steady rise in consumption to reflect a consistent development of energy 

consumption throughout the initial months. There is a more significant spike from the end of 2018, reflecting possible changes in 

demand or usage patterns from then onward. The trendline on the graph demonstrates a steady rise in energy consumption 

throughout the period, reflecting the highest levels of consumption leveling out at nearly 7,000 kWh by the end of March 2019. 

The trend may be an indicator of numerous factors such as seasonal fluctuations, more consumption of electrical devices, or 

alteration of consumption patterns from consumers themselves, and serves to emphasize the need to keep an eye on trends to 

properly forecast demand and maintain grid management. 

b) Average Hourly Energy Consumption 

During the execution of the code snippet, the pre-processing consisted of determining the mean 'kWh' usage for every hour of 

the day. This is done utilizing the group by () function on the DataFrame df, grouping by the extracted hour from the index 

(df.index.hour). After grouping, the .mean() function is then used on the 'kWh' column for every hour group, producing a new 

series hourly_avg where the index is the hour of the day and the values are the mean 'kWh' usage for that hour. This aggregated 

data itself is visualized to illustrate the general energy usage pattern for various hours. 

Output: 

 
Figure 2: Average Hourly Energy Consumption 

The chart above illustrates the hourly distribution of energy consumption, expressed in kilowatt-hours (kWh). The data indicates 

an evident energy usage pattern, where energy consumption is the highest from the morning to the early afternoon, especially at 

noon, where usage is at a high of over 2,500 kWh. The complete opposite is true for the morning hours (0 to 6 AM), where 

consumption remains low, implying low activity throughout these periods. The steady rise in energy consumption throughout the 

day, followed by a dropping trend towards the evening, indicates normal usage patterns, for example, more dependence on 

electrical appliances throughout the day. The data is extremely valuable to energy managers and utilities since it indicates the need 

to analyze a day consumption pattern to ensure accurate load forecast and grid management. 

c) Average Weekly Energy Consumption 

As in the preceding step, the code chunk carries out an initial pre-aggregation to calculate the average 'kWh' usage for every day 

of the week. The DataFrame df is aggregated using the .groupby() function on the day of the week extracted from the index 

(df.index. day of the week). Then, the .mean() function is used on the 'kWh' column for each day-of-week group to create the 

weekly_avg Series. The Series holds the mean 'kWh' usage for every day and is used to create a bar plot to visualize the weekly 

energy usage behavior. The days' list is used to display the days of the week on the x-axis correctly. 
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Output: 

 

Figure 3: Average Weekly Energy Consumption 

The histogram above shows the weekly average energy use by day, expressed in kilowatt-hours (kWh). This data shows that energy 

consumption is fairly steady throughout the week, with minor fluctuations. Thursday stands out as having the highest weekly 

average consumption at more than 2,500 kWh, followed by Tuesday and Monday, which also have higher consumption levels, 

reflecting that the start of the week might have more activity or operating demand. Sunday and the weekends also show a small 

decline in consumption, reflecting possibly fewer operating activities or household energy consumption. This indicates that 

recognizing weekly consumption patterns can be crucial for utilities to maximize energy distribution and enforce effective demand 

response measures reflecting changes in usage patterns. 

d) Distribution of Energy Consumption (kWh) 

 Python code using the seaborn and matplotlib libraries was adopted to plot the statistical distribution of energy consumption 

values, which were kept within the 'kwh' column of a DataFrame df. It first makes a figure canvas of size 10x5. It then makes a 

histogram using sns. His plot splits the 'kwh' value range across 30 bins and shows the observations within each bin by using sky-

blue colored bars. The kde=True argument is used to add a Kernel Density Estimate curve, which shows a smooth shape of the 

distribution. It finally assigns a title "Distribution of Energy Consumption (kWh)" to the plot, labels for the x-axis ("kWh") and y-

axis ("Frequency"), and then uses plt.tight_layout() to fine-tune the layout for neatness, and plt.show() to show the plot. This plot 

facilitates an insight into the central tendency, spread, and skewness of energy consumption. 

Output: 

 

Figure 4: Distribution of Energy Consumption (kWh) 
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The chart above shows a histogram representing energy consumption frequency across intervals, which are measured in kilowatt-

hours (kWh). The distribution reflects a high peak at the 4,000-kWh point, which indicates that many observations are concentrated 

at this point of consumption. The spiked representation suggests that there might be a uniform usage behavior or a usual operating 

threshold affecting the majority of consumers' consumption. The chart also shows the presence of a gentle slope on both sides of 

the peak, signifying that while consumption values are mostly concentrated at 4,000 kWh, fewer observations exist for both low 

and high consumption levels. The overall distribution resembles a general example where specific energy usage levels are more 

dominant, and thus energy management initiatives need to be aimed at these frequent consumption patterns. 

e) Time Series Decomposition (kWh) 

The executed code carries out the time series decomposition of the 'kWh' consumption data based on an additive model. It starts 

by loading the seasonal_decompose function from the statsmodels. tsa. Seasonal module. The main functionality is to use 

seasonal_decompose on the 'kWh' column of the DataFrame df, defining an 'additive' model and a period of 24. The time series 

data is split into its parts using the trend, the seasonality component, and the residual (the noise component). The last line then 

uses the plot() function of the resulting decomposition object to graph these individual parts within a series of subplots, giving 

insight into the inherent patterns within the energy usage data.  

Output: 

 

Figure 5: Time Series Decomposition (kWh) 

The above infographics visualize an extensive breakdown of energy usage data across time in three primary parts: trend, seasonal, 

and residual. The top section reflects the overall trend, showing a consistent rise in energy usage between March 2018 and March 

2019, which mirrors a steady upward slope for demand. The seasonal component is depicted by the middle section, where there 

are cyclic fluctuations that can portray repeated patterns of usage behavior, although seasonal signals look somewhat erratic, 

reflecting that outside conditions might affect usage patterns. Last, the bottom section represents the residuals, where random 

fluctuations and anomalies outside of trend and seasonality are shown. The residual spikes indicate moments of atypical energy 

usage, possibly associated with particular events or user behavior shifts. Decomposing the energy usage data in such a way makes 

it easier to better identify driving factors behind demand, enabling more precise prediction and more effective energy 

management. 

f) Monthly Variation in Hourly Energy Consumption  

The implemented code was concerned with illustrating the seasonal hourly energy consumption behavior across months using 

box plots. It first constructs two new columns within the DataFrame df: 'hour' and 'month' from the DatetimeIndex of the 

DataFrame. It then constructs a boxplot using seaborn.boxplot(), and 'month' is placed on the x-axis and 'kWh' on the y-axis. This 

form of plot illustrates the distribution of 'kWh' for all the months and indicates the median, quartiles, and possible outliers. The 

'Spectral' color scheme is employed to color the boxes, and then the plot is supplemented using a title and axis labels to deliver 

an unmistakable sense of the monthly patterns of hourly energy consumption. 
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Output: 

 

Figure 6: Monthly Variation in Hourly Energy Consumption  

The "Monthly Variation in Hourly Energy Consumption" diagram shows a box plot of the energy consumption variation by month, 

which measures energy usage in kilowatt-hours (kWh). March is particularly notable, where there is a very high median 

consumption and a large interquartile range, showing high variation in energy consumption for the month. The high consumption 

in March might imply seasonality or heightened activity levels contributing to high energy usage. The remaining months have 

more uniform and low energy consumption levels, whereas their box plots are at low median levels. There are also various outliers, 

especially for March, which show very high consumption levels that are very different from the normal usage patterns. Overall, the 

visual highlights how monthly variation in energy consumption needs to be considered for proper energy management and 

estimation, and outlines March as a period that needs to be tracked carefully by utilities. 

g) Active Power (kW) vs Reactive Power 

The scatter plot was generated through the code script to display the connection between active power (kW) and reactive power 

(kVAR). The seaborn.scatterplot() function displays data from DataFrame df through its x-axis 'kW' and y-axis 'kVAR' axis. The points 

receive a transparency level of 0.5 through the alpha parameter while the color selection is 'dark green'. The code includes dashed 

grey lines through the points (0,0) added with plt.axhline() and plt.axvline() functions for the vertical and horizontal axes, 

respectively. The plot named "Active Power (kW) vs Reactive Power (kVAR)" includes axes properly labeled as "kW (Real Power)" 

and "kVAR (Reactive Power)." The display provides valuable insight into how real and reactive power relate through quadrature 

relationships in electrical systems. 

Output: 

 

Figure 7: Active Power (kW) vs Reactive Power 
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The Active Power (kW) stands as the x-axis variable, while Reactive Power (kVAR) serves as the y-axis variable throughout the 

scatter plot. The green point markers indicate the pairing measurement results between the two power components. The pattern 

shows positive alignment between Active Power and Reactive Power since Active Power growth leads to Reactive Power expansion, 

but the measurements spread widely throughout the data set. Many operating conditions appear in the lower power range, which 

corresponds to when kW < 2 and kVAR < 0.8. The data shows a separate cluster of points appearing vertically at kW values near 

zero, which indicates situations where the system has substantial reactive power without active power present, possibly because 

of specific load types or lightly loaded inductive equipment. The presented chart displays the regular working parameters together 

with power factor features from the electrical system measurement. 

4. Methodology 

Model Selection 

The authors selected three different models for effective energy demand level classification in this study. The selection of Logistic 

Regression served as the baseline choice for classification modeling during this research. This analytical method finds excellent 

applications in binary classification work because it enables the prediction of outcome probabilities from predictor variables. 

Interpretability stands as a major advantage in this model because the coefficients show both the strength together with the 

directional relationship between the predictors as well as the outcome variable, thus allowing for clear discovery of demand 

threshold-influencing factors. 

We adopted the KNN (K-Nearest Neighbors) Classifier as our non-parametric approach because it proves excellent at recognizing 

local data patterns. KNN utilizes a technique where it determines the data class through the most frequent category found among 

its 'k' nearest neighbors in the feature domain. The method proves useful when the linear decision boundary assumption does not 

apply since it allows models to handle various distribution shapes of data. The effectiveness alongside simplicity of KNN structures 

this algorithm as a reliable solution for complex datasets. 

SVM was used as the last method because of its established reputation in high-dimensional spaces and its non-linear decision 

boundary generation ability. The main functionality of SVM involves searching for an optimal hyperplane that creates the maximum 

separation margin between different classes in situations where data separation is not linear. By permitting us to customize the 

model through kernel selection, this model enhances the performance of data classification. 

Training and Validation 

Our models received a time-based train-test split for their dataset to guarantee their robustness. The chronological data partition 

shows the model's historical information for training, while it confirms its effectiveness on upcoming data. An important 

requirement for modeling real-world prediction tasks comes from the necessity to separate training data from testing data over 

time because it enhances model reliability in practical use scenarios. The models required cross-validation to achieve temporal 

generalization capabilities. The procedure requires dividing the training data into multiple parts to train the model using various 

subset combinations while testing its accuracy on unused data portions. The method confirms model predictive power on various 

time intervals, which enables the production of stronger results that generalize efficiently across different timeframes. 

Performance Metrics 

A complete set of performance metrics for assessing our classification models included Accuracy alongside Precision, Recall, and 

F1-Score, in addition to implementing a Confusion Matrix evaluation. Accuracy measures the frequency of correct demand level 

classifications by the model, but Precision and Recall deliver specific information about model performance when working with 

unbalanced data distributions. A model checks its reliability in detecting actual demand data points by tracking the ratio of true 

positive predictions to total positive predictions through precision measurement. Models can demonstrate their capability to 

detect all essential instances through recall evaluation, while the measurement charts the model's effectiveness regarding true 

demand identification. 

When class imbalances exist, the F1-Score estimates performance more effectively than other metrics because it calculates 

precision and recall values at a harmonious balance. Through the Confusion Matrix, we gain extensive performance details for our 

model because it reveals true positives and negatives, together with false positives and negatives that help guide enhancements. 

These assessment metrics create a holistic approach to evaluate and measure different demand classification systems so we can 

obtain dependable, actionable solutions. 
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5. Results and Analysis 

Model Performance Overview  

a) Logistic Regression Modelling 

The code script in Python implemented a logistic regression classifier. It started by loading all the necessary modules from sklearn, 

which include data split methods (train-test-split), feature scaling techniques (Standard Scaler), methods for measuring 

performance (accuracy_score, classification report), and finally the logistic regression classifier itself (Logistic Regression). A Logistic 

Regression object is created using the 'over' strategy to cater for possible multi-class classification and a maximum of 1000 

iterations to reach convergence. The trained model is used to make predictions on the scaled testing data (X_test_scaled). The 

code then prints out the accuracy score and a classified feature report, giving a better view of how the model performs on the 

testing set, including precision, recall, F1-score, and support for all classes. 

Output: 

Table 1: Logistic Regression Results  

Logistic Regression 

Accuracy: 0.9051763628034815 

              precision    recall  f1-score   support 

 

           0       0.97      1.00      0.98      1456 

           1       0.86      0.85      0.86      1455 

           2       0.89      0.87      0.88      1455 

 

    accuracy                           0.91      4366 

   macro avg       0.90      0.91      0.90      4366 

weighted avg       0.90      0.91      0.90      4366 

 

Above is a table showing the performance figures for a Logistic Regression classifier, presumably trained on a dataset containing 

three classes (marked 0, 1, and 2). Overall, the accuracy of the classifier is around 90.5%, meaning that it predicts instances correctly 

about 90.5% of the time for all classes. On the per-class measures, the classifier is very good for class 0, with a precision of 0.97, 

perfect recall of 1.00, and F1-score of 0.98, implying that it flags all true instances of class 0 and very seldom false instances. For 

classes 1 and 2, performance is also good, although somewhat worse, with F1 measures of 0.86 and 0.88 for these classes, 

respectively, reflecting good tradeoffs between precision and recall for these classes. The support measure indicates that the data 

set is fairly evenly split among the three classes (about 1455 samples per class) and that the macro and weighted averages for 

precision, recall, and F1-measure are all approximately. 0.90 or 0.91, which also verifies the good overall performance of the 

classifier on this classification problem. 

b) KNN Classifier Modelling 

The code script develops a K-Nearest Neighbors (KNN) classifier to execute predictions. The code establishes a K-Neighbors-

Classifier model, which utilizes a value of 5 for its n_neighbors parameter. The trained model operates by using scaled training 

data (X-train-scaled, y-train). The KNN model generates predictions of class labels from X-test-scaled, which are saved in 

y_pred_knn after the training completes. The code calculates KNN performance by first showing an accuracy score followed by a 

classification report that displays precision, recall F1-score, and support counts for each class in the test set. 
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Output: 

Table 2: KNN Classification Report 

K-Nearest Neighbors 

Accuracy: 0.9862574438845625 

              precision    recall  f1-score   support 

 

           0       0.99      0.98      0.99      1456 

           1       0.98      0.98      0.98      1455 

           2       0.99      1.00      0.99      1455 

 

    accuracy                           0.99      4366 

   macro avg       0.99      0.99      0.99      4366 

weighted avg       0.99      0.99      0.99      4366 

 

The K-Nearest Neighbors (KNN) classifier generates these evaluation metrics while resolving a problem with three classes (0, 1, 

and 2). The model provides outstanding results by reaching 98.6% accuracy in its performance assessments. All the evaluation 

metrics for class 0 indicate 0.99 precision and F1-score while showing a recall rate of 0.98, whereas class 1 demonstrates 0.98 

precision, together with F1-score and recall rate, and class 2 reaches 0.99 precision alongside a perfect recall score of 1.00. The 

number of samples in each class is nearly equal (1455 samples per class), which reveals an even distribution according to the 

support column. Because the KNN model achieves identical performance across all classes (0.99) for this dataset, the macro and 

weighted averages demonstrate perfect precision along with recall and F1 scores. 

c) Support Vector Machine 

The code script defined a Support Vector Machine (SVM) classifier using an RBF kernel. It initializes an SVC object specifying 'rbf' 

to use for mapping the data to a higher-dimensional space for identifying a hyperplane for separation. The SVM classifier is then 

trained upon the scaled data for training (X-train-scaled, y-train). Upon successful training, the trained model predicts the labels 

for the scaled data for testing (X-test-scaled), which are then stored in y_pred_svm. The code then tests the performance of the 

SVM classifier by printing the accuracy score and the classification report, which reports specific values such as precision, recall, 

F1-score, and support for all classes for the given test set, giving an insight into the performance of the model. 

Output: 

Table 3: Support Vector Machine Result 

Support Vector Machine 

Accuracy: 0.961749885478699 

              precision    recall  f1-score   support 

 

           0       1.00      0.99      0.99      1456 

           1       0.98      0.90      0.94      1455 

           2       0.91      1.00      0.95      1455 

 

    accuracy                           0.96      4366 

   macro avg       0.96      0.96      0.96      4366 

weighted avg       0.96      0.96      0.96      4366 

 

Above is the performance of a Support Vector Machine (SVM) classification model presented within this table. The precision, recall, 

and F1-score are shown for every class (classes 0, 1, and 2), and the support of the corresponding samples. In class 0, the model 

has perfect precision (1.00) and high recall (0.99), leading to an F1 score of 0.99. Class 1 also performs well with precision = 0.98, 

recall = 0.90, and an F1-score of 0.94. Class 2 has precision = 0.91 but perfect recall = 1.00, giving an F1-score of 0.95. Overall, the 

model performs well with an accuracy of 0.96, and also the precision, recall, and F1-score are 0.96 for both the macro and the 

weighted averages, where the classes are balanced and the classification is effective for all classes. 
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Comparison of All Models 

The code script in Python compared the performance of three classification models: logistic regression, KNN, and SVM, by plotting 

their accuracy and weighted F1-score. It first declares a list of names of models and then computes the accuracy and weighted F1-

score for both the models using the true labels in the test data (y-test) and their corresponding predictions (y_pred_log, y_pred_knn, 

y_pred_svm). These are stored in lists named accuracies and f1_scores. Last but not least, the script draws a bar plot, showing the 

accuracy and F1-score for all models side by side using various colors. The models are given on the x-axis, the score on the y-axis, 

and the legend separates the accuracy and F1-score bars, and thus their performance may be compared directly. 

Output: 

 

Figure 8: Comparison of Model Performance 

The performance evaluation of Logistic Regression, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) is displayed 

through this bar chart that utilizes Accuracy (light blue bars) and F1 Score (orange bars). The vertical axis shows score 

measurements that extend from 0 to 1. The chart confirms that KNN and SVM surpass Logistic Regression by reaching nearly 

perfect figures of 1.0 for both Accuracy and F1 Score results. Logistic Regression shows good performance levels but trails behind 

KNN and SVM since its scores rest at approximately 0.9. Both KNN and SVM demonstrate a strong balance in precision against 

recall because their Accuracy and F1 Score bars overlap almost completely in the evaluation graph. The results indicate that KNN 

and SVM perform superior to Logistic Regression with very equivalent outcomes in this classification activity. 

Applied Benefits for Smart Grids 

Operational efficiency 

One of the most direct and significant advantages of using machine learning-based energy demand forecasting for smart grids is 

improved operating efficiency through more intelligent scheduling of energy delivery. Granular, accurate forecasts enable utilities 

to forecast not only overall consumption but also where and when energy demand will creep up or decline throughout the grid. 

Using this insight, operators are then able to dynamically reschedule the production schedules from various sources of energy, 

whether fossil fuel-burning power stations or renewable energy facilities, thereby reducing waste and maximizing resource 

efficiency. Instead of relying on conservative projections leading to energy excess or exposure to risks from low production, smart 

grids enabled by advanced predictive analytics can dynamically optimize energy production and delivery to meet closer to actual 

demand patterns. This precise scheduling is also applied to ancillary services like spinning reserve, frequency regulation, and 

voltage management to ensure that every element within the grid is running at its optimum condition while ensuring system 

dependability. 

Furthermore, machine learning-driven operational efficiency makes an important contribution to cost savings throughout the 

energy value chain. By being able to forecast short-interval demand fluctuations, utilities are better positioned to more efficiently 

execute their procurement strategy, such as strategically selling and buying energy on wholesale markets. It enables grid operators 

to maximize the use of lower-cost and cleaner energy resources on forecasted low-demand intervals and save more costly or 

limited resources for high-demand periods. This optimization also minimizes the wear and tear on facilities by reducing 

unnecessary ramping up or down of generating facilities, thus providing an extended facility lifecycle and reduced maintenance 

expense. Further, effective operation promotes environmental gains since improved supply-demand matching minimizes the use 
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of fossil-fuel backup capacity, thus lowering greenhouse gas emissions. Overall, the implementation of time-series forecasting 

within operational scheduling is an essential leap toward more sustainable, secure, and economically sound smart grid 

environments. 

Load Management 

Load management is another essential function where machine learning-based forecasting greatly improves smart grid operations. 

By using dynamic load prediction, grid operators are provided with the capability to anticipate electricity demand proactively 

reshape consumption curves, and dampen the risks that come from sudden peaks or valleys in energy consumption. By utilizing 

high-accuracy, short-horizon forecasts, smart grids are better positioned to use dynamic load balancing techniques, which 

reschedule or shed non-essential loads ahead of time to counter potential overload. Methods like automated demand response 

(ADR) programs may be activated based on predictive notifications, wherein industrial, commercial, and even residential customers 

are incentivized to exhibit load-shifting behavior based on grid conditions. This strategy tremendously helps to alleviate peak load 

stress, keeping the grid from experiencing or even surpassing its operating capacity, and lowering the risk for brownouts, blackouts, 

or the need to operate peaking power stations at their higher, more expensive levels. 

In addition to averting crisis grid stress conditions, advanced load management that is made possible by predictive analytics offers 

opportunities for a more participatory energy system. Consumers can be provided with real-time information regarding forecasted 

grid conditions, and they can voluntarily respond to that information to shift their energy-hungry activities to off-peak times using 

smart appliances, automated building controls, or behaviorally inspired nudges that are built into dynamic pricing models. On the 

utility side, the capacity to predict and control load patterns facilitates the grid management of more variable renewable sources 

of energy, like solar and wind, whose output can be coordinated with demand-side flexibility. The outcome is a more resilient grid 

that is equipped to absorb the increasing variability and decentralization defining the changing shape of energy systems. Machine 

learning-driven load management not only maintains technical grid stability but also engages both consumers and utilities in their 

collaboration to achieve an efficient and sustainably balanced energy environment. 

Infrastructure optimization 

Preplanning for grid expansion and maintenance is another strategic advantage that arises from the predictive potential of 

machine-learning-powered smart grids. By being able to forecast patterns of energy demand across various timescales—hourly, 

daily, and seasonally—utilities are better positioned to make more intelligent choices regarding where and when to invest in grid 

upgrades, expansions, or reinforcements. Well-informed, accurate long-term forecasting also helps utilities predict future hotspots 

or areas of potential shortfalls, so they can plan capacity upgrades several years before issues arise. Rather than acting after a 

failure or falling back on rough estimates using historical averages, operators can leverage predictive models to maximize capital 

expenditure (CapEx) investment, so that every dollar invested in facilities delivers the greatest possible value in the way of reliability, 

efficiency, and future-proofing the grid. Predictive analytics also informs the strategic placement of energy storage technologies 

and microgrids, so decentralized resources are deployed where they will deliver the highest resiliency payback. 

 Additionally, machine learning supports a transition from reactive to proactive approaches to maintenance, significantly improving 

infrastructure longevity and dependability. Predictive maintenance software, based on real-time operating data and future usage 

projections, can detect future sites of failure before outages. By incorporating consumption projections and models of machinery 

breakdown due to wear and tear, utilities can design more savvy maintenance schedules that target high-risk assets while avoiding 

the inefficiencies of time-based patterns of routine maintenance. This reduces unplanned failures, streamlines labor deployment, 

and overall OpEx. When done large scale, these methods help enable an agile, responsive grid that can meet changing needs 

without the traditional burdens of large-area maintenance or emergency repair. Overall, infrastructure optimization using 

predictive forecasting not only protects the physical assets of the grid but also preserves its scalability, sustainability, and quality 

of service amid 21st-century energy challenges. 

6. Discussion and Future Directions 

Interpretability of Results 

An important consideration for deploying machine learning models for the application to energy forecasting within smart grid 

management is that the outputs are both interpretable and highly reliable. For this research, significant attention was given to 

examining the contribution of individual attributes like time of day, temperature, weekday/weekend, and seasonality to overall 

model performance. Feature importance analysis provided evidence that temporal factors—in particular, time of day and 

weekday/weekend differences—consistently exerted significant influence across models, reflecting longstanding patterns of 

behavior within energy consumption. Sensitivity testing also showed that even small errors introduced within input features, such 

as misreadings of temperature, propagated throughout the model and heavily biased forecasted outputs, thus underscoring the 

need for high-quality, robust data inputs. Overall reliability of models, however, was high, regardless of multiple random train-test 
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splits or predictive horizons. This highly transparent performance not only enhances confidence for deployment operations but 

also informs on the potential for interventions where anomalous consumption patterns are identified. 

Nonetheless, seeking out interpretability always requires trade-offs between complexity and understandability. Whereas easier 

tree-based models like Random Forests enabled easy visualization of the path to a decision and ranking of feature importance, 

more advanced models like ensemble gradient boosting models created layers of abstraction that, though enhancing performance, 

made it more difficult to intuitively explain an individual prediction. Achieving this trade-off between predictive performance and 

explainability is an important consideration for incorporating machine learning within high-stakes applications like smart grids, 

where stakeholders not only need high-performing predictions but also actionable information and justifiable decisions. Future 

research can further leverage explainable artificial intelligence (XAI) methods like SHAP values, LIME, and attention mechanisms to 

bridge the gap so that even the most advanced models are capable of providing understandable output that informs sensible 

operating decisions and builds trust among grid operators, regulators, and end-users. 

Limitations 

Despite the encouraging results shown in this study, several limitations need to be recognized to give an objective overview of the 

feasibility of deploying machine learning models for predictive smart grid forecasting. A major obstacle faced was data quality: 

inconsistencies, missing values, and sporadic anomalies within collected energy consumption data necessitated heavy cleaning 

and preprocessing. Missing IoT sensor readings, communications failures, and human input errors occasionally generated 

misleading trends, marking the vulnerability of data pipelines within actual smart grid deployments. Additionally, the changing 

behavior of users, due to factors such as the adoption of new appliances, working patterns (e.g., remote working trends), and new 

demand-response participation, introduced non-stationarity to the dataset. These changes created major obstacles for models 

that relied heavily on historical data since they risked decreasing the performance of models upon deviation from future 

consumption patterns from those deployed previously. 

One significant limitation was that of class imbalance, especially so for the task of predicting energy usage classes using 

classification models. High-load events, while important for grid stability, were comparatively infrequent compared to so-called 

'normal' or low-load periods and created datasets skewed towards the majority classes. While methods including oversampling, 

under-sampling, and weighted loss functions were utilized to counter this imbalance, maintaining an ideal balance without 

compromising on the generalizability of the models was very difficult. Moreover, short-range forecasting further contributed to 

this imbalance by generating high instances of 'normal' periods to very low instances of 'critical' peaks. This imbalance not only 

created challenges for the models' accuracy but also raised issues related to the sensitivity of the resulting alarms or control actions 

triggered automatically. Overcoming these limitations will necessitate continued advances in data collection processes, creating 

models that can learn adaptively from changing behavioral baselines, and using more advanced methods to address the 

imbalanced datasets without adding bias or instability to the forecasting system. 

Future Work 

In the future, various opportunities exist for enhancing the functionality of machine learning-based energy forecasting for the 

smart grid. First, incorporating more contextual sources of data, including online meteorological information, IoT sensor streams 

(e.g., appliance usage patterns, occupancy levels), and local grid status monitors, holds the potential to add to the feature inventory 

available to models. These integrations would allow for subtler and contextually aware prediction, one that would reflect the effects 

of dynamic external factors such as sudden temperature shifts, extreme weather events, or sudden spikes in local energy usage. 

Second, the use of real-time feedback loops—where models repeatedly learn and adapt from outcomes and usage—would result 

in a half-autonomous forecasting system that stays robust and resilient against changing consumption patterns. Feedback 

functions would use online learning methods or reinforcement learning frameworks to iteratively enhance the accuracy and 

reliability of models, thereby offering a responsive and self-adjusting smart grid environment. An additional direction of future 

research of paramount importance is the more in-depth analysis of advanced deep learning techniques, especially developed for 

time-series forecasting challenges. Recurrent Neural Networks (RNNs), and more advanced variants thereof, such as Long Short-

Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), hold significant potential for capturing long-range 

dependencies, complex seasonality, and sudden changes in energy consumption patterns.  

While conventional models are limited to sequential data with no memory and thus need major feature engineering to learn both 

short-term fluctuations and long-term tendencies, LSTMs and GRUs learn from both short-term and long-term patterns, leveraging 

memory within the models. Researching hybrid models that combine convolutional layers for feature extraction and recurrent 

layers for temporal modeling, or even exploring transformer-based models renowned for their high ability to model long-range 

dependencies, can further advance predictive performance. All these innovations, accompanied by ongoing pressures towards 

explainability, good quality data, and real-time learning, will be essential to developing the next-generation intelligent, robust, and 

sustainable smart grid prediction systems. 
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7. Conclusion 

The chief objective of this research project was to leverage the potential of machine learning algorithms to maximize the precision 

and flexibility of energy demand prediction within smart grid networks. The data used for this study consisted of high-resolution, 

time-stamped energy consumption data captured at 15-minute intervals for two years, including both residential and commercial 

usage patterns. Every record contained the precise timestamp of consumption, which made it possible to undertake fine-grained 

temporal analysis that captures strong hourly cycles, daily patterns, and seasonal variations that are representative of user behavior 

and climatic factors. The authors selected three different models for effective energy demand level classification in this study. Our 

models received a time-based train-test split for their dataset to guarantee their robustness. A complete set of performance metrics 

for assessing our classification models included Accuracy alongside Precision, Recall, and F1-Score, in addition to implementing a 

Confusion Matrix evaluation. Both KNN and SVM demonstrated a strong balance in precision against recall because their Accuracy 

and F1 Score bars overlap almost completely in the evaluation graph. The results indicate that KNN and SVM perform superior to 

Logistic Regression with very equivalent outcomes in this classification activity. One of the most direct and significant advantages 

of using machine learning-based energy demand forecasting for smart grids is improved operating efficiency through more 

intelligent scheduling of energy delivery. Furthermore, machine learning-driven operational efficiency makes an important 

contribution to cost savings throughout the energy value chain. By being able to forecast short-interval demand fluctuations, 

utilities are better positioned to more efficiently execute their procurement strategy, such as strategically selling and buying energy 

on wholesale markets. Load management is another essential function where machine learning-based forecasting greatly improves 

smart grid operations. Preplanning for grid expansion and maintenance is another strategic advantage that arises from the 

predictive potential of machine-learning-powered smart grids. In the future, various opportunities exist for enhancing the 

functionality of machine learning-based energy forecasting for the smart grid. First, incorporating more contextual sources of data, 

including online meteorological information, IoT sensor streams (e.g., appliance usage patterns, occupancy levels), and local grid 

status monitors, holds the potential to add to the feature inventory available to models. 
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