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This article focused on analyzing the volatility in agricultural commodities prices, 
where the class of ARMA models with ARCH errors were used. Maximum Likelihood 
and Least Squares estimates of the parameters of the model and their covariance 
matrices are noted and incorporated into techniques for the model building based 
upon the application of the usual Box-Jenkins methodology of identification, 
estimation, and diagnostic checking to the ARMA equation, the ARCH equation, and 
the full model. The techniques are applied to sugar prices daily time series over the 
period (1962-2020). It is seen that ARIMA (4,1,0)-GARCH(1,2) fits well the data 
among other competitive models. 
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1. Introduction 1 
In financial markets of agricultural products, such: Wheat, Coffee, Sugar,… the prices are the engine indicator;  furthermore, 
these prices are the best indicator for measuring and knowing the state of world, regional and domestic markets, and they 
are very important in helping to elaborate economic strategies as well as making appropriate and timely decisions regarding 
production (for the 'farmer), marketing as well as Consumption (especially for countries where the ratio of agricultural 
products to total imports is very high)( Apergis & Rezitis, 2011). This is why the phenomenon of hyper-volatility of these 
prices is one of the serious problems which must be studied.  

An abundant and variety of studies have been carried on agricultural prices-analysis and forecasting. Heady and Kaldor(1954) 
firstly focalized on expectation and errors in forecasting.  Acharya and Agarwal (1994) analyzed agricultural prices and related 
policies. Xiong et al (2015) presented a new combination method for interval forecasting of agricultural commodities prices. 

We work on time series data, which are a branch of econometrics whose object is the study of variables over time. Among its 
main objectives is the determination of trends within these series as well as the stability of values (and their variation) over 
time. In particular, linear models (mainly AR and MA, for Auto-Regressive and Moving Average), Box-Jenkins, (1976), 
distinguish conditional models (notably ARCH, for Auto-Regressive Conditional Heteroskedasticity) (Engel, 1982). Unlike 
traditional econometrics, the purpose of time series analysis is not to relate variables to one another, but to focus on the 
"dynamics" of a variable. In this study, we deal with ARIMA-ARCH family models to estimate and forecast the sugar prices 
over the period (1962M12-2020M2), by using the ARIMA models (called Box-Jenkins Approach) developed by, Box-Jenkins, 
(1976), and autoregressive conditional heteroscedastic (ARCH) first introduced by Engel (1982).  

The rest of the article is divided as section (2) presents the statistical methods used (ARIMA and GARCH models), in section 
(3) we showed the dynamic of sugar prices over the period (1962-2020), the estimation results of fitted models, discussion 
results and forecasting of future prices for 30 periods, finally the section (4) concludes and summarize the study.   
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2. Methods  
2.1. ARIMA Models presentation 
2.1.1. Auto-Regressive Model, AR (p) 

 The conditional approach in Equation (1) provides a decomposition prediction error, according to which: 

                                𝒚𝒕 = 𝐄(𝒚𝒕 ∖ 𝒚𝒕−𝒑) + 𝝐𝒕 ⇔ 𝒚𝒕 = ∑ 𝜷𝒊 𝒚𝒕−𝒊

𝒑

𝒊=𝟏

+ 𝝐𝒕                                          (2) 

Where 𝐄(𝒚𝒕 ∖ 𝒚𝒕−𝒑),  is the component of 𝒚𝒕, that can give rise to a forecast, when the history of the process, 

𝒚𝒕−𝟏, 𝒚𝒕−𝟐 … , 𝒚𝟎 are known. And 𝝐𝒕, represents unpredictable information. We suppose, 𝝐𝒕 ~ 𝑊𝑁 (0, 𝜎2), is a white noise 
process. The equation (2) represents an autoregressive model (AR) of order 𝒑. As an example an autoregressive process of 
order 1, AR (1) is defined: 

                                      𝒚𝒕 = 𝒄 + 𝜶𝒚𝒕−𝟏 + 𝝐𝒕                                           (3) 

The value 𝒚𝒕 depends only on its predecessor. Its properties are functions of 𝜶 which is a factor of inertia. Autoregressive 
processes AR(p) assume that each observation 𝒚𝒕 can be predicted by the weighted sum of a set of previous observations 
𝒚𝒕−𝟏, 𝒚𝒕−𝟐, … 𝒚𝒕−𝒑, plus a random error term. the other type of process of the Box-Jenkins approach is Moving Average, 

MA(q). 

2.1.2. Moving-Average process MA (q) 

The moving average processes assume that each observation 𝒚𝒕 is a function of the errors in the preceding 
observations, 𝝐𝒕−𝟏, 𝝐𝒕−𝟐, … , 𝝐𝒕−𝒑 ,  plus its error. A moving average process is given as: 

                                                                  𝒚𝒕 = ∑ 𝜽𝒊 𝜺𝒕−𝒊

𝒒

𝒊=𝟏

+ 𝒄                                                    (4) 

The combination of the two models, AR (p) in equation (3) and MA(q) in equation (4)  is an ARMA(p, q) process; which is the 
most popular models of the Box Jenkins for its flexibility and suitability for various data types. The model is designed as 
follow: 

                          𝐀𝐑𝐌𝐀(𝐩, 𝐪)          ∶              ∑ 𝜷𝒊 𝒚𝒕−𝒊 =  ∑ 𝜽𝒊 𝜺𝒕−𝒊

𝒒

𝒊=𝟏

 

𝒑

𝒊=𝟏

                                   (𝟓)   

With:                          𝜷𝒊 (𝒊 = 𝟏, … , 𝒑),    𝜽𝒊 (𝒊 = 𝟏, … , 𝒒)   ∈ ℝ        ,    𝝐𝒕  ↝  𝑾𝑵(𝟎, 𝜹𝜺). 

The time series 𝒚𝒕 must be stationary to be fitted by an ARMA model. We take the case of weak stationary, and we put its 
definition: 

Definition:  a time process 𝒚𝒕 with real values and discrete-time 𝒚𝟏, 𝒚𝟐, … 𝒚𝒕It is stationary in the weak sense (or "second-
order", or "in covariance") if: 

 E(𝒚𝒊) = 𝝁                                                 ∀  𝒊 = 𝟏, … , 𝒕. 
 Var(𝒚𝒊) = 𝝈𝟐 ≠ ∞                                 ∀  𝒊 = 𝟏, … , 𝒕. 
 Cov(𝒚𝒊, 𝒚𝒊−𝒌) = 𝒇(𝒌) = 𝝆𝒌                  ∀  𝒊 = 𝟏, … , 𝒕. 

When one or more stationary conditions are not met, the series is said to be non-stationary. This term, however, covers 
many types of non-stationary, (non-stationary in trend, stochastically non-stationary,), we focused on the latter. Thus, if 𝒚𝒕 is 
a stochastically non-stationary, a difference stationary technique should be applied. Consequently, a series is stationary in 
difference if the series obtained by differentiating the values of the original series is stationary. Generally, we used the KPSS 
test, Kwiatkowski, et al, (1992), and Leybourne & McCabe test, (1994). 

The difference operator is given by: ∆(𝑦𝑡) = 𝑦𝑡 − 𝑦𝑡−1. if the series is differentiated d times, we say that it is integrated of 
order I (d). The process will be noted as 𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒), defined by the equation:  
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                                                      𝜷(𝑳)(𝟏 − 𝑳)𝒅 𝒚𝒕 =  𝜽(𝑳) 𝜺𝒕                                                     (𝟔) 

With, L: is the lag operator (L) or backshift operator (B); If the time series 𝑿𝒕 = (𝟏 − 𝑳)𝒅 𝒚𝒕 is stationary, then, estimating an 
𝐀𝐑𝐈𝐌𝐀(𝒑, 𝒅, 𝒒) process on 𝒚𝒕 is equivalent to estimating an ARMA (p, q) process on 𝑿𝒕. 

2.1.3. Estimation of ARIMA models 

Box and Jenkins (1970) proposed a prediction technique for a univariate series that is based on the notion of the ARIMA 
process. This technique has three stages: identification, estimation, and verification. The first step is to identify the ARIMA 
model (p, d, q) that could spawn the series. It consists, first of all, in transforming the series to make it stationary (the number 
of differentiations determines the order of integration: d), and then to identify the ARMA model (p, q) of the series 
transformed with the correlogram and partial correlogram. The graph of autocorrelation (correlogram) and partial 
autocorrelation coefficients (partial correlogram) give information on the order of the ARMA model. Thus, if we observe that 
the first two autocorrelation coefficients are significant, we will identify the following model: MA (2). The second step is to 
estimate the ARIMA model using a non-linear method (nonlinear least squares or maximum likelihood). These methods are 
applied using the degrees p, d and q found in the identification step. 

Generally, we use the Likelihood Maximum method; by consider that the errors 𝜺𝒕 follow a normal distribution, 𝑵(𝟎, 𝝈𝜺
𝟐). 

 The log-likelihood function of an 𝑨𝑹𝑴𝑨(𝒑, 𝒒) process is defined as: 

                       𝐋𝐨𝐠 𝑳𝒕 = −
𝑻

𝟐
 𝐥𝐨𝐠𝟐𝝅−= −

𝑻

𝟐
 𝐥𝐨𝐠𝝈𝜺

𝟐 −
𝟏

𝟐
𝐥𝐨𝐠(𝒅𝒆𝒕[𝝍′𝝍]) −

𝝕(𝜷, 𝜽)

𝟐𝝈𝜺
𝟐

             (𝟔) 

With: 

 T: number of observations, 

 𝝍 a matrix of (𝒑 + 𝒒 + 𝑻, 𝒑 + 𝒒) dimensions, dependent of  𝜷𝒊 (𝒊 = 𝟏, … , 𝒑) and  𝜽𝒊 (𝒊 = 𝟏, … , 𝒒), 

 𝝕(𝜷, 𝝋) = ∑ (𝔼[𝜺𝒕 ∖ 𝑿𝒕,  𝜷𝒊 , 𝜽𝒋 , 𝝈𝜺
𝟐])

𝟐
    , with: 𝒊 = 𝟏, … , 𝒑 ;  𝒋 = 𝟏, … , 𝒒𝑻

𝒕=−∞ . 

The third step is to check whether the estimated model reproduces the model that generated the data. For this purpose, the 
residuals obtained from the estimated model are used to check whether they behave like white noise errors using a 
"portmanteau" test (a global test that makes it possible to test the hypothesis of independence of residues). The common 
tests are based on residuals analysis for normality, and autocorrelation: Box and Pierce (1970), Ljung and Box (1978), Durbin 
and Watson (1950, 1951). Homoskedasticity: Test of Breusch and Pegan (1979), ARCH Test, Engel (1982). The last point under 
this step is the prediction of future values of 𝑦𝑡  by the selected model. 

2.2. GARCH models  
In this section, we briefly introduce the conditional heteroscedastic family models including the autoregressive conditional 
heteroscedastic (ARCH) model of Engle (1982), the generalized ARCH (GARCH) model of Bollerslev (1986). Engel (1982) 
developed the ARCH models to allow the variance of a time series to depend on the set of available information, and in a 
particular time. This class of models aims to overcome the inadequacy of ARMA models; several phenomena are 
characterized by variable volatility and asymmetry that cannot be taken by the ARMA novelizations. The fact that the 
understanding and modeling of volatility a major priority in the economic, social, and political. 

In  𝐴𝑅𝐶𝐻(𝑞) model, we define 𝜀𝑡 as a process that established: 

                                         {
𝐸 (𝜀𝑡 ∖ 𝜀𝑡−1) = 0

  𝑉 (𝜀𝑡 ∖ 𝜀𝑡−1) = 𝝈𝒕
𝟐

                                            (1) 

With: 𝜀𝑡−1 = (𝜀𝑡−1, 𝜀𝑡−2, 𝜀𝑡−3, … ), and 𝝈𝒕
𝟐 is the conditional variance of the 𝜀𝑡 process. It's so clear that this variance can vary 

over time unlike in ARMA models. 𝐴𝑅𝐶𝐻(𝑞) models are based on a quadratic parameterization of the conditional variance 

𝝈𝒕
𝟐.  We define an 𝐴𝑅𝐶𝐻(𝑞) model as: 

                                           𝝈𝒕
𝟐 = 𝜷𝟎 + ∑   𝜷𝒊𝜺𝒕−𝒊

𝟐

𝒒

𝒊=𝟏

                                                           (𝟐)  
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Where: 𝜷𝟎 > 0  and 𝜷𝒊 ≥ 𝟎, ∀ 𝒊. 

General Autoregressive Conditional Heteroscedastic 𝑮𝑨𝑹𝑪𝑯(𝒑, 𝒒) models 

A generalization of the ARCH model had been proposed by Bollerserv (1986), a 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model is an extension allowed 

the introduction of lagged values of conditional variance 𝝈𝒕
𝟐, a simple way to define a 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process is: 

                                  𝝈𝒕
𝟐 = 𝜷𝟎 + ∑   𝜷𝒊𝜺𝒕−𝒊

𝟐

𝒒

𝒊=𝟏

+ ∑   𝜶𝒊𝝈𝒕−𝒊
𝟐

𝒑

𝒋=𝟏

                                                (𝟑) 

Where: 𝜷𝟎 > 0  and 𝜷𝒊 ≥ 𝟎, 𝜶𝒊 ≥ 𝟎, ∀ 𝒊. ∀ 𝒋. usually, these constraints of parameters are to guarantee the positivity of 
conditional variance.   

3. Results and Discussion 
3.1 Data Description of Sugar production and Prices 
World sugar production is estimated at around 180 million tonnes. Production is mainly dominated in order of magnitude by 
Brazil, India, the European Union, and China, see Figure (1) below. Among the diversity of sugars present on the market, the 
production of cane sugar represents 80% and comes mainly from regions such as Asia, South America, and even Central 
America. Sugar beet production continues to be controlled by the European Union, followed by Russia and the United States. 
Figure.1 Geographical distribution of the World's biggest sugar-producing regions.  

 

Source: https://commodity.com/soft-agricultural/sugar/ , retrevied  (2020/02/15).  

In this very liberalized sector, it will also be necessary to count on the Asian giant of agribusiness which took hold in March 
2017 of record quantity via the American futures market. Based in Singapore, the company has quickly established itself as a 
leader in trade and trading in this market. 

The daily sugar prices are showed in Figure2, the range prices over the whole period are (0.0125-0.652) $ per kilogram, with 
0.11 $/kg as average prices.  The filtered series (in red) is stationary on average, but not stationary in variance (it is very 
volatile: we can even distinguish groups of large variations or small variations on the series): which justifies the use of 
heteroscedastic modeling to study our filtered series. 
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Figure.2 Graphical representation of the sugar time series (in blue) and filtered/differentiated series of order 1 (in red) over 
the period(1962-2020). 

 

Source: Plotted using R program. Data source: https://www.macrotrends.net/2537/sugar-prices-historical-chart-data, (free 
download).  

For the identification 𝐴𝑅𝐼𝑀𝐴 process, we used the augmented Dickey-Fuller (ADF), information criterions tests, the raw time 
series is not stationary, and that is shown on Figure (1). The prices is integrated of first-order(i.e.) (𝟏 − 𝑳)𝒚𝒕 = ∆(𝒚𝒕) = 𝒚𝒕 −
𝒚𝒕−𝟏,   𝒕 ≔  1,2, … ,14312.  The best 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models were selected through the criteria (LL, AIC, BIC…etc) lead us to 
select the model in Table (2) to fit the dynamics of the sugar prices time series, the full results are in the Table (2) (green 
lines) . 

3.2 ARIMA-GARCH estimation results 
We retain the 𝐴𝑅𝐼𝑀𝐴(4,1,1) process without drift which models the filtered series better than the other candidate models.   

Table2: Model fitting for daily Sugar prices over the period (1962-2020). 

            
                90% CI  95% CI  99% CI 

Variable Coefficient   Low High  Low High  Low High 
            
            AR(1) -0.760570   -0.797045 -0.724094  -0.804034 -0.717105  -0.817694 -0.703445 

AR(2)  0.058648    0.052620  0.064675   0.051465  0.065830   0.049208  0.068087 
AR(3)  0.046676    0.040626  0.052725   0.039467  0.053885   0.037202  0.056150 
AR(4)  0.059558    0.054644  0.064473   0.053702  0.065414   0.051861  0.067255 
MA(1)  0.816659    0.780297  0.853021   0.773330  0.859988   0.759712  0.873606 

            
            Source: Estimation of the mean equation of sugar prices.  

We see that the variation of sugar prices negatively depends on the previous period, and positively for the periods (𝑡 − 2, 𝑡 −
3, 𝑎𝑛𝑑 𝑡 − 4). We note also that the previous innovation (though 𝑀𝐴(1) = 0.816) affect positively the current variation of 
the sugar prices. After the residuals analysis of the mean equation (𝐴𝑅𝐼𝑀𝐴(4,1,1), the ARCH effects are attached in the 
residual time series, graphically, this so showed in the auto-correlation function of the residuals and squared residuals. (See 
Figure3 below); furthermore, The Q statistic of Ljung-Box indicates many terms statistically different from; Which leads us to 
assume the presence of ARCH effects. 
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Figure.3. Auto-correlation functions of the squared Residuals of 𝐴𝑅𝐼𝑀𝐴(4,1,1) model.  

 

Source: Plotting from R program.  

We applied a test to confirm the presence of ARCH effects on the estimated ARIMA model, as is shown in the table below, 
the critical probability being <  0.05 for an ARCH (6), we accept the hypothesis of the presence of ARCH effects ( for lags: 6, 
7…, the parameters of the autoregressive terms were found also to be insignificant). (see Figure 3).  

Table.3 ARCH-LM test for heteroscedasticity. 
 

F-statistic 1053.282     Prob. F(6,14243) 0.0000 

Obs*R-squared 4379.563     Prob. Chi-Square(6) 0.0000 

 
After integration of the GARCH effects in our model, the optimal model for the conditional variance was a 𝐺𝐴𝑅𝐶𝐻(1,2); the 
estimation results of the mean equation have been highly changed ( so the ARMA model was not stable at the first time); the 
coefficients of the equation of the mean (except the MA(1) component ) are statistically significant; they are therefore far 
from the model presented in table 2 

Table.4 Estimation of ARIMA-GARCH (1,2) model 

           
              90% CI  95% CI  99% CI 

Variable Coefficient  Low High  Low High  Low High 
           
           AR(1)  0.033622   0.019067  0.048177   0.016278  0.050966   0.010827  0.056417 

AR(2) -0.022533  -0.036517 -0.008548  -0.039197 -0.005869  -0.044434 -0.000631 
AR(3)  0.023147   0.009143  0.037152   0.006459  0.039835   0.001215  0.045080 
AR(4)  0.019966   0.006300  0.033633   0.003682  0.036251  -0.001436  0.041369 

C  5.74E-09   3.99E-09  7.49E-09   3.65E-09  7.83E-09   3.00E-09  8.48E-09 
ARCH(1)  0.092198   0.083761  0.100636   0.082144  0.102252   0.078984  0.105412 

GARCH(1)  0.544610   0.423082  0.666137   0.399798  0.689422   0.354286  0.734934 
GARCH(2)  0.368461   0.253393  0.483528   0.231347  0.505575   0.188253  0.548668 

           
            

Source: Estimation Results from R program. Note: the terms 𝐴𝑅(1) … 𝐴𝑅(4), 𝑀𝐴(1) – in green- are the mean equation, 
 𝛽0, 𝛽1 and  𝛼1   ,𝛼2  are, respectively, the constant, ARCH(1) and GARCH(2) compounds in the GARCH equation models (see 

Equation 4).  
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Moreover, we have the sum of the coefficients ARCH (1) and GARCH (1) is very close to 1;(0.092 + 0.544 + 0.368) . This 
testifies to a phenomenon of persistence in the conditional variance; this sum also confirms the stability of the model 

estimated. According to Chan (2010, persistence of volatility occurs when:  ∑   𝜷𝒊
𝒒
𝒊=𝟏 +  ∑   𝜶𝒊 = 1

𝒑
𝒋=𝟏 , (see equation 3) and 

thus    𝝈𝒕
𝟐  is non-stationary process. This is also called IGARCH (Integrated GARCH). Under this scenario, unconditional 

variance becomes infinite. 

Figure3. The conditional standard deviation of the estimated model 

 

Source: Graphs using R program.  

Based on the selected models, and through the theoretical part of this study, the almost objective of the Box-Jenkins method 
is to forecast the future dynamic of the times series. Among the candidates' models, the best model selected is an 
𝐴𝑅𝐼𝑀𝐴 (4,1,0) − 𝐺𝐴𝑅𝐶𝐻(1,1), the forecast equation according to this model is : 

{ 
 �̂�𝒕  =  𝟎. 𝟎𝟑𝟒 𝒚𝒕−𝟏 − 𝟎. 𝟎𝟐𝟑 𝒚𝒕−𝟐 + 𝟎. 𝟎𝟐𝟐 𝒚𝒕−𝟑 + 𝟎. 𝟎𝟏𝟗 𝒚𝒕−𝟒        

 �̂�𝒕
𝟐 = 5.74E − 09 + 0.092�̂�𝒕−𝟏

𝟐 +  0.544 𝝈𝒕−𝟏
𝟐  + 0.368  𝝈𝒕−𝟐

𝟐                                                                      
 

The coefficients of the equation of the mean (except the 𝑴𝑨(𝟏) coefficient)  are relatively stable; they are therefore very 
close to those of the model estimated without GARCH compounds; as Bollerslev (1986) demonstrates with an example, the 
virtue of this approach is that a GARCH model with a small number of terms appears to perform as well as or better than an 
ARCH model with many; in our case, at least five (5) arch levels were statistically significant, but we prefer to work with a 
GARCH(1,1) which overcome the ARCH models.  

3.3 Validation of ARIMA-GARCH fitted model 
For the validation step, the following three aspects of the residuals from the fitted GARCH model should be tested: 

The standardized residuals from the GARCH model should approach normal distribution (if we assumed the conditional 
distribution of error terms as the normal distribution). For this point, we can use a Shapiro-Wilk (S-W) test and the Jarque-
Bera normality test. Histogram of the residuals and quantile-quantile (Q-Q) plots are also a good visual tool to check 
normality. 
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Figure4. Quantile-Quantile (Q-Q) plots of fitted model residuals  

 

Source: Graphs using R program.  

For our case, the residuals don't follow a normal distribution, we had the p-values of the Shapiro-Wilk (S-W) test and Jarque-
Bera are: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.000; both below the risque 𝛼 = 0.05; furthermore, we see this normality rejection from the Q-Q 
plot ( Figure 4 above).  

A second step for validation of GARCH modeling is we have to check that the standardized squared residuals should not be 
auto-correlated. We can use Box and Pierce (1970) and Ljung and Box (1978) statistics tests for this purpose. We see from the 
ACF of squared standardized residuals (Figure 5 below), that are not auto-correlated because all auto-correlation terms are 
inside the confidence intervals; the same result was found for ACF of standardized residuals.  

Figure5. Autocorrelation functions of standardized and squared standardized residuals 

 

Source: plotting results by R program  

A third step for validating the GARCH model is to run the ARCH-LM test on the residuals can also be conducted to check for 
remaining ARCH effects in the residuals; for our estimating results, there are no ARCH effects (the p-value of L6M test is: 
0.99), so we reject the presence of heteroskedasticity.  
 
 
 
 
 



JEAS 1(1):01-11 

 

 
9 

 
3.4 Forecasting results 
Table 3: Sugar prices Forecasting over the period (2020M03D01-2020M03D30) 

Forecasting For The ARIMA(4,1,0) component models 

Time Point Forecast  Lo 8 0 Hi 8 0 Lo 95 Hi 95 

1 0.1207294 0.11574909 0.1257098 0.11311265 0.1283462 

2 0.1204272 0.11315139 0.1277030 0.10929981 0.1315546 

3 0.1203169 0.11125424 0.1293795 0.10645677 0.1341770 

4 0.1204910 0.10984094 0.1311411 0.10420313 0.1367789 

5 0.1203165 0.10820141 0.1324315 0.10178808 0.1388449 

6 0.1204403 0.10706294 0.1338176 0.09998140 0.1408992 

7 0.1203336 0.10576082 0.1349064 0.09804645 0.1426208 

8 0.1204273 0.10477575 0.1360789 0.09649031 0.1443643 

9 0.1203424 0.10365822 0.1370265 0.09482616 0.1458586 

10 0.1204173 0.10278006 0.1380546 0.09344347 0.1473912 

11 0.1203512 0.10179309 0.1389093 0.09196904 0.1487333 

12 0.1204094 0.10098796 0.1398309 0.09070686 0.1501120 

13 0.1203580 0.10009816 0.1406178 0.08937326 0.1513427 

14 0.1204034 0.09934851 0.1414583 0.08820273 0.1526040 

15 0.1203633 0.09853380 0.1421928 0.08697797 0.1537486 

16 0.1203987 0.09782840 0.1429690 0.08588041 0.1549170 

17 0.1203674 0.09707371 0.1436612 0.08474275 0.1559921 

18 0.1203950 0.09640496 0.1443851 0.08370539 0.1570847 

19 0.1203707 0.09569937 0.1450420 0.08263917 0.1581022 

20 0.1203922 0.09506185 0.1457225 0.08165280 0.1591315 

21 0.1203732 0.09439721 0.1463492 0.08064636 0.1601000 

22 0.1203899 0.09378687 0.1469930 0.07970405 0.1610758 

23 0.1203752 0.09315692 0.1475934 0.07874845 0.1620019 

24 0.1203882 0.09257058 0.1482058 0.07784482 0.1629316 

25 0.1203767 0.09197044 0.1487829 0.07693308 0.1638203 

26 0.1203869 0.09140556 0.1493682 0.07606379 0.1647099 

27 0.1203779 0.09083132 0.1499244 0.07519032 0.1655654 

28 0.1203858 0.09028582 0.1504858 0.07435185 0.1664198 

29 0.1203788 0.08973433 0.1510233 0.07351212 0.1672455 

30 0.1203850 0.08920643 0.1515635 0.07270151 0.1680685 
 

Forecasting For The GARCH(1,1) component models 
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Source: forecasting results using R program.  

For future dynamic of sugar prices, we predict that stability trend would be maintained; we expected the prices on March will 
record 0.12 $/kg, with a 95% confidence to reach the 0.16$/kg and decrease to the level of 0.07$/kg over this month. 

Figure2. Forecast results of sugar prices over the period (2020M2-2020M3). 

 

Source: Our plotting form R program.  

4. Conclusion 
The estimation of the volatility of agricultural products is a big challenge for producers, consumers, and the government's 
strategies and decision making. Under this context, we tried to analyze the pattern (or the behavior) of Sugar prices over the 
period (1962-2020) using ARIMA-GARCH models. We found that the prices exhibited high volatility over this period, where 
we detected a clustering of hyper-volatility in the (2007-2012) sub-periods, (a period of the world financial crisis).   

For modeling results, the fitted ARIMA (4,1,1)-GARCH (1,1) was the optimal model among the other candidate models. On 
average, the variation of sugar prices depends positively on their previous variations, where the errors follow a GARCH (1,1) 
model. We gave the forecasting results for 30 periods, it seems to keep the same trend of prices and variations levels.  
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We highly suggested using such statistical models for other agricultural products, and we think that an econometrics study 
that includes factors affecting sugar prices will be great future work in this field. 
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Appendix 
For data used in this work, you can freely download it through this link: 
: https://www.macrotrends.net/2537/sugar-prices-historical-chart-data 
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