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| ABSTRACT 

Genomic selection is a revolutionary approach in breeding, exploiting genetic markers to forecast breeding values and hence 

accelerating the pace of traits associated with resilience, like drought tolerance, heat resistance, and pest resistance. This study 

addresses these challenges through ML algorithms such as random forests, support vector machines, and neural networks 

thereby enhancing prediction accuracy while handling complicated genomic as well as environmental datasets. Relevant ML 

algorithms for genomic selection are considered in this discussion, as well as strategies for data processing, feature selection, 

and environmental factors, including climate conditions and soil parameters. These are brought together to form predictive 

models that indeed cater to genotype-by-environment interactions vital for crop performance evaluation over different 

environmental conditions. A proposed framework integrates genomic selection with machine learning, benefiting both disciplines 

by developing a data-driven methodology for yield prediction in corn. The critical machine learning models to be used include 

multi-layer perceptron and ensemble models. A case study shows the practical applicability of the GS-ML framework, describing 

the dataset prepared, model testing and validation procedures, and yield resilience prediction results. The conclusion of the study 

states that GS and ML combined hold great promise in supporting sustainable agriculture and climate resilience. It requires 

further research, infrastructure development, and policy support to scale this approach across different crops and diverse climate 

scenarios. The combined use of genomic and ML approaches is profoundly innovative in predictive breeding and will help develop 

resilient agricultural systems critical for global food security under a changing climate. 
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1. Introduction 

Corn (Zea mays L.) is one of the most important food items in the world. Additionally, to being a major source of food, it is grown 

around the world to make biofuel and animal feed. It's an important crop that keeps many farming economies going around the 

world and makes sure that millions of people always have food. Rising temperatures, changes in rainfall patterns, and more extreme 

weather events are all signs of climate change, which is a complicated problem that threatens corn production in a big way (Wang 

et al., 2018). If the weather changes, it will test corn's ability to resist and adjust. This will have a direct effect on yield.  



JEAS 4(2): 20-27 

 

Page | 21  

Climate change makes it harder for corn to grow because it changes weather stress, the way insects move, and the amount of 

water that is available. For example, drought stress hurts corn during all of its stages of growth, from seedlings to full development. 

This problem is expected to get worse in the future (Lobell et al., 2014). When the earth is dry from a drought, plant height, leaf 

area, and photosynthetic efficiency all go down, which lowers yields. A study says that droughts caused by climate change could 

cut maize crops by 10–20% over the next few decades. This trend is also seen in places like North America, Sub-Saharan Africa, 

and Southeast Asia where corn is a major crop. When corn is in its reproductive stage, heat stress makes the problem even worse. 

As temperatures rise above perfect levels, pollen viability and fertilization rates drop sharply, leading to fewer kernels and less 

grain filling (Hatfield & Prueger, 2015). Also, because of higher temperatures, diseases and pests may be able to move to new 

places more easily. Rising numbers of diseases and bugs, such as the European corn borer and Fusarium spp., make maize 

production even less stable (Deutsch et al., 2018). These changes make it clear how important it is to come up with breeding plans 

that make corn more resistant to these changing natural stresses. Because of the need for climate-resilient farming, new ways of 

breeding crops are becoming more common. Genomic selection (GS) is one of the most important tools for this. In genomic 

selection, a type of marker-assisted selection, high-density genetic markers found throughout the whole genome are used to 

predict how useful an organism will be for breeding (Meuwissen et al., 2001). This work demonstrates the potential of combined 

GS and ML to enhance the stability and versatility of maize yields. The proposed approach is an integration of GS with ML 

algorithms designed to tackle high-dimensional, non-linear data structures. Consequently, it can efficiently and reliably predict the 

reaction of different maize varieties under heat and drought conditions. We present a methodology that integrates machine 

learning with genomic selection. The merger of machine learning with genetic information improves not only accuracy in 

predictions but also flexibility, thereby permitting the development of more dependable traits. Therefore, these two technologies 

need to be integrated for producing climate-resilient maize: it will be an important breeding tool as it quickens the selection 

process and makes agricultural output more resistant to climate change. 

 

Furthermore, this combination approach has several long-term effects on agricultural output due to climate change. Adaptive 

breeding is achieved by the combination of genetic selection and machine learning. Breeders can develop crops with greater 

tolerance under a wide range of stresses by considering the complex interplay between genetic makeup and environmental 

conditions. This resource efficiency, coupled with waste minimization in production, maximizes food security while simultaneously 

minimizing the impact on the environment. Data-driven predictive breeding technologies will be critical in transitioning to combat 

climate change's increasing impacts and in supporting the sustainability of global food systems. The combination of GS and ML 

allows for data-driven approaches to be integrated with sustainable agriculture strategies used in predictive breeding for increased 

resistance to climate change in agriculture (Crossa et al., 2017). No less than the preceding paragraph, this one is also in urgent 

need of increased funding for research and development. As promising as the results from integrating GS with ML are, prediction 

models require further development because these models need constant updating to reflect changes in climate components over 

time. Research should continue so that better and more intuitive models can be developed, and the methodologies applied 

elsewhere for other crops under different regions. This will ensure that breeding programs anywhere in the world have access to 

state-of-the-art tools. Data-driven agriculture requires government support, multi-disciplinary collaboration, and investments in 

digital infrastructure. Building on the success of GS with ML integration, focused farming can increase agricultural productivity 

while also making crops more resilient against unexpected challenges of changing climates through adaptation. If that happens, 

future agricultural practices could be sustainable rather than injurious to the ecosystem. 

 

2.0 Literature Review and Research Gap 

Genomic selection and machine learning hold great promise in the context of climate-change adaptation in crop improvement. 

Genomic selection has revolutionized plant breeding by estimating the genetic potential for crop traits based on dense molecular 

markers throughout the genome (Meuwissen et al., 2001). GS has greatly accelerated maize breeding for drought tolerance, insect 

resistance, and nutrient use efficiency (Xu et al., 2020). GS uses genetic markers to reduce breeding cycles and select desired traits 

early (Crossa et al., 2017). GS and machine learning thrive at processing complex agricultural datasets. In agricultural genomics, 

where environmental and phenotypic variables interact with genomic information in complex ways, ML algorithms can find non-

linear patterns (Wang et al., 2018). Random forests, support vector machines, and deep neural networks improve genomic selection 

predictions because they handle diverse data types and high-dimensional genomic data (Montesinos-López et al., 2018). ML 

applications increase genomic model prediction to optimize stress tolerance, yield stability, and other traits under changing 

environmental conditions (Jin et al., 2019).  Recent studies illustrate the potential of GS and ML in enhancing climate resilience in 

agriculture. According to Heslot et al. (2015), the use of genetic predictions coupled with environmental data improves the forecast 

of wheat production across different conditions. On the other hand, ML algorithms are applicable in maize genomic predictions 

for abiotic stress tolerance and thus a hybrid GS-ML model is proposed for dynamic climatic solutions. Breeding of maize for 

climate resilience by using GS and ML has been nearly impossible recently though significant progress has been made. Due to the 

complexity of environmental interaction, more precise predictions from models require phenotypic data along with environmental 

and multi-omics data (Crossa et al., 2019). Data availability is another challenge, particularly the high-quality environmental and 

phenotypic data that span many seasons required to train robust predictive models (Liu et al., 2020). Model interpretability and 
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ML algorithm processing may also limit breeding program use (Spindel & McCouch, 2016). These challenges may be solved by ML 

in predictive agriculture. Deep learning and reinforcement learning improve model predictions by integrating diverse inputs 

(Krizhevsky et al., 2017). Therefore, hybrid GS-ML methods may improve breeding program resilience, efficiency, and climatic 

adaptation.  

However, Genomic selection and machine learning improve climatic stress resistance, but corn breeding has yet to incorporate 

them. Most research on GS-ML integration has used theoretical models or small-scale trials, failing to depict maize's global 

environmental variability (Xu et al., 2021). Research by Crossa et al. (2017) highlights the need for models that more adequately 

capture genotype-by-environment (G×E) interactions, which are essential for the development of climate-resilient varieties but 

difficult to monitor in data that are very complex. Another problem is that the genetic, phenotypic, and environmental datasets 

that are accessible or of good quality are inadequate. Few studies have combined transcriptomics, proteomics, climate, and soil 

data to develop a comprehensive breeding model. Scalable computational frameworks are often overlooked in the literature, 

limiting prolonged breeding initiatives that may lack advanced machine learning infrastructure (Spindel & McCouch, 2016).  

Interpretable genomic forecasting machine learning models are another unexplored area. Deep learning models are accurate, but 

their complexity may obscure gene-phenotype relationships, which are crucial for breeding decisions (Montesinos-López et al., 

2018).  A comprehensive GS-ML model for corn breeding is created in this study to address these issues. This study integrates 

genomic selection with machine learning algorithms that can manage genotype-environment interactions and various data inputs 

to anticipate crop resilience under climate change more accurately, robustly, and interpretably. This system uses multi-omics data 

and environmental variables to help corn breeding programs generate climate-resilient crops. 

3.0 Genomic Selection in Corn Breeding 

3.1 Principles and Process of Genomic Selection 

Genomic selection (GS) is an advanced approach in crop breeding that determines the breeding value of an individual for a 

particular trait using high-density genetic markers spread throughout the genome (Meuwissen et al., 2001). Unlike traditional 

marker-assisted selection, which focuses on a limited set of specific markers that are associated with traits considered desirable, 

GS employs all available markers and thus allows for a more accurate selection within complex phenotypes governed by many 

genes (Crossa et al., 2017). The initial phase of the GS process involves identifying a training population that has undergone 

genotyping and phenotyping (Figure 1). Models constructed from this data are utilized to ascertain genomic estimated breeding 

values (GEBVs), which indicate an individual's genetic potential for favorable traits (Goddard & Hayes, 2007). These GEBVs 

considerably accelerate the breeding cycle, enabling breeders to make decisions prior to the complete development of phenotypic 

expression.  Selection considerations in GS include the precision of GEBV projections and the genetic advancement per breeding 

cycle. By choosing individuals with the highest GEBVs for resilience traits, breeders can expedite the creation of crop varieties that 

exhibit enhanced resistance to climate stressors such as heat and drought (Jannink et al., 2010). Genomic selection (GS) is an 

effective method for enhancing complex traits as it encompasses both minor and significant genetic influences, especially for traits 

exhibiting low heritability (Hatfield and Prueger 2015).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of a pipeline for genomic selection. 

3.2 Genomic Data in Corn and Relevant Traits for Resilience 

Important resilience traits in maize include resistance to heat, dryness, and insects. Drought resistance is essential since climate 

change is expected to make the water scarcity worse. Cooper et al. (2014) state that the characteristics of drought-resistant maize 
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varieties are controlled by a large number of genes. These characteristics include lower transpiration rates, deeper root systems, 

and improved water-use efficiency. Being able to tolerate high temperatures is essential, particularly during the reproductive stage, 

as too much heat during blooming may result in fewer and smaller kernels. Genomic studies on maize have shown that genes 

responsive to heat influence both the quantity of viable pollen grains and the plant's capacity to tolerate heat stress (Lobell et al., 

2014).  Another important resilience trait is pest resistance. Given that insect ranges are shifting as a result of climate change, maize 

types must be genetically resistant to a wider range of pests, such as the European corn borer and fall armyworm (Deutsch et al., 

2018). Genomic research has identified QTLs for pest resistance; GS models can now incorporate such markers for more effective 

breeding of pest-resistant crops (Nelson et al., 2018). With the identification and use of such genetic markers, GS helps in the 

selection of maize varieties with a proper blend of resistance traits. These traits enable the maize to resist pests and environmental 

stresses. 

3.3 Challenges in Traditional Genomic Selection 

There are disadvantages to GS despite its many potential benefits. One of the biggest issues is managing the large and complex 

datasets required for accurate genetic predictions. The high-throughput genotyping techniques used in GS generate vast amounts 

of data, which must be efficiently handled and understood. Such large datasets are computationally expensive and also require 

complex statistical methods for effective analysis (Crossa et al., 2017). One of the crucial issues in GS is environmental interactions, 

or G×E interactions. Environmental factors significantly influence maize performance, and a relationship between these factors and 

genetic markers may obscure the relationship identified between those genetic markers and observable traits (Jarquín et al., 2014). 

The ability of a genotype selected for drought resistance to behave differently in different environmental conditions hinds the 

accuracy of genomic predictions. For this purpose, complex models are required that incorporate environmental parameters like 

weather and soil conditions to account for G×E interactions and strengthen the reliability of GS models (López-Cruz et al., 2015). 

Another major barrier is the heritability of complex factors, which may be difficult to accurately evaluate with GS alone. Since many 

resilience traits are influenced by multiple genes with minimal individual effects, it is more challenging to ascertain the full genetic 

contribution to these traits (Hatfield and Prueger 2015). While GS offers advantages over traditional breeding, its effectiveness for 

complex traits depends on the quality of the genetic and environmental data used, as well as the accuracy of the prediction models.  

3.4 Machine Learning Techniques for Predictive Breeding 

A lot of complex genetic data is used by ML systems to guess what breeding features will be. This is why they are very important 

for predictive breeding. Machine learning methods such as NN, SVM, and RF are used for genome screening. Firstly, there are 

Random Forests (RF), which use more than one decision tree to make better guesses. It works well with genetic data because it 

can handle large amounts of data without fitting too well (Breiman, 2001). When it comes to RF, the "forest" of decision trees can 

guess difficult features and find links that don't go in a straight line. Heslot et al. say that a number of genes can change how it 

makes predictions. Secondly, Getting help to learn SVM finds the best hyperplane to sort the data. SVM effectively separates 

genetic markers linked to good traits, such as being able to handle disease or drought (Cristianini & Shawe-Taylor, 2000). With 

completed missing values, appropriate feature selection, and normalized data, predictions are much more accurate (Daetwyler et 

al., 2013). Thirdly, Neural Networks (NN): Deep learning models can show that genetic marker links are complicated and not linear, 

which is useful for genomic selection (LeCun et al., 2015). Recurrent neural networks and convolutional neural networks can both 

work with genetic patterns and time series external data. NNs can show how genomic markers and environmental factors work 

together in a complicated way to improve breeding predictions (Montesinos-López et al., 2018).  Genomics selection is helped by 

machine learning methods that try to guess how traits will change in future generations when genes and the environment interact 

in complicated ways.  

4.0 Integrating Genomic Selection and Machine Learning 

Combining genomic selection (GS) and machine learning (ML) can forecast crop output and resilience, especially in maize. The GS-

ML approach uses genomic data from GS and powerful prediction algorithms in ML to generate robust models that account for 

complicated genetic-environmental interactions (Crossa et al., 2017). This approach uses ML algorithms to predict genomic 

estimated breeding values (GEBVs) from a genotyped and phenotyped training population (Goddard & Hayes, 2007). A practical 

GS-ML approach collects high-density genetic data and environmental factors like soil quality and climate, then preprocesses them 

to eliminate noise and fill in missing values. ML methods, which are ideal for genomics, train the model on non-linear and high-

dimensional data. Ensemble methods like random forests or neural network topologies like multi-layer perceptrons can manage 

breeding's many markers and complex trait interactions, making them ideal for GS (Montesinos-López et al., 2018). This integrated 

approach captures genetic and environmental influences on crop performance to improve yield estimates (Jin et al., 2019).  
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Figure 2. Integration of modern genomic tools with genomic selection 

Genomic selection with machine learning, especially for complicated corn breeding traits, has many benefits (Figure 2). First, ML 

algorithms that manage non-linear relationships and interactions between markers increase prediction accuracy for multi-gene 

traits like yield and stress tolerance (Heslot et al., 2012). This accuracy enhances both the selection and genetic gain, which is crucial 

for breeding programs that are time sensitive. Another benefit is that ML algorithms are flexible to new data. In fact, ML models 

can be updated with genotypic, phenotypic, and environmental data, thus becoming more adaptable. This is an important 

requirement in corn breeding as the pressures from drought, temperature, and insects vary every year (Wang et al., 2018). The size 

and complexity of genomic selection datasets go hand in hand; ML systems excel at managing such datasets. Indeed, traditional 

analytical approaches fail with genomic datasets containing hundreds of markers and environmental factors. High-dimensional 

data structures that support application robustness in prediction are efficiently managed by support vector machines and neural 

networks (Gianola et al., 2006). Finally, ML allows multi-trait and multi-environment analysis. Bayesian models and ensemble 

techniques enable breeders to consider genotype-by-environment (G×E) interactions, crucial for forecasting corn performance in 

varied contexts (Jarquín et al., 2014). This allows the selection of high-yielding, environmentally resilient corn cultivars. ML models 

like MLPs and ensemble models show promise in genomic selection for predictive breeding. Multi-Layer Perceptrons (MLPs), MLPs 

are artificial neural networks with numerous layers of neurons that can capture complex, non-linear genetic data correlations. MLPs 

can simulate complex marker interactions and learn from big datasets, making them useful for GS. MLPs are suitable for multi-

gene maize traits like yield and drought tolerance because they improve complex trait prediction accuracy (LeCun et al., 2015). 

MLPs' hierarchical nature makes them successful for high-dimensional genomic data but requires a lot of training data and 

computer capacity (Montesinos-López et al., 2018). In Ensemble Models (Random Forests, Gradient Boosting), Ensemble models 

improve prediction and reduce overfitting by using different methods. Random forests (RF) combine decision tree predictions to 

improve model stability and accuracy. RF can forecast corn production in GS using many genetic markers, even with complicated, 

noisy data (Breiman, 2001). Gradient boosting models, which generate sequential decision trees that correct each other's errors, 

improve genomic selection accuracy with less training data (Heslot et al., 2015). In Bayesian Neural Networks, Useful for genomic 

selection in corn, where G×E interactions are significant, as they incorporate uncertainty into predictions. These models are useful 

for yield prediction in different situations with changeable data. Bayesian networks can improve breeding decisions by providing 

confidence ranges for predictions by integrating probabilistic frameworks (Crossa et al., 2017). These models are implemented 

using a conventional pipeline. Raw genetic and environmental data are normalized, and feature selected to minimize 

dimensionality and focus on key markers (Poland & Rife, 2012). Data is separated into training and testing sets. To improve 

accuracy, training involves parameter adjustment and model selection via cross-validation. To verify robustness before applying 

the model to new breeding populations, independent datasets or multi-environment trials test its predictions (Goddard & Hayes, 

2007). These adaptable, scalable ML models allow maize breeders to accurately forecast yield resilience and other complex traits 

under climate change conditions by merging genomic selection with machine learning. 
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5.0 Challenges and Future Directions 

ML breakthroughs like deep learning and reinforcement learning can assess complex and high-dimensional data, changing genetic 

selection. CNNs and RNNs may model complex trait interactions using non-linear genetic links (LeCun et al., 2015). CNNs excel in 

image-based phenotyping, which quantifies yield-related plant traits, while RNNs excel at time-series data, such as climate patterns 

affecting crop development (Montesinos-López et al., 2018). In ML's reinforcement learning (RL) area, agents learn optimal actions 

by interacting with an environment, adaptive breeding tactics are fascinating. RL can model breeding conditions and develop long-

term genetic gain strategies (Kaelbling et al., 1996). RL could assist breeders evaluate and optimize breeding methods in simulated 

environmental and climate conditions for genomic selection in uncertain climates (Wang et al., 2018). These approaches should 

increase forecast accuracy, manage complex trait interactions, and shorten breeding cycles for climate-resilient breeding (Jin et al., 

2019). Genomic selection and ML integration worked in maize, but they could work in climate-vulnerable crops like wheat, rice, 

and soybeans. ML models can find heat tolerance and yield stability genes in wheat, which is sensitive to temperature increases 

throughout critical growth stages (Lobell et al., 2015). Rice and soybeans, susceptible to drought and insect stress, can benefit 

from ML-assisted genomic selection for resilience (Jarquín et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Application and future direction of genomic selection 

Moreover, ML and genomic selection frameworks must adjust to different climate scenarios beyond crop-specific adaptations as 

climate change affects global agricultural zones. Breeders can employ MET and ML to predict G×E interactions in diverse climates, 

providing consistent selection under changing environmental stresses (Crossa et al., 2017). By adding regional climate forecasts to 

ML models, breeding programs can simulate how various varieties will perform under future conditions like drought frequency or 

higher temperatures, customizing selection for resilience to specific climate risks (Xu et al., 2020). Genomic selection and ML in 

agriculture require strong policy support for data sharing, infrastructure, and collaboration. Big genetic, phenotypic, and 

environmental data drives data-driven agriculture. Data exchange is hindered by privacy, proprietary rights, and lack of procedures. 

Policies must promote data standardization, privacy, and ethics to share data across institutions and regions (Poland & Rife, 2012).  

Also crucial is digital infrastructure investment. Breeding operations, especially in poor countries, may lack strong computers and 

data storage for innovative ML and genomic selection. Cloud and data storage infrastructure funding could democratize these 

technologies (Spindel & McCouch, 2016). Integration of ML-genomic selection requires research collaboration. Cross-disciplinary 

plant, genetic, data, and policymaker collaborations yield unique agricultural solutions. Research collaborations and policy-backed 

multinational partnerships can accelerate climate-resilient crop development (Goddard & Hayes, 2007). Governments and 

organizations should encourage private sector data-driven agriculture to promote and create sustainable agriculture (Jin et al., 

2019).  

 

6.0 Conclusion 

Our integrated approach of GS and ML successfully addresses the non-linear and multidimensional data problem by accurately 

predicting the response of different maize varieties to environmental stresses such as heat and drought. This will not only allow 

for stronger attributes in prediction accuracy but also versatility with the genetic data machine learning will help breed. Comforting 

climate-proof maize varieties are thus a possibility while breeders may benefit from a faster selection process along with better 

consistency in output under varying conditions. The agricultural implications of this combined approach extend far into the future, 
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especially in the context of climate change. Through the synergistic relationship between genetic selection and machine learning, 

flexible breeding practices have emerged. Never before has it been possible to develop crops with such precise environmental 

tolerance, as breeders now consider the intricate interplay between genes and their surroundings. This accuracy in crop production 

optimizes the use of resources, reduces excessiveness, thus reinforcing food security while having a lesser impact on the 

environment. In the face of data-driven predictive breeding technologies becoming increasingly vital for sustainably ensuring 

global food systems, climate change is exerting intense pressures. The marriage of GS and ML has paved the way for a new era in 

predictive breeding, where data-driven technologies and sustainable agriculture converge to boost crop resilience against climate 

change. Furthermore, the research and development funding in this field is crucial. The integration of GS and ML has demonstrated 

promising outcomes, yet prediction models must keep evolving to maintain their relevance and accuracy, given the dynamic nature 

of climate factors. Not only do these methodologies need to grow to encompass other crops and regions, but simpler, more user-

friendly models must also emerge. By doing so, breeding operations across the globe can benefit from these enhanced tools. 

Success in data-driven agriculture hinges on governmental support, interdisciplinary cooperation, and investments in digital 

infrastructure. Just as GS and ML integration has proven successful, farmers who pour their efforts stand to gain improved 

agricultural productivity and enhanced crop resilience against climate change's unexpected challenges. If this momentum 

continues, we may witness more environmentally sustainable agricultural practices in the future. 
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