
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 16

| RESEARCH ARTICLE

Managing Production and Development Infrastructure on AWS

Muthuraj Ramalinga Kumar

Independent Researcher, USA

Corresponding Author: Muthuraj Ramalinga Kumar, E-mail: muthurajramalingakumar@gmail.com

| ABSTRACT

AWS infrastructure management practices have evolved dramatically, transforming enterprise cloud deployments from manual

console configurations to sophisticated Infrastructure as Code (IaC) paradigms. The progression represents a fundamental shift

in cloud resource provisioning approaches, with AWS Cloud Development Kit (CDK) emerging as a cutting-edge solution that

enables teams to define infrastructure using familiar programming languages. This capability enhances development velocity

and code quality through inherent type safety features while presenting challenges that require strategic management.

Infrastructure drift, where deployed resources diverge from codified definitions, necessitates robust detection and reconciliation

processes to maintain system integrity. Environment consistency between production and development resources proves

essential for deployment reliability and security posture, with particular attention to IAM policy alignment and feature flag

standardization. Access management strategies emphasizing role-based controls and separation of duties substantially reduce

unauthorized modifications and accidental disruptions. Serverless architectures introduce unique cost dynamics during testing

phases, requiring specialized approaches such as controlled throttling, local emulation, and constraint analysis to optimize both

testing effectiveness and resource efficiency while managing expenditure.

| KEYWORDS

AWS Infrastructure, Infrastructure as Code, Cloud Development Kit, Infrastructure Drift, Serverless Testing

| ARTICLE INFORMATION

ACCEPTED: 20 May 2025 PUBLISHED: 10 June 2025 DOI: 10.32996/jcsts.2025.7.6.3

1. Introduction

The evolution of AWS infrastructure management represents a significant shift in how organizations approach cloud

deployments. From the early days of manual console configurations to the modern Infrastructure as Code (IaC) paradigm, AWS

tooling has matured substantially to meet enterprise demands. This transformation has been remarkable, with AWS serving as a

primary cloud provider for many organizations worldwide. Industry research indicates that multi-cloud environments are now the

norm, though security professionals consistently report challenges in keeping pace with rapidly evolving cloud application

development cycles [1]. This technical review examines current best practices for managing both production and development

infrastructure on AWS, with a focus on maintaining consistency, security, and cost-effectiveness.

The progression from manual resource provisioning through the AWS Console to YAML-based CloudFormation templates, and

finally to programmatic definitions via the AWS Cloud Development Kit (CDK), has transformed infrastructure management.

Organizations implementing comprehensive IaC practices report significant reductions in configuration drift, with substantially

accelerated deployment cycles compared to manual processes. Teams experience considerable productivity improvements after

transitioning to mature IaC workflows, spending far less time on routine infrastructure management tasks [2].

Modern infrastructure governance requires sophisticated approaches to ensure environments remain manageable and secure at

scale. Cloud security incidents related to misconfiguration continue to increase, with infrastructure drift identified as a primary

concern among security professionals. Organizations with mature IaC implementation paired with automated governance

JCSTS 7(6): 16-23

Page | 17

frameworks typically experience fewer critical security findings during compliance audits. Enterprise AWS environments now

commonly span multiple accounts with numerous distinct resources, creating significant complexity challenges for security and

operations teams working to maintain consistency across development, testing, and production environments [1].

2. Infrastructure as Code with AWS CDK

2.1 Benefits of CDK Implementation

AWS CDK represents the cutting edge of infrastructure management, enabling organizations to define cloud resources using

familiar programming languages rather than configuration files alone. This approach has gained substantial traction in recent

years, particularly among organizations seeking to leverage existing development talent and processes for infrastructure

management [3]. The ability to use mainstream programming languages provides a significant advantage for cross-functional

teams, as developers can apply their existing programming knowledge to infrastructure tasks without learning entirely new

domain-specific languages.

The type safety features inherent in supported languages like TypeScript, Python, and Java deliver measurable quality

improvements throughout the development lifecycle. Organizations implementing CDK report fewer deployment-time errors

and decreased rollbacks due to configuration issues, with most issues being caught during the development phase rather than in

production environments. The compile-time validation capabilities vastly outperform traditional template-based approaches in

preventing common configuration mistakes from reaching deployment stages [3].

Custom constructs have transformed how organizations approach infrastructure standardization, enabling teams to encapsulate

organizational patterns and best practices into reusable components. Enterprise teams commonly create libraries of custom

constructs that embed security policies, compliance requirements, and operational best practices directly into their infrastructure

code. This reusability significantly reduces duplication across projects while simultaneously improving consistency and

governance. The integration capabilities with existing development workflows and CI/CD pipelines further enhance productivity,

allowing teams to treat infrastructure changes with the same rigor as application code [4].

2.2 Challenges in CDK Management

Despite its advantages, AWS CDK introduces challenges that require careful consideration. Complexity management emerges as

a primary concern as infrastructure definitions grow beyond initial implementations. Organizations implementing CDK must

focus on maintaining clean, modular code structures through consistent application of design patterns and architecture

principles [4]. Effective modularization strategies include establishing clear construct boundaries, implementing proper testing

approaches, and maintaining comprehensive documentation.

Version control presents another substantial challenge for organizations adopting CDK. Teams must establish clear strategies for

managing CDK library versions and dependencies across projects, particularly as the AWS CDK itself undergoes continuous

evolution. Implementing consistent dependency management practices, including version pinning and comprehensive testing of

version updates, becomes increasingly critical as deployment footprints expand [3].

The learning curve associated with CDK adoption remains an important consideration for organizations. While developers can

leverage familiar programming languages, they must still invest significant time in understanding both CDK constructs and AWS

service behaviors. Organizations with mature CDK implementations typically establish formal onboarding processes and

knowledge-sharing mechanisms to accelerate team proficiency. Many report that understanding AWS service behaviors requires

more effort than mastering CDK syntax itself, highlighting the importance of cloud architecture expertise alongside

programming skills [4].

Managing Production and Development Infrastructure on AWS

Page | 18

Fig. 1: AWS Infrastructure Management Evolution [3, 4]

3. Managing Infrastructure Drift

3.1 Understanding Infrastructure Drift

Infrastructure drift occurs when the actual deployed resources in AWS accounts diverge from what is defined in the CDK

codebase. This phenomenon has become increasingly common as organizations scale their cloud infrastructure, with enterprises

reporting significant instances of drift across their environments [5]. Most organizations experience drift in their cloud

environments on a regular basis, resulting in substantial impacts including unplanned downtime, security vulnerabilities, and

increased remediation efforts.

This commonly happens when emergency fixes are applied directly in the AWS Console, representing a substantial portion of all

documented drift incidents. Resources modified outside the deployment pipeline and changes made by multiple teams without

proper coordination contribute significantly to drift scenarios. Organizations operating with multiple independent teams

accessing the same AWS accounts consistently report higher drift rates than those with centralized access controls. As

infrastructure scales, the complexity of managing drift increases proportionally, with larger environments exhibiting more

undocumented configuration differences [5].

3.2 Detection and Reconciliation

AWS provides tools specifically designed to identify and address infrastructure drift. CloudFormation Drift Detection offers high

accuracy in identifying differences between expected templates and actual resource configurations across stack analyses.

Organizations implementing automated drift detection report substantial reductions in detection time for configuration

discrepancies, enabling faster remediation [6]. AWS Config's continuous monitoring capabilities have proven especially effective,

with growing adoption as organizations recognize its value in maintaining compliance with expected configurations.

EventBridge Rules have emerged as a powerful complementary tool, with many enterprise AWS customers now implementing

automated alerting for manual infrastructure changes. Organizations leveraging comprehensive drift detection tools report

significant decreases in drift-related incidents and improvements in resolution times. Integration of these detection mechanisms

with operational dashboards has become standard practice, with most organizations employing visibility into drift status.

Automated reconciliation processes demonstrate impressive efficiency improvements, reducing the manual effort required for

maintaining infrastructure consistency [6].

3.3 Balancing Agility and Governance

While the safest approach is to make all changes through the CDK code and deployment pipeline, practical realities sometimes

necessitate direct modifications to production infrastructure. Organizations with mature infrastructure governance frameworks

report achieving high infrastructure consistency while still maintaining agility benefits compared to less governed environments.

JCSTS 7(6): 16-23

Page | 19

These organizations typically establish clear protocols for emergency manual changes, implementing formalized exception

processes that balance security requirements with operational flexibility [5].

Documentation of direct modifications has proven critical, with organizations maintaining comprehensive change logs

experiencing fewer subsequent issues related to undocumented modifications. Implementation of processes to reconcile manual

changes back into CDK code promptly demonstrates significant benefits, with notable reductions in drift persistence duration.

Automated alert systems for drift detection achieve impressive results, enabling organizations to address drift issues before they

impact production systems. Organizations that implement comprehensive drift management strategies report substantial

reductions in configuration-related incidents and decreased recovery times when incidents do occur [6].

Fig. 2: Infrastructure Drift Management in AWS Environments [5, 6]

4. Environment Consistency and Access Management

4.1 Aligning Production and Development Environments

Maintaining consistency between environments is critical for reliable deployments. Recent security analysis of cloud

environments identifies environment inconsistency as a major factor in successful attack vectors against critical infrastructure [7].

Organizations implementing standardized environment parity frameworks report significant reductions in deployment failures

and improved incident resolution times. AWS infrastructure configurations should mirror between environments, with

organizations achieving optimal outcomes when maintaining high configuration consistency rates between production and non-

production resources.

IAM policies governing access to control plane and data plane resources must be consistent, as policy discrepancies account for

a substantial percentage of failed deployments according to analysis of thousands of deployment events. Organizations

implementing automated policy synchronization between environments report fewer permission-related incidents during

deployments [7]. Service limits and quotas should be proportionally aligned, with high-performing organizations maintaining

ratio-based scaling rather than fixed differences. According to cloud optimization data, organizations implementing proportional

quota alignment experience fewer service limit-related failures during production scaling events.

Feature flags and configurations should be managed consistently, preferably through a centralized configuration management

system. Enterprise organizations leveraging configuration-as-code approaches report faster feature deployment cycles and

reduced configuration-related incidents. Implementation of automated environment consistency validation has emerged as a

best practice, with leading organizations performing automated parity checks that capture critical inconsistencies that would

otherwise impact production capabilities and security posture [7].

Managing Production and Development Infrastructure on AWS

Page | 20

4.2 Role-Based Access Control

Implementing proper access controls is essential for both security and operational stability. Recent analysis of cloud security

incidents reveals that a majority of accidental resource modifications occur due to overly permissive access policies [8].

Production access should be limited to necessary team members, with high-performing organizations restricting direct

production access to a small percentage of their technical staff. Organizations implementing strict production access controls

report fewer security incidents related to unauthorized modifications and reduction in accidental infrastructure changes.

Roles should be defined based on specific access needs, with organizations implementing fine-grained permission strategies

developing distinct IAM roles across their AWS ecosystem compared to organizations with less mature access control

frameworks [8]. Not all developers require visibility into production resources, with security benchmarking data indicating that

granting broad read-only production access results in higher rates of sensitive data exposure incidents. Well-scoped IAM roles

minimize risk of accidental modifications, with organizations implementing least-privilege access policies experiencing fewer

accidental resource deletions and reduction in unplanned service disruptions.

Separation of duties should be enforced between environments, with most organizations achieving compliance standards

implementing strict environment-based access segregation. The implementation of emergency access protocols with

comprehensive audit trails has become standard practice, with enterprise AWS customers employing break-glass procedures

that provide temporary elevated permissions with mandatory approval workflows. Organizations with mature RBAC

implementations report spending less time on access-related support tickets and experience faster onboarding for new team

members through standardized role assignments [8].

Fig. 3: Ensuring Consistency and Security Across Environments [7, 8]

JCSTS 7(6): 16-23

Page | 21

5. Cost-Effective Testing Strategies for Serverless Infrastructure

5.1 Understanding Serverless Cost Dynamics

Unlike traditional server-based infrastructure, serverless architectures introduce unique cost considerations during testing.

Studies reveal that organizations allocate a significant portion of their serverless computing budget to non-production

environments, indicating the financial impact of testing activities [9]. Serverless cost dynamics demonstrate different patterns

than traditional infrastructure, with direct correlation between function invocations and billing costs. Organizations

implementing optimized testing strategies report substantial reductions in serverless testing costs while maintaining equivalent

test coverage.

Costs scale directly with usage in serverless environments, with industry analysis showing that unoptimized load tests typically

generate charges several times higher than necessary for equivalent validation coverage. A notable finding indicates that a

majority of serverless testing expenses come from unintentionally long-running functions and testing cycles that continue

executing after errors have been identified [9]. Stress testing generates particularly significant charges, with comprehensive stress

test suites accounting for substantial monthly cost increases across surveyed organizations.

Resource provisioning decisions dramatically affect both performance and cost profiles, with considerable cost differences

between properly provisioned and over-provisioned serverless testing environments. Analysis of Lambda-based applications

shows that provisioning memory allocations based on function-specific profiling rather than standard allocations reduces testing

costs while improving performance. Data access patterns have emerged as another critical cost driver, with inefficient retrieval

during testing resulting in higher database operation costs than optimized patterns [10].

5.2 Techniques for Efficient Testing

Several approaches help teams test serverless applications effectively without excessive costs. Controlled throttling has proven

particularly effective, with intentional reduction of resource allocation showing success in identifying resilience issues while

reducing testing costs compared to full-capacity testing. Organizations implementing systematic resource constraint testing

report capturing critical failure modes that would have otherwise only appeared in production under high load scenarios [9].

Local emulation before cloud deployment demonstrates substantial cost benefits, with organizations leveraging local serverless

emulation tools reporting significant reductions in cloud testing costs. Teams that perform the majority of their functional testing

against local emulators before cloud deployment see considerable improvements in cost efficiency without sacrificing test

coverage. Integration testing strategies leveraging serverless emulation tools have proven especially effective at identifying edge

cases locally before incurring cloud costs [10].

Staged testing approaches, where organizations incrementally increase test load, demonstrate substantial cost reductions

compared to immediate full-load testing. Organizations implementing progressive load increases report capturing performance

degradation issues at lower, less expensive test volumes. Test isolation practices ensure resources are properly scoped and

terminated, with automated cleanup processes reducing orphaned resource costs across enterprises [9]. Monitoring and alerting

implementations focused on testing environments show significant benefits, with organizations reporting high effectiveness in

preventing budget overruns when implementing cost threshold alerts.

5.3 Performance Analysis Under Constraints

Testing application responses to resource limitations provides valuable insights into production behavior. Organizations

deliberately triggering throttling to analyze application resilience report increased identification of potential production failure

modes. According to performance engineering data, controlled constraint testing identifies numerous resilience issues per

application that would otherwise remain undetected in traditional approaches [10].

Testing backoff and retry mechanisms under controlled constraints has proven valuable, with organizations reporting improved

production stability after implementing systematic throttle testing. Applications implementing sophisticated backoff strategies

experience higher success rates under throttling conditions compared to simpler approaches. Evaluating fallback strategies

under resource constraints identifies critical business continuity gaps in many applications, with degraded operation modes

typically requiring fewer resources while maintaining core functionality [10].

Resource utilization measurement under constraint scenarios has emerged as a valuable practice, with organizations reporting

improvements in resource efficiency after implementing findings from constraint-based testing. Applications optimized based on

constraint testing findings experience lower operational costs during peak traffic events compared to applications tested only

under ideal conditions [9].

Managing Production and Development Infrastructure on AWS

Page | 22

Fig. 4: Serverless Testing Strategy Comparison [9, 10]

6. Conclusion

The maturation of AWS infrastructure management represents a critical evolution in cloud computing practices, with

Infrastructure as Code and specifically the AWS Cloud Development Kit transforming how organizations define, deploy, and

maintain cloud resources. The transition from manual processes to programmatic definitions has delivered substantial benefits in

consistency, repeatability, and efficiency, though not without introducing complexities requiring thoughtful management

strategies. Success in modern AWS environments depends on addressing infrastructure drift through comprehensive detection

tools and well-defined reconciliation processes that balance operational flexibility with governance requirements. Environment

consistency emerges as a cornerstone principle, with organizations achieving optimal outcomes when configurations, access

policies, and service limits maintain parity across development and production landscapes. The implementation of fine-grained,

role-based access controls significantly enhances both security posture and operational stability. For serverless architectures,

specialized testing approaches including controlled throttling, staged load increases, and constraint analysis provide dual

benefits of cost optimization and improved resilience identification. Together, these practices establish a framework for

managing AWS infrastructure that supports both agile development velocity and production stability, enabling organizations to

leverage cloud capabilities while maintaining appropriate governance, security, and cost discipline throughout the infrastructure

lifecycle.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

JCSTS 7(6): 16-23

Page | 23

References

[1] AWS for Engineers, "AWS CloudFormation Drift Detection Guide," 2024. [Online]. Available: https://awsforengineers.com/blog/aws-

cloudformation-drift-detection-guide/

[2] AWS, "Best practices for developing and deploying cloud infrastructure with the AWS CDK," 2023. [Online]. Available:

https://docs.aws.amazon.com/cdk/v2/guide/best-practices.html

[3] Frontegg, "What Is Access Management? Risks, Technology, and Best Practices," Enterprise Security Review, 2023. [Online]. Available:

https://frontegg.com/guides/access-management

[4] Jeffrey Chijioke-Uche, "Infrastructure as Code Strategies and Benefits in Cloud Computing," Walden University, 2022. [Online]. Available:

https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?params=/context/dissertations/article/14536/&path_info=ChijiokeUche_waldenu_05

43D_28157.pdf

[5] Kennedy Torkura, "Drift Management in Cloud Infrastructure," Mitigant, 2022. [Online]. Available: https://www.mitigant.io/en/blog/drift-

management-in-cloud-infrastructure

[6] Media Defense, "NSA’s Top Ten Cloud Security Mitigation Strategies," 2024. [Online]. Available:

https://media.defense.gov/2024/Mar/07/2003407860/-1/-1/0/CSI-CloudTop10-Mitigation-Strategies.PDF

[7] Paloalto, "2024 State of Cloud Native Security Report," Security Research Group, Mar. 2025. [Online]. Available:

https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024

[8] Perforce Puppet, "What is Infrastructure as Code (IaC)? Best Practices, Tools, Examples & Why Every Organization Should Be Using It," 2024.

[Online]. Available: https://www.puppet.com/blog/what-is-infrastructure-as-code

[9] SDET, "Performance Testing in a Serverless World: Challenges and Strategies," 2025. [Online]. Available: https://sdettech.com/performance-

testing-in-a-serverless-world-challenges-and-strategies/

[10] Skillmine, "Serverless Architecture: Optimizing Scalability and Cost Efficiency in Cloud Transformation," 2024. [Online]. Available:

https://skill-mine.com/serverless-architecture-optimizing-scalability-and-cost-efficiency-in-cloud-transformation/

https://awsforengineers.com/blog/aws-cloudformation-drift-detection-guide/
https://awsforengineers.com/blog/aws-cloudformation-drift-detection-guide/
https://docs.aws.amazon.com/cdk/v2/guide/best-practices.html
https://frontegg.com/guides/access-management
https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?params=/context/dissertations/article/14536/&path_info=ChijiokeUche_waldenu_0543D_28157.pdf
https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?params=/context/dissertations/article/14536/&path_info=ChijiokeUche_waldenu_0543D_28157.pdf
https://www.mitigant.io/en/blog/drift-management-in-cloud-infrastructure
https://www.mitigant.io/en/blog/drift-management-in-cloud-infrastructure
https://media.defense.gov/2024/Mar/07/2003407860/-1/-1/0/CSI-CloudTop10-Mitigation-Strategies.PDF
https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024
https://www.puppet.com/blog/what-is-infrastructure-as-code
https://sdettech.com/performance-testing-in-a-serverless-world-challenges-and-strategies/
https://sdettech.com/performance-testing-in-a-serverless-world-challenges-and-strategies/
https://skill-mine.com/serverless-architecture-optimizing-scalability-and-cost-efficiency-in-cloud-transformation/

