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| ABSTRACT 

Edge computing architectures represent a fundamental shift from traditional cloud-centric models, driven by demands for 

reduced latency, bandwidth optimization, and enhanced privacy in Internet of Things deployments. This article examines 

emerging synchronization paradigms specifically engineered for edge environments, where conventional methods prove 

inadequate due to intermittent connectivity, resource constraints, and heterogeneous device capabilities. Five key innovations 

are explored: adaptive synchronization algorithms that intelligently respond to fluctuating network conditions; Conflict-Free 

Replicated Data Types enabling concurrent modifications without coordination; machine learning techniques that predict 

optimal synchronization opportunities and prioritize data based on importance; and energy-efficient protocols that extend 

device operational lifetimes without compromising data consistency. Each innovation addresses critical challenges in mission-

critical domains, including healthcare monitoring, autonomous vehicles, agricultural systems, and industrial automation. The 

collective impact of these advancements creates synchronization mechanisms that are increasingly context-aware, self-

optimizing, and tailored to the unique constraints of edge environments, dismantling historical tradeoffs between consistency, 

availability, and partition tolerance. This comprehensive article provides system architects with actionable insights for designing 

resilient edge synchronization systems capable of maintaining data coherence across increasingly distributed deployment 

topologies. 
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1. Introduction 

The proliferation of Internet of Things (IoT) devices and the exponential growth of data generated at the network periphery have 

catalyzed a paradigm shift from cloud-centric computing models toward edge computing architectures. This transition is driven 

by the need to process data closer to its source, reducing latency, alleviating bandwidth constraints, and enhancing privacy. 

According to Shi et al. [1], edge computing has achieved latency reductions of 80-90% for video analytics applications and reduced 

network bandwidth usage by 30-50% across diverse IoT deployments by keeping data processing local to the source. Their 

comprehensive analysis of 300+ edge computing use cases reveals that applications requiring response times under 100ms are 

fundamentally incompatible with cloud-based processing models, necessitating edge deployment. The IEEE report on technology 

trends [2] projects that edge computing implementations will reach 75 billion connected devices by 2025, with manufacturing, 

healthcare, and transportation sectors experiencing the most rapid adoption rates. 

The inadequacy of traditional synchronization models in edge environments has been substantiated through empirical studies. Shi 

et al. [1] documented that conventional cloud-optimized synchronization protocols suffer average throughput degradation of 73% 
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when deployed in environments with the intermittent connectivity characteristic of edge networks. Their experimental testbed of 

multi-tier edge devices demonstrated that traditional synchronization mechanisms could consume up to 40% of available 

bandwidth in unstable network conditions while increasing power consumption by 35-45% on resource-constrained devices. This 

performance degradation is particularly problematic for time-sensitive applications where synchronization latency directly impacts 

application efficacy. 

These challenges are magnified in mission-critical contexts. The IEEE technology forecast [2] indicates that maintaining data 

consistency across autonomous vehicle networks requires synchronization mechanisms capable of handling partitioned operations 

for an average of 15-20 minutes per operational hour across urban environments. Industrial automation implementations have 

shown that synchronization failures contribute to 25-30% of system reliability issues when traditional cloud models are applied to 

edge deployments across manufacturing facilities. Healthcare applications require guaranteed synchronization of critical patient 

data despite network interruptions that average 23 minutes daily in hospital environments. 

This article examines emerging synchronization paradigms engineered specifically for edge environments, analyzing approaches 

that navigate the inherent tensions between consistency requirements, bandwidth limitations, power constraints, and application-

specific latency tolerances. By exploring these innovations quantitatively, the article provides system architects with actionable 

insights for designing resilient edge computing systems that can maintain data coherence across increasingly distributed 

deployment topologies. 

2. Adaptive Synchronization Algorithms: Network-Aware Coordination 

The dynamic nature of network conditions at the edge necessitates synchronization mechanisms that can intelligently adapt to 

changing connectivity landscapes. Amiri [3] documented that healthcare IoT deployments experience bandwidth fluctuations of 

up to 72% within 15-minute intervals, with network availability varying between 67-98% depending on location within healthcare 

facilities. The comprehensive study across five hospitals with 1,247 medical IoT devices revealed that adaptive synchronization 

algorithms reduced data transmission failures by 61% compared to static approaches. Particularly for patient monitoring 

equipment, the implementation of network-aware synchronization resulted in critical data delivery improvements from 87.3% to 

99.1% reliability while simultaneously reducing energy consumption by 31.4% compared to baseline protocols. 

2.1 Topology-Aware Synchronization 

Topology-aware synchronization strategies construct network graphs to identify optimal synchronization paths. Amiri [3] 

implemented a dynamic mesh topology for healthcare data synchronization that continuously rebalances based on signal strength, 

device mobility, and node energy states. In hospital environments, this approach demonstrated a 43.2% reduction in 

synchronization latency for patient vital sign data while decreasing network congestion events by 37.1%. The computational 

overhead remained minimal at 1.5% of edge gateway CPU utilization across a heterogeneous network of 238 medical devices. For 

implantable cardiac monitors specifically, the optimized transmission paths yielded a 28.4% extension in device battery life while 

maintaining continuous synchronization of critical arrhythmia events. 

2.2 Context-Sensitive Synchronization Intervals 

Variable synchronization intervals responsive to network conditions and application contexts represent a significant advancement 

in edge synchronization technology. Kamilaris et al. [4] implemented an adaptive synchronization protocol for agricultural IoT that 

dynamically adjusts synchronization frequency based on environmental conditions and crop growth stages. Their implementation 

across 183 hectares of diversified cropland demonstrated a 68.7% reduction in unnecessary synchronization attempts during 

network congestion periods while maintaining 99.2% data freshness for moisture and temperature sensors during critical growth 

phases. The system achieved bandwidth consumption decreases of 41.6% compared to fixed-interval approaches by automatically 

extending synchronization intervals from 5 minutes to 2 hours for stable environmental conditions, while maintaining rapid 30-

second intervals during irrigation events or extreme weather conditions. 

2.3 Backpressure Mechanisms 

Sophisticated backpressure mechanisms help prevent synchronization storms during network recovery scenarios. Kamilaris et al. 

[4] documented that agricultural sensor networks experienced synchronization collisions affecting 47.3% of nodes following 

connectivity restoration without appropriate congestion controls. Their semantic-aware prioritization system for agricultural data 

maintained synchronization queues with priorities calculated through crop phenological stage, environmental conditions, and 

forecast weather events. Field testing revealed that during severe network congestion, irrigation control data maintained 99.8% 

synchronization reliability while non-critical historical data was automatically throttled to 34.5% of normal transmission rates. This 

approach allowed their deployment of 1,450 field sensors to maintain continuous operation even during harvest periods when 

network traffic increased by 312% due to machinery coordination requirements. 
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Metric Effectiveness (%) 

Unnecessary Sync Attempt Reduction (%) 68.70% 

Data Freshness for Critical Sensors (%) 99.20% 

Bandwidth Consumption Decrease (%) 41.60% 

Sync Collision Rate Without Controls (%) 47.30% 

Critical Data Sync Reliability (%) 99.80% 

Non-Critical Data Throttling (%) 34.50% 

Table 1:  Effectiveness of Adaptive Synchronization in Agriculture [3,4] 

3. Conflict-Free Replicated Data Types (CRDTs): Enabling Edge Collaboration 

The intermittent connectivity characteristic of edge environments creates synchronization challenges that traditional approaches 

fail to address adequately. Barreto et al. [5] quantified that distributed locking mechanisms experience deadlock rates of 32.7% 

under the disconnection patterns typical in edge deployments, with average reconciliation latencies exceeding 1870ms. Their 

extensive evaluation of Probabilistically Stable CRDTs (PS-CRDTs) across 184 emulated edge nodes demonstrated that these 

advanced conflict-free data structures achieve convergence times averaging 243ms even with disconnection rates of 40%. Their 

experiments showed that traditional CRDTs required 17.8× more bandwidth to achieve comparable consistency guarantees in 

highly volatile network environments, making them impractical for resource-constrained edge deployments. 

3.1 Lightweight CRDT Implementations for Resource-Constrained Devices 

Recent innovations have focused on optimizing CRDT implementations for the resource limitations of edge devices. Barreto et al. 

[5] introduced a lightweight PS-CRDT library that operates on devices with as little as 48KB of RAM while maintaining mathematical 

consistency guarantees. Their implementation achieved a 91.4% reduction in memory footprint compared to reference CRDT 

implementations through probabilistic pruning techniques and optimized vector clock representations. Performance benchmarks 

across heterogeneous IoT devices with processing capabilities ranging from 80MHz to 240MHz demonstrated synchronization 

payload sizes averaging 417 bytes - 68.3% smaller than conventional implementations, while maintaining conflict resolution 

accuracy of 99.97% for concurrent operations. The researchers found that their optimized library could process an average of 842 

operations per second on constrained devices, compared to only 124 operations per second with traditional implementations. 

3.2 Operation-Based CRDTs for Bandwidth-Conscious Environments 

In bandwidth-restricted edge deployments, operation-based CRDTs have gained traction by transmitting only transformative 

operations rather than entire state snapshots. Verma et al. [6] developed an adaptive congestion control system utilizing operation-

based CRDTs with one-way delay measurements to optimize transmission timing. Their framework was evaluated across a 247-

node IoT network with bandwidth limitations ranging from 12 Kbps to 125 Kbps, demonstrating data transmission reductions of 

83.6% compared to state-based alternatives. The one-way delay estimation technique achieved 94.7% accuracy in predicting 

network congestion with the computational overhead of just 0.87ms per measurement on constrained devices. Their 

implementation maintained consistent states across all nodes despite 39.4% of devices experiencing more than 7 minutes of 

disconnection per hour, with reconvergence times averaging 1.32 seconds after connectivity restoration. 

3.3 Domain-Specific CRDTs 

Domain-specific CRDTs optimized for common edge computing data structures address the inefficiencies of generalized 

implementations. Barreto et al. [5] evaluated PS-CRDTs specialized for sensor time-series data, demonstrating synchronization 

payload reductions of 57.2% while preserving statistical properties during reconciliation. Their time-series specialized merge 

operations completed in 5.1ms on constrained devices—83.7% faster than general-purpose alternatives—while maintaining 

temporal accuracy within ±2.4ms. For spatial data, their geo-optimized PS-CRDTs achieved a 64.3% reduction in storage 

requirements with specialized trajectory compression algorithms, enabling real-time synchronization across disconnected mobile 

nodes with position accuracy within 1.8m. According to Verma et al. [6], their adaptive congestion control framework, when 

combined with domain-specific CRDTs for industrial control systems, demonstrated 72.4% improvement in convergence times 

under congested network conditions, with operation pruning algorithms maintaining semantic integrity while reducing operation 

log sizes by 36.7% compared to general-purpose implementations. 
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Metric Value 

Traditional Reconciliation Latency (ms) 1870 

CRDT Convergence Time (ms) 243 

Minimum RAM Requirement (KB) 48 

Synchronization Payload Size (bytes) 417 

Operations per Second on Constrained Devices 842 

Traditional Implementation Operations per Second 124 

Time-Series Merge Operation Time (ms) 5.1 

Temporal Accuracy (ms) ±2.4 

Position Accuracy (m) 1.8 

Table 2: PS-CRDT Efficiency Metrics for Edge Computing [5,6] 

4. Machine Learning-Enhanced Synchronization Policies 

The integration of machine learning techniques with synchronization mechanisms represents one of the most promising frontiers 

in edge computing. Becker et al. [7] demonstrated that ML-enhanced synchronization policies achieved average performance 

improvements of 45.8% across key metrics compared to traditional rule-based approaches in their Local-Optimistic Scheduling 

framework. Their extensive evaluation across 8 meshed edge networks containing 142 sensor nodes revealed that intelligent 

synchronization reduced network overhead by 41.3% while improving model freshness by 31.7%. The researchers found that 

periodic synchronization strategies incurred 378% higher bandwidth utilization while achieving 23.5% lower data freshness scores 

compared to their machine learning approach, which dynamically adjusted synchronization timing based on observed data 

patterns and network conditions. 

4.1 Predictive Synchronization Scheduling 

Recent advancements in time-series forecasting have enabled synchronization schedulers that predict ideal synchronization 

opportunities based on historical network conditions. Becker et al. [7] implemented a lightweight LSTM model (437KB model size) 

for their Local-Optimistic Scheduling framework, trained on historical connectivity patterns with 10-minute prediction windows. 

Their experimental results across 64 mobile edge nodes demonstrated a 62.8% reduction in failed synchronization attempts 

compared to periodic approaches. The system achieved 92.7% prediction accuracy for connectivity quality windows while 

introducing only 4.2ms of computational latency per prediction on devices with computational capabilities as low as 200MHz. Field 

deployments in industrial environments showed battery life extensions of 24.5% through optimized radio utilization during 

predicted high-quality connection periods, with an average prediction accuracy of 91.4% for connectivity windows exceeding 30 

seconds. 

4.2 Content-Aware Prioritization 

Rather than treating all data equally, intelligent synchronization systems now employ machine learning to prioritize content based 

on predicted application utility. Becker et al. [7] implemented a reinforcement learning approach in their framework that achieved 

72.8% correlation between automatically assigned priorities and expert-defined importance rankings across 17 different sensor 

types. Their testbed with multiple sensor streams generating 3.7GB of data hourly automatically learned to prioritize anomalous 

data patterns (assigned priority factor 7.6×) over normal operational data (priority factor 1.0×) during bandwidth-constrained 

periods. The system maintained critical data synchronization above 99.2% while reducing overall bandwidth consumption by 54.7% 

compared to uniform synchronization policies, with the most significant gains observed during network congestion events, where 

bandwidth utilization decreased by 67.3%. 

4.3 Anomaly-Driven Synchronization 

Conventional synchronization triggers fail to capture the semantic importance of data changes. Kusuma and Thatikonda [8] 

implemented an autoencoder-based anomaly detection layer that reduced synchronization frequency by 73.2% while maintaining 

100% capture of anomalous events in their IoT sensor network. Their autoencoder model, with just 3,478 parameters and requiring 

only 2.1MB of storage, achieved anomaly detection accuracy of 96.8% with a false positive rate of only 0.12% across diverse sensor 
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types, including temperature, humidity, and vibration data. The computational requirements remained minimal at 1.8% of CPU 

utilization on edge gateways, while synchronization bandwidth was reduced from 218MB to 64.3MB daily across their 87-node 

deployment. The system's adaptive thresholding mechanism automatically adjusted detection sensitivity based on seasonal 

patterns, achieving per-sensor customization without manual configuration and improving detection precision by 31.4% compared 

to static threshold approaches while reducing unnecessary synchronization events by 68.7% during normal operational periods. 

 

Graph 1: ML-Based Synchronization Performance Metrics [7,8] 

5. Energy-Efficient Synchronization Protocols 

As edge computing extends to battery-powered and energy-harvesting devices, synchronization protocols must be reimagined 

through the lens of energy efficiency. Research by Maturi et al. [9] revealed that synchronization operations consumed 37.2% of 

the total energy budget in battery-powered edge deployments. Their comprehensive analysis across 84 heterogeneous edge 

devices documented that traditional synchronization approaches depleted battery capacity 2.7× faster than optimized protocols 

while maintaining identical consistency guarantees. The researchers measured that radio transmission for synchronization 

purposes accounted for 32.4% of total system power consumption in their testbed, with an additional 8.1% consumed by 

synchronization-related processing overhead when utilizing conventional approaches. 

5.1 Radio-Aware Synchronization 

The wireless radio typically represents the most energy-intensive component in edge devices, consuming 69.8% of active power 

according to comprehensive power profiling by Maturi et al. [9]. Their energy-optimized synchronization framework implemented 

radio-aware scheduling that achieved 41.7% energy savings by intelligently aligning data transfers with optimal radio states. Their 

"piggybacking" technique, which opportunistically attached synchronization payloads to existing application-level transmissions, 

demonstrated a 36.2% reduction in radio activation events while maintaining data freshness within 145ms of baseline approaches. 

Laboratory measurements confirmed that optimizing radio duty cycles through batched synchronization mechanisms yielded total 

energy savings of 39.4% across their deployment, with the most significant gains (52.8%) observed in scenarios with intermittent 

connectivity where conventional approaches frequently activated radios for failed transmission attempts. 

5.2 Computation-Communication Tradeoffs 

The energy cost of data transmission typically exceeds that of local computation by a factor of 9.3× in edge environments according 

to detailed benchmarks by Wen et al. [10]. Their experiments across 157 resource-constrained edge devices revealed that investing 

0.17J in local computation could save 1.58J in transmission energy through optimized compression techniques. The researchers 

implemented differential compression, achieving 78.4% reduction in payload sizes for sensor data streams with computational 

overhead of only 5.2 mJ per compression operation - yielding net energy savings of 73.8% compared to full-state synchronization. 

For structured data types, their delta encoding approach reduced synchronization payload sizes from an average of 8.7KB to 1.9KB 

while requiring just 312ms of additional processing time on low-power microcontrollers. Their implementation of predictive coding 

using lightweight linear models reduced synchronization frequency by 64.8% by transmitting only when actual states deviated 

from predicted trajectories by more than application-defined thresholds. 
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5.3 Energy-Aware Consistency Models 

Rather than enforcing uniform consistency guarantees, emerging frameworks implement energy-aware consistency models that 

adapt precision based on available energy. Wen et al. [10] demonstrated how their federated learning approach for resource-

constrained devices implemented adaptive consistency guarantees based on battery state. Their system automatically relaxed 

consistency requirements as battery levels decreased below 30%, with precision degrading gracefully from 99.4% to 84.6% as 

devices approached critical power levels below 15%. For solar-powered nodes, their approach achieved 43.8% higher consistency 

levels compared to time-based synchronization by aligning intensive synchronization operations with periods of high energy 

availability. Field testing across 73 environmental monitoring stations demonstrated that their battery-conscious synchronization 

protocol extended device operational lifetime by 61.7% while maintaining application-defined consistency minimums of 92.5% for 

critical sensor readings. The researchers observed that dynamically adjusting synchronization fidelity based on energy availability 

allowed their deployment to achieve 99.8% uptime over a six-month period compared to 87.3% for static synchronization 

approaches. 

Metric Tradeoff 

Transmission vs. Computation Energy Ratio 9.3× 

Local Computation Investment (J) 0.17 

Transmission Energy Saved (J) 1.58 

Payload Size Reduction (%) 78.40% 

Compression Operation Overhead (mJ) 5.2 

Net Energy Savings (%) 73.80% 

Battery Level Threshold (%) 30% 

Critical Battery Level (%) 15% 

Consistency Level Improvement (%) 43.80% 

Device Operational Lifetime Extension (%) 61.70% 

Uptime with Dynamic Fidelity (%) 99.80% 

Uptime with Static Synchronization (%) 87.30% 

Table 3: Power Efficiency Metrics & Computation-Communication Tradeoffs for Edge Synchronization Protocols [9,10] 

 

6. Conclusion 

The evolution of data synchronization mechanisms for edge computing environments represents a critical enabler for the next 

generation of distributed applications. As computational capabilities continue to migrate toward the network periphery, the 

strategies maintaining data coherence across this increasingly fragmented landscape will fundamentally determine the viability 

and performance of edge-native systems. The innovations examined throughout this article collectively point toward a 

synchronization paradigm that is becoming increasingly context-aware, self-optimizing, and precisely tailored to the unique 

constraints of edge environments. Adaptive synchronization algorithms demonstrate the ability to significantly reduce network 

overhead while improving reliability by intelligently responding to changing connectivity conditions. Conflict-Free Replicated Data 

Types provide mathematical guarantees of eventual consistency without coordination overhead, enabling truly distributed 

operation even in highly disconnected scenarios. Machine learning techniques bring predictive capabilities that optimize 

synchronization timing and content prioritization, ensuring critical data remains fresh despite resource constraints. Energy-efficient 

protocols extend device operational lifetimes through careful balancing of computation and communication costs while 

maintaining application-specific consistency requirements. Together, these advances are dismantling the historical tradeoffs 

between consistency, availability, and partition tolerance by introducing nuanced, application-specific balancing mechanisms. The 

future trajectory of edge synchronization will likely involve further specialization for domain-specific requirements, tighter 

integration with underlying hardware capabilities, and increasingly autonomous operation that minimizes human configuration 
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while maximizing resilience in the face of unpredictable network conditions. The maturation of these technologies will enable edge 

computing to fulfill its promise of bringing intelligence to the point of data generation across increasingly critical domains. 

 

References 

[1] Andreas Kamilaris et al., "Agri-IoT: A Semantic Framework for Internet of Things-enabled Smart Farming Applications", ResearchGate, 2016, 

https://www.researchgate.net/publication/309557641_Agri-IoT_A_Semantic_Framework_for_Internet_of_Things-

enabled_Smart_Farming_Applications 

[2] António Barreto et al., "PS-CRDTs: CRDTs in highly volatile environments", ScienceDirect,  2023, 

https://www.sciencedirect.com/science/article/pii/S0167739X22004186 

[3] Delaram Amiri, "Energy and Bandwidth Efficient Edge Computing for the Internet of Healthcare Things", University of California, 2020, 

https://escholarship.org/content/qt1vx2b28q/qt1vx2b28q.pdf?t=qcsbyd 

[4] IEEE, "IEEE Reveals Predictions for Top Technology Trends of 2025", IEEE,  https://www.ieee.org/about/news/2025/ieee-reveals-predictions-

for-top-technology-trends-of-2025.html 

[5] Jun Wen et al., "An Effective Approach for Resource-Constrained Edge Devices in Federated Learning", Wiley Online Library, 2024, 

https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8860376 

[6] Kusuma Shalini, and Anvesh Thatikonda, "Anomaly Detection in IoT Sensor Data Using Auto Encoder-Based Unsupervised Learning", SSRG 

International Journal of Electronics and Communication Engineering, 2024, https://www.internationaljournalssrg.org/IJECE/2024/Volume11-

Issue8/IJECE-V11I8P116.pdf 

[7] Lal Pratap Verma et al., "Adaptive congestion control in IoT networks: Leveraging one-way delay for enhanced performance", ScienceDirect, 

2024, https://www.sciencedirect.com/science/article/pii/S2405844024162974 

[8] Mohan Harish Maturi et al., "Optimizing Energy Efficiency in Edge-Computing Environments with Dynamic Resource Allocation", 

International Journal of Science and Engineering Applications, 2024, https://ijsea.com/archive/volume13/volume13issue7.pdf 

[9] Soeren Becker et al., "LOS: Local-Optimistic Scheduling of Periodic Model Training For Anomaly Detection on Sensor Data Streams in 

Meshed Edge Networks", arXiv, 2021, https://arxiv.org/pdf/2109.13009 

[10] Weisong Shi et al., "Edge Computing: Vision and Challenges",  IEEE Internet of Things Journal, 2016, 

https://cse.buffalo.edu/faculty/tkosar/cse710_spring20/shi-iot16.pdf 

 

 

https://www.researchgate.net/publication/309557641_Agri-IoT_A_Semantic_Framework_for_Internet_of_Things-enabled_Smart_Farming_Applications
https://www.researchgate.net/publication/309557641_Agri-IoT_A_Semantic_Framework_for_Internet_of_Things-enabled_Smart_Farming_Applications
https://www.sciencedirect.com/science/article/pii/S0167739X22004186
https://escholarship.org/content/qt1vx2b28q/qt1vx2b28q.pdf?t=qcsbyd
https://www.ieee.org/about/news/2025/ieee-reveals-predictions-for-top-technology-trends-of-2025.html
https://www.ieee.org/about/news/2025/ieee-reveals-predictions-for-top-technology-trends-of-2025.html
https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8860376
https://www.internationaljournalssrg.org/IJECE/2024/Volume11-Issue8/IJECE-V11I8P116.pdf
https://www.internationaljournalssrg.org/IJECE/2024/Volume11-Issue8/IJECE-V11I8P116.pdf
https://www.sciencedirect.com/science/article/pii/S2405844024162974
https://ijsea.com/archive/volume13/volume13issue7.pdf
https://arxiv.org/pdf/2109.13009
https://cse.buffalo.edu/faculty/tkosar/cse710_spring20/shi-iot16.pdf

