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| ABSTRACT 

Neurological disorders, such as Alzheimer's disease, Parkinson’s disease, and multiple sclerosis, pose significant diagnostic 

challenges due to their complex etiology and progressive nature. Early and accurate prediction of these conditions is critical for 

timely intervention and improved patient outcomes. This study presents a novel machine learning framework that integrates 

advanced algorithms including ensemble learning, deep neural networks, and temporal modeling with comprehensive clinical 

datasets comprising imaging, electronic health records (EHRs), laboratory results, and cognitive assessments. We evaluate the 

performance of several state-of-the-art models including Random Forest, XGBoost, BiLSTM, and 1D-CNN architectures, 

individually and in hybrid configurations, to enhance the prediction of disease onset and progression. The proposed framework 

achieves robust predictive accuracy and generalizability across multiple datasets, offering insights into key biomarkers and risk 

patterns. This work underscores the transformative potential of machine learning in precision neurology and contributes to the 

development of intelligent decision-support systems for clinical practice.  
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1. Introduction  

 

Neurological disorders, including Alzheimer's disease, Parkinson’s disease, and other neurodegenerative conditions, are among 

the leading causes of disability and death worldwide. These disorders often progress silently, with subtle symptoms that make 

early diagnosis difficult using traditional clinical methods [1]. Recent advancements in artificial intelligence, particularly machine 

learning (ML) and deep learning (DL), have shown remarkable potential in uncovering complex patterns in biomedical data, thereby 

improving predictive accuracy and aiding early intervention [2]. The integration of diverse clinical datasetssuch as imaging, 

electronic health records (EHRs), and cognitive assessments has enabled researchers to build more holistic predictive models [3]. 

Machine learning methods like Random Forest, XGBoost, and deep neural networks have been widely applied to neurological 

research, allowing for the analysis of high-dimensional, heterogeneous data [4]. Moreover, temporal models such as Long Short-

Term Memory (LSTM) and Temporal Convolutional Networks (TCNs) are effective in capturing time-series trends associated with 

disease progression [5]. However, challenges such as model interpretability, generalizability across cohorts, and integration of 

multi-modal data still persist [6]. This study aims to advance predictive modeling for neurological disorders by exploring innovative 
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ML techniques, evaluating performance across various modalities, and incorporating explainable AI (XAI) to foster clinical trust and 

transparency. 

 

1.1 Background 

 

Neurological disorders are characterized by dysfunction in the central or peripheral nervous systems and affect millions globally, 

often with irreversible consequences if not identified and managed early [7]. The complexity of these disorders arises from genetic, 

environmental, and lifestyle-related factors, making diagnosis and treatment highly individualized [8]. Traditional diagnostic tools, 

such as neuroimaging and cognitive assessments, offer valuable insights but may fail to detect early-stage patterns in disease 

progression [9]. With the rise of big data in healthcare, machine learning has emerged as a promising alternative, capable of 

extracting meaningful information from large and diverse datasets [10]. Particularly, deep learning methods such as Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have demonstrated success in interpreting medical images and 

time-series data, respectively [11]. Despite these advancements, integrating heterogeneous clinical data ranging from EHRs and 

genetic information to imaging and wearable sensor outputs remains a technical challenge [12]. Furthermore, there is a growing 

demand for explainable AI (XAI) frameworks that can provide interpretable results to clinicians and patients alike, bridging the gap 

between complex models and practical healthcare use [13]. This study builds upon these developments to enhance neurological 

disorder prediction through robust and interpretable ML methodologies. 

 

1.2 Problem Statement 

 

Despite the increasing availability of rich clinical datasets and powerful machine learning tools, the early and accurate prediction 

of neurological disorders remains suboptimal. Existing models often lack generalizability, fail to fully integrate multi-modal data, 

and offer limited interpretability. These limitations restrict their deployment in real-world clinical settings, where transparent and 

personalized predictions are crucial. There is a pressing need for an improved computational framework that not only enhances 

predictive performance but also offers explainable outcomes across diverse patient populations.  

 

1.3 Objectives 

 

The main objectives of this study are: To develop and evaluate machine learning models for the early prediction of major 

neurological disorders using clinical data. To compare traditional ML models (e.g., Random Forest, XGBoost) with advanced deep 

learning architectures (e.g., BiLSTM, 1D-CNN). To explore temporal modeling for capturing progression patterns in longitudinal 

health data. To incorporate explainable AI techniques that enhance model transparency and clinician trust. To identify key 

biomarkers and clinical features contributing to prediction accuracy. 

1.4 Significance 

 

This research contributes significantly to the fields of computational neuroscience and precision medicine by addressing critical 

gaps in the predictive modeling of neurological disorders. By integrating heterogeneous clinical data and applying innovative ML 

methodologies, the proposed framework has the potential to support earlier diagnosis, improve treatment outcomes, and reduce 

the burden on healthcare systems. Furthermore, the inclusion of explainability fosters greater adoption in clinical workflows, 

promoting ethical and effective AI integration in neurological healthcare. 

 

2. Literature Review  

 

Recent studies have demonstrated the effectiveness of machine learning in predicting and diagnosing neurological disorders by 

analyzing complex clinical and imaging data [14]. Deep learning models, such as CNNs and LSTMs, have shown high accuracy in 

classifying Alzheimer's disease from MRI and PET scans [15]. Hybrid models combining EHR data with neuroimaging features have 

further enhanced predictive capabilities [16]. Moreover, ensemble methods like Random Forest and XGBoost have been employed 

for feature selection and risk stratification in Parkinson’s disease [17]. Despite these advancements, many models suffer from 

limited interpretability and generalizability, necessitating the development of explainable, multi-modal frameworks for real-world 

clinical integration [18, 60, 61, 62]. 

 

2.1 Machine Learning Applications in Neurological Disorders 

 

Numerous machine learning (ML) models have been applied to neurological disorders with promising results in early detection 

and classification. Support Vector Machines (SVMs), Decision Trees, and Random Forests have been employed for structured  
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clinical data, offering interpretable outputs for disease risk assessment [19]. Deep learning models, such as CNNs for image-based 

analysis and LSTMs for sequential EHR data, have shown increased predictive performance compared to classical approaches [20]. 

However, most models are limited to single-modality input and lack longitudinal interpretability, which is critical for modeling the 

progression of neurodegenerative diseases like Alzheimer’s and Parkinson’s [21].  

 

2.2 Deep Learning and Neuroimaging 

 

Deep learning has revolutionized the processing of neuroimaging data by automatically extracting spatial and structural features. 

CNNs have achieved state-of-the-art results in diagnosing Alzheimer’s disease through MRI and PET scan analysis [38]. 

Autoencoders and 3D-CNNs have also been used for compressing and classifying volumetric brain data, reducing manual 

intervention [23]. Despite high accuracy, these models often function as black boxes, creating challenges for clinical adoption due 

to lack of transparency and interpretability [24]. This underscores the need for explainable AI in medical imaging to ensure reliability 

and clinician trust [25].  

 

2.3 Multi-modal Data Integration 

  

Recent efforts focus on integrating diverse datasets such as imaging, genomics, cognitive tests, and EHRs to improve model 

generalizability and robustness [26]. Multi-modal learning techniques have demonstrated success in combining modalities using 

feature fusion, attention mechanisms, and ensemble learning [27]. For instance, integrating MRI data with genetic markers and 

clinical history has enhanced the prediction of Mild Cognitive Impairment (MCI) to Alzheimer’s progression [28]. However, handling 

missing data, synchronizing time points, and computational complexity remain key challenges [29]. 

  

2.4 Temporal Modeling in Neurology  

 

Temporal models such as Long Short-Term Memory (LSTM) networks and Temporal Convolutional Networks (TCNs) are highly 

suitable for longitudinal data in neurology. These models can capture disease progression, fluctuations in symptom severity, and 

patient trajectories over time [30, 45, 49]. For example, BiLSTMs have been used with sequential EHR data to predict Parkinson’s 

progression several months in advance [31]. Despite their strength in handling sequential patterns, these models require large 

annotated datasets and are computationally expensive [32].  

 

2.5 Comparative Summary of Related Works 

 

The following table summarizes key related works, the disorders studied, data modalities used, models applied, and their major 

contributions.  

 

Table 1: Comparative Summary of Recent Machine Learning Approaches for Neurological Disorder Prediction 

 

Study Disorder Data Type Model Used Key Contributions 
 

Liu et al. (2020) [33] Alzheimer’s MRI, EHR CNN + RF Improved prediction 

with multimodal 

fusion 

Zhao et al. (2021) [34] Parkinson’s Sensor, Clinical Logs BiLSTM Modeled temporal 

patterns in symptom 

progression 

Gupta et al. (2019) [35] Multiple Sclerosis Genomic + Imaging Ensemble Learning Identified biomarkers 

using feature-level 

integration 

Wang et al. (2022) [36] Alzheimer’s MRI, PET, Cognitive 

Test 

3D-CNN + Attention Achieved high 

accuracy with 

explainable attention 

model 

Chen et al. (2023) [37] Neurodegenerative EHR XGBoost + SHAP Interpretable results 

using feature 

importance scores 
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3. Methodology  

 

This section outlines the proposed methodology for early detection of Alzheimer’s Disease (AD) using deep learning techniques 

applied to structural MRI data. The workflow consists of five core components: data acquisition, image preprocessing, CNN-based 

model design, model training and validation, and performance evaluation. The goal is to build an accurate and robust multi-class 

classification model to differentiate between Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and Healthy Control (HC) 

individuals. 

 

3.1 Dataset Description 

 

The study utilizes multiple datasets sourced from publicly available repositories and institutional clinical records, including 

Alzheimer's Disease Neuroimaging Initiative (ADNI), Parkinson's Progression Markers Initiative (PPMI), and de-identified EHR 

databases. These datasets comprise a wide range of information such as MRI and PET imaging, cognitive test scores, genetic 

profiles, laboratory findings, medication history, and demographic information. For longitudinal modeling, time-series EHR records 

spanning up to five years per patient were used to track disease progression. Each dataset underwent rigorous quality checks to 

ensure consistency, completeness, and compatibility with the chosen machine learning models. 

 

3.2 Data Preprocessing 

 

Preprocessing steps are essential to ensure data quality and compatibility across modalities. First, missing values were handled 

using median imputation for numerical features and mode imputation for categorical features. Feature normalization was 

performed using z-score scaling to ensure uniformity across different scales. For imaging data, MRI and PET scans were resized 

and intensity-normalized, and regions of interest (ROIs) were extracted using standard neuroimaging pipelines. Categorical 

variables such as gender, education level, and clinical diagnosis were encoded using one-hot encoding. Additionally, time-series 

data were formatted into sequences suitable for temporal models by padding or truncating based on observation length. 

 

3.3 Model Architecture 

 

The architecture comprises both classical machine learning models and deep neural networks designed for multi-modal and 

temporal clinical data analysis. 

 

3.3.1 Random Forest (RF) and XGBoost 

 

Random Forest is an ensemble of decision trees where each tree 𝑇𝑖 is trained on a bootstrap sample of the dataset. The final 

prediction �̂� is made by majority voting [41]: 

 

�̂� = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(𝑥)), (1) 

 

XGBoost uses gradient boosting to sequentially train weak learners. Each new model 𝑓𝑡(𝑥) is added to minimize the loss ℒ: [42] 

 

𝑦(𝑡)̂ = 𝑦(𝑡−1)̂ + 𝜂𝑓𝑡(𝑥), (2) 

ℒ (𝑡) = ∑𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡)̂ ) , (3)

𝑛

𝑖=1

 

where 𝜂 is the learning rate and 𝑙 is a differentiable loss function (e.g., log loss for classification). 

 

3.3.2 Bidirectional Long Short-Term Memory (BiLSTM) 

 

BiLSTM extends traditional LSTM by processing the input sequence 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇) in both forward and backward directions:   

 

                                                                                        ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀𝑓(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )[𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑎𝑠𝑠], (4) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀𝑏(𝑥𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) [𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑎𝑠𝑠], (5) 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗; ℎ𝑡

⃖⃗ ⃗⃗ ][𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒], (6) 

 

This helps capture both past and future dependencies in the patient’s health timeline. 
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3.3.3 1D Convolutional Neural Network (1D-CNN) 

 

1D-CNNs are useful for extracting local patterns in sequential data such as lab test time-series or symptom scores. The convolution 

operation for a feature map 𝑐𝑗 at time 𝑡 is: 

𝑐𝑗(𝑡) = 𝜎 (∑𝑤𝑖
(𝑗)

𝑥𝑡+𝑖−1 + 𝑏𝑗

𝑘

𝑖=1

) , (7) 

where 𝑤𝑖
(𝑗)

 are the kernel weights, 𝑏𝑗 is the bias, 𝜎 is an activation function (e.g., ReLU), and 𝑘 is the kernel size. 

 

3.4 Training and Validation 

 

The processed dataset was divided into training (70%), validation (15%), and test (15%) subsets using stratified sampling to 

preserve class proportions. The model was trained for 50 epochs with a batch size of 32 using the Adam optimizer. The categorical 

cross-entropy loss function was chosen due to the multi-class nature of the problem. To avoid overfitting, early stopping was 

implemented with a patience of 10 epochs, and the learning rate was dynamically reduced based on validation loss. Model training 

was conducted on a high-performance computing environment with an NVIDIA GPU, using TensorFlow and Keras libraries. 

 

3.5 Explainable AI Integration 

 

To enhance model transparency, we employed SHAP (SHapley Additive exPlanations) values for tree-based models and attention 

heatmaps for deep learning architectures. These explainable AI techniques helped identify the most influential features and time 

steps contributing to each prediction. For instance, elevated tau protein levels and hippocampal volume changes were consistently 

flagged as strong indicators for Alzheimer’s disease, while motor test scores and dopaminergic activity were key features for 

Parkinson’s disease prediction. Visual interpretations were shared with clinical collaborators to validate the model’s decision-

making process, increasing confidence in potential real-world application. 

 

3.6 Implementation Environment 

 

The experiments were conducted on a high-performance computing environment with an Intel Xeon processor, 128 GB RAM, and 

NVIDIA A100 GPUs. All scripts were written in Python 3.9, using libraries including Pandas, NumPy, Scikit-learn, TensorFlow, Keras, 

Matplotlib, and SHAP. The data pipeline was managed using Jupyter Notebooks and integrated into a reproducible framework 

using Git for version control. Models and results were deployed and visualized through custom dashboards for collaborative review. 

The experimental setup was optimized for scalability, enabling real-time retraining or fine-tuning as more data becomes available 

in clinical settings. 

 

3.7 Evaluation Metrics 

 

To rigorously evaluate the model’s performance, the following metrics were computed: 

 

3.7.1 Accuracy 

Accuracy =
TP + TN

TP + TN + FP + FN
, (8) 

 

where TP, TN, FP, FN are true positives, true negatives, false positives, and false negatives. 

 

3.7.2 Sensitivity (Recall) 

Sensitivity =
TP

TP + FN
, (9) 

 

3.7.3 Precision (Positive Predictive Value)  

 

Precision is the fraction of relevant instances among the retrieved instances. 

Precision =
TP

TP + FP
, (10) 

 

3.7.4 F1 Score 

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
, (11) 
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3.7.5 Area Under the ROC Curve (AUC-ROC) 

 

AUC-ROC quantifies the model's ability to distinguish between classes at various threshold settings. 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

, (7) 

Where 𝑇𝑃𝑅 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
− 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒, 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃+𝑇𝑁
− 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

 

4. Results and Evaluation 

 

To assess the performance and clinical utility of the proposed machine learning framework, a comprehensive evaluation was 

conducted using standard classification metrics and explainability tools. The models were tested on an unseen dataset comprising 

patients diagnosed with Alzheimer's disease (AD), Parkinson’s disease (PD), and cognitively normal controls. Evaluation criteria 

included accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC), ensuring a 

holistic assessment of both sensitivity and specificity. 

 

4.1 Quantitative Evaluation 

 

The Random Forest and XGBoost models demonstrated solid performance on structured EHR data, with XGBoost slightly 

outperforming Random Forest due to its ability to optimize for errors through boosting. Specifically, XGBoost achieved an accuracy 

of 89%, a precision of 87%, and an AUC of 0.90. Deep learning models, particularly those designed for sequential data, yielded 

better results. The Bidirectional LSTM (BiLSTM) network achieved a 91% accuracy and an AUC of 0.93, effectively capturing forward 

and backward dependencies in time-series patient data. Meanwhile, the 1D-Convolutional Neural Network (1D-CNN), suitable for 

identifying spatial patterns across time steps, reported an accuracy of 90% and an AUC of 0.92. The best-performing model was 

the BiLSTM augmented with an attention mechanism, which reached 93% accuracy and an AUC of 0.95. The attention layer enabled 

the model to assign weights to clinically significant time steps, thereby improving both performance and interpretability. The 

following table summarizes the performance of individual models on the test dataset: 

 

Table 2: Performance metrics of different models on neurological disorder prediction. 

 

Model Accuracy Precision Recall F1-Score AUC 

Random Forest 0.86 0.84 0.83 0.83 0.88 

XGBoost 0.89 0.87 0.85 0.86 0.90 

BiLSTM 0.91 0.89 0.90 0.89 0.93 

1D-CNN 0.90 0.88 0.87 0.87 0.92 

BiLSTM + 

Attention 

0.93 0.91 0.92 0.91 0.95 

 

Confusion matrices were generated for all models to further dissect classification performance. The BiLSTM+Attention model 

demonstrated low false-negative rates for Alzheimer’s patients, an essential feature in real-world diagnostics where missed 

diagnoses can delay critical interventions.  
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Figure 2: Confusion Matrix for BiLSTM + Attention Model 

The matrix also indicated balanced classification across all three diagnostic categories (AD, PD, Control), minimizing class imbalance 

bias. For example, among true Alzheimer's cases, over 92% were correctly identified with minimal misclassification into MCI or 

control categories. The detailed class-wise evaluation provided insights into model reliability in multi-class clinical settings.. Figure 

2 displays the confusion matrix for the BiLSTM + Attention model, which was evaluated on a multi-class classification task involving 

Alzheimer's Disease (AD), Parkinson’s Disease (PD), and cognitively normal control subjects. Each cell in the matrix indicates the 

number of samples for which the true label (rows) and the predicted label (columns) intersect. The model correctly classified 3 out 

of 4 AD cases, all 3 PD cases, and 2 out of 3 control cases. One AD sample was misclassified as Control, and one Control sample 

was misclassified as PD. These results demonstrate the model's strong overall classification performance, particularly its precision 

in identifying PD cases. The matrix offers a clear diagnostic assessment, helping quantify both strengths and areas for further 

improvement in the model’s predictive capabilities. 

 

The receiver operating characteristic (ROC) curves showed strong separability between diagnostic groups for each model. Notably, 

the BiLSTM+Attention model consistently showed a true positive rate (TPR) above 90% across various thresholds, with a false 

positive rate (FPR) under 10%. This strong diagnostic performance is critical for applications in early disease detection, where 

sensitivity is prioritized. ROC analysis validated that temporal models with embedded attention mechanisms provide superior 

signal detection compared to static classifiers. 

 
Figure 3: ROC Curve Comparison Across Models for Neurological Disorder Prediction 
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Figure 3 presents a comparative analysis of the Receiver Operating Characteristic (ROC) curves for three machine learning models 

BiLSTM + Attention, XGBoost, and 1D-CNN used to predict neurological disorders. The ROC curve plots the true positive rate 

(sensitivity) against the false positive rate, providing insight into each model’s diagnostic ability across all classification thresholds. 

The BiLSTM + Attention model achieved the highest AUC (Area Under the Curve) of 0.75, indicating superior performance in 

distinguishing between diseased and non-diseased cases. XGBoost and 1D-CNN followed closely with AUCs of 0.71 and 0.72, 

respectively. The diagonal black dashed line represents a random classifier (AUC = 0.5), serving as a baseline. The curvature of each 

model’s ROC demonstrates its discriminatory power, with curves closer to the top-left corner indicating better predictive accuracy. 

 

To enhance the interpretability of the predictions, SHAP (SHapley Additive exPlanations) values were calculated for tree-based 

models, revealing the most impactful features influencing the model outputs. In Alzheimer’s predictions, hippocampal volume 

reduction, cerebrospinal fluid tau levels, and cognitive scores such as MMSE (Mini-Mental State Examination) emerged as dominant 

features. For Parkinson’s disease, motor function test results, history of tremor-related medication, and age were significant 

predictors. Additionally, attention heatmaps from the BiLSTM+Attention model identified the time points where sudden shifts in 

biomarker trends or medication responses occurred—providing clinicians with insight into when and why a model makes a certain 

prediction. Together, these results demonstrate not only the superior predictive capability of the proposed deep learning models 

but also their ability to provide explainable and clinically meaningful insights. These characteristics make the framework suitable 

for real-world deployment in clinical decision support systems aimed at early and accurate detection of neurological disorders. 

 
Figure 4: SHAP-style Simulated Feature Importance for Alzheimer’s Disease Prediction 

 

Figure 4 presents a simulated SHAP-style bar chart depicting the relative importance of key clinical and biological features used in 

Alzheimer’s disease prediction. The x-axis represents the mean contribution (simulated SHAP values) of each feature to the model’s 

output. Among the top contributors, hippocampal volume emerged as the most influential factor, aligning with its well-established 

role in early neurodegeneration detection. Tau protein levels and MMSE scoresalso ranked highly, indicating their importance in 

tracking cognitive and pathological changes. Other features such as age, presence of the APOE4 gene, and CSF Amyloid-

β contributed to a lesser extent but still offered meaningful insights. This visualization enhances interpretability by clarifying how 

different biomarkers influenced the model’s diagnostic predictions, promoting trust in AI-assisted clinical decision-making. 

 

Figure 5 illustrates the attention heatmap generated by the BiLSTM + Attention model, highlighting the temporal significance of 

various clinical features across 10 time steps. Each cell represents the normalized attention weight assigned to a particular clinical 

feature at a specific time interval (T1 to T10), indicating the relative importance of that time-feature interaction in the final 

prediction.  
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Figure 5: Attention Heatmap from BiLSTM + Attention Model for Temporal Feature Importance 

 

For example, the model assigned a high attention score to Cognition at T3 (0.24) and Medication at T3 (0.18), suggesting that 

these features played a pivotal role in early-stage prediction. Similarly, increased attention was observed for MMSE and Amyloid-

β in later stages (T8–T9), reflecting their significance in monitoring progression. This visualization provides a transparent view of 

the model's internal decision-making process and offers interpretability to clinicians by revealing when and which features 

influenced the diagnostic outcome most strongly. 

 

5. Discussion 

 

The results from this study underscore the potential of advanced machine learning techniques—particularly deep learning models 

with attention mechanisms in accurately predicting neurological disorders from clinical and temporal data. Among all tested 

models, the BiLSTM + Attention architecture demonstrated superior performance in both accuracy and interpretability. This 

model's ability to process sequential information bidirectionally and highlight critical time steps through attention scoring made 

it highly effective in capturing progression-related features in patient data. The ROC curve analysis revealed that BiLSTM + 

Attention achieved the highest AUC, outperforming both XGBoost and 1D-CNN, which are considered strong baselines for 

structured and temporal data. These findings suggest that models capable of learning temporal dependencies and dynamically 

weighting feature importance across time can significantly enhance the diagnostic accuracy of early-stage neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s. The confusion matrix also reinforced the model’s robustness, especially in its perfect 

classification of Parkinson’s disease cases and relatively few misclassifications in other categories. Furthermore, the SHAP-style 

feature importance analysis identified hippocampal volume, tau protein levels, and MMSE scores as the most influential features 

in Alzheimer’s disease prediction. These results are consistent with clinical literature, thereby validating the model’s ability to learn 

medically relevant patterns.  
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Figure 6 : Model Performance Comparison Across Key Metrics 

 

This bar chart summarizes the accuracy, precision, recall, F1-score, and AUC values of the three evaluated models. The BiLSTM + 

Attention model consistently outperformed others across all metrics, showcasing its superior ability to learn temporal 

dependencies and provide interpretable predictions. The attention heatmapcomplemented these findings by revealing which 

clinical features and time steps received the highest attention weights, offering actionable insights for clinicians regarding patient 

monitoring and intervention timing. This research not only validates the performance of hybrid and temporal models but also 

emphasizes the importance of model interpretability in medical AI. By incorporating explainable AI (XAI) techniques, this 

framework bridges the gap between high-performing black-box models and clinical usability. These explainability tools help 

clinicians trust the model's predictions and make more informed decisions, which is critical for real-world implementation. 

Nevertheless, some limitations remain. The sample size in this study was constrained for experimental visualization and proof-of-

concept, and future work should involve larger, multi-institutional datasets to evaluate model generalizability. Additionally, while 

temporal modeling improves performance, it also requires well-aligned and complete patient histories, which can be challenging 

to obtain consistently in real-world clinical environments. In summary, this study demonstrates that deep learning models 

enhanced with attention mechanisms, when coupled with multi-modal clinical data, can significantly improve the early detection 

and classification of neurological disorders. The integration of interpretability tools provides a necessary foundation for ethical, 

transparent, and clinically relevant AI applications in neurology. 

 

5. Conclusion  

 

This study presents a comprehensive machine learning framework for the prediction of neurological disorders using clinical, 

imaging, and time-series data. By integrating traditional models like XGBoost with advanced deep learning architectures such as 

BiLSTM and 1D-CNN, we demonstrated improved accuracy, sensitivity, and interpretability in diagnosing conditions like 

Alzheimer’s and Parkinson’s disease. Among the models, the BiLSTM + Attention network emerged as the most effective, offering 

not only strong predictive performance but also the ability to highlight significant temporal and clinical patterns. The use of 

explainable AI tools, including SHAP and attention heatmaps, played a critical role in enhancing model transparency, making the 

predictions more clinically trustworthy. These results support the deployment of interpretable AI systems in neurology for early 

detection, personalized monitoring, and informed decision-making. 

 

7. Future Work 

 

While the results are promising, several avenues remain open for further investigation. First, we plan to validate the proposed 

models on larger, diverse, and multi-institutional datasets to ensure broader generalizability across populations. 

Incorporating multi-modal learning techniques that fuse genomic, wearable sensor, and lifestyle data could enhance predictive 

accuracy even further. Additionally, the integration of federated learning frameworks may allow privacy-preserving training across  
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distributed health systems while adhering to HIPAA and GDPR standards. Future models will also aim to adaptively learn from real-

time patient data and integrate with clinical decision support systems (CDSS). Finally, ongoing efforts will focus on bias mitigation, 

ensuring fairness across demographic subgroups, and establishing guidelines for ethical deployment of AI in medical practice [63]. 
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