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| ABSTRACT 

Generative AI represents a powerful new layer of automation for data engineering. When leveraged responsibly, it can improve 

efficiency, reduce errors, and even enable non-experts to contribute to data workflows, all while allowing expert data engineers 

to tackle more ambitious challenges. We are witnessing the early stages of this transformation. By staying informed of the latest 

tools, adopting best practices for AI usage, and continuously refining the human-AI partnership, data engineering teams can ride 

this wave to build more intelligent, adaptive, and robust data pipelines than ever before. The future data platform may very well 

be a co-creation of human engineers and AI, each complementing the other’s strengths – and the organizations that embrace 

this symbiosis will be positioned at the forefront of the data-driven era. 
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I. Introduction 

Generative Artificial Intelligence (GenAI) is rapidly reshaping how data engineering tasks are approached in modern organizations. 

GenAI refers to AI systems, often built on large language models (LLMs), that can produce new content (code, text, even data) in 

response to natural language prompts. For data engineers, this means many routine or complex tasks—such as writing 

transformation code, generating SQL queries, documenting pipelines, or even detecting anomalies—can now be assisted or 

automated by AI. Early evidence shows significant productivity gains: for example, developers using AI pair-programming tools 

have completed coding tasks up to ~55% faster than those without AI support [3]. This suggests GenAI has the potential to 

dramatically reduce development time and effort in data engineering workflows. 

At the same time, the adoption of GenAI in data engineering is just beginning. A recent industry survey found that as of 2024 only 

about 33% of data professionals report using generative AI in their work, but more than 55% expect to benefit from it soon in 

areas like self-service data exploration [10]. This indicates a strong interest and optimism around GenAI’s impact on data 

engineering. As organizations experiment with LLM-powered assistants (e.g. ChatGPT, Copilot) and platform vendors embed GenAI 

into their data tools, it is crucial to assess where GenAI provides the most value, how it can be applied across the data engineering 

lifecycle, and what challenges must be managed. 

This paper provides an in-depth overview of leveraging GenAI for data engineering. We survey the landscape of GenAI 

technologies applicable to data engineering and discuss major use cases ranging from ETL automation and pipeline generation to 

schema mapping, data quality improvement, documentation, and query generation. We review prominent tools and platforms 

(OpenAI GPT-4, Databricks Assistant, GitHub Copilot, AWS CodeWhisperer, Glean, etc.) and highlight industry examples and 

empirical evidence on productivity gains (e.g. time savings, error reduction). We also examine challenges—such as trust, 
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hallucinations, reproducibility, integration with existing stacks, and data governance—and consider best practices to address them. 

Finally, we discuss emerging opportunities and future outlook, arguing that GenAI will augment rather than replace data engineers, 

enabling them to focus on higher-level problems as routine work is automated [2]. Throughout, we include figures and references 

to illustrate workflows, compare tools, and ground the discussion in real-world data. 

II. GenAI Technologies Applicable to Data Engineering 

Generative AI encompasses a range of model types and techniques that can be applied to data engineering tasks: 

● Large Language Models (LLMs): These are neural networks trained on massive text corpora capable of understanding 

and generating human-like text. LLMs (like GPT-4, ChatGPT, PaLM, etc.) can interpret natural language prompts and 

produce outputs such as code, explanations, or documentation. In data engineering, LLMs serve as general-purpose 

assistants – for example, generating SQL queries from a description, writing Python/Scala code for data transformation, 

explaining the meaning of a log error, or producing a summary of a dataset. LLMs fine-tuned on code (e.g. OpenAI Codex, 

Google Codey) are particularly adept at code generation tasks [2], making them valuable for automating ETL script writing 

and pipeline coding. 

 

● Code Generation Models: A subset of LLMs specialize in writing code given natural language (or even partial code as 

context). OpenAI Codex and its derivatives power tools like GitHub Copilot, which autocompletes code in real-time based 

on context. These models have been trained on large volumes of source code and can produce syntactically correct code 

in languages commonly used by data engineers (SQL, Python, Java, Scala, etc.). Code generation AI can dramatically speed 

up development of data pipelines by suggesting boilerplate code, complex query syntax, or API calls, allowing engineers 

to focus on logic rather than syntax [2]. 

 

 

● Data-to-Text Generators (Natural Language Generation): These AI systems take structured data as input and produce 

human-readable text. In data engineering, such generative models can be used to create summaries and reports from 

datasets or dashboards, or to generate data documentation. For instance, an NLG model could read the schema and 

contents of a database table and generate a descriptive summary of what the table contains. Modern LLMs are often 

capable of data-to-text generation if prompted appropriately, enabling automated report writing or explanation of data 

profiles in plain English. 

 

 

● Generative Models for Data Synthesis: Beyond text and code, generative AI also includes techniques to create synthetic 

data. For example, generative adversarial networks (GANs) or variational autoencoders can produce synthetic datasets 

that mimic real data distributions. While traditionally used in computer vision or simulation, synthetic data generation 

has value in data engineering for creating realistic test data to validate pipelines or to augment imbalanced datasets [1]. 

By generating artificial records that follow the same statistical patterns as production data (but contain no sensitive 

information), data engineers can test ETL processes and machine learning models without risking privacy. 

 

● AI for Data Cleaning & Transformation: Some generative models can learn to “autocomplete” or correct data. For 

example, an LLM given a partially cleaned dataset might predict standardizations for inconsistent entries (e.g. various 

spellings of a country name) or even generate transformation rules. Additionally, diffusion models and others used in 

imaging aren’t directly used in data engineering, but analogous concepts exist (like treating data anomalies as “noise” 

that an AI model could learn to remove or impute missing values by “generating” plausible values). 

 

Underlying these applications is the ability of GenAI models to learn patterns from vast training data and produce contextually 

relevant outputs. When applied to data engineering, they essentially leverage learned knowledge of programming, databases, and 

data patterns to automate or assist with tasks that normally require significant human effort or expertise. 

III. Use Cases of GenAI in Data Engineering 

Generative AI can assist at nearly every stage of the data engineering lifecycle. Here we outline major use cases and scenarios 

where GenAI adds value: 
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A. Automating ETL/ELT and Pipeline Generation 

One of the most impactful use cases is automating the creation and maintenance of data pipelines (ETL/ELT processes). Data 

engineers traditionally spend considerable time writing code or configuring tools to extract data from sources, transform it into 

the desired format, and load it into targets. GenAI can automate large parts of this workflow: 

● Pipeline Code Generation: With a natural language description of a data workflow, an AI assistant can generate the 

skeleton code or configuration for an ETL pipeline. For example, a user might prompt, “Ingest CSV files from S3, filter 

where status is active, join with a reference table in Snowflake, and load to a PostgreSQL table”. A sufficiently trained LLM 

can translate this into pseudocode or even actual code using frameworks (like PySpark, SQL, or an Airflow DAG definition). 

In fact, new tools like SnapLogic’s SnapGPT are designed to do exactly this – “create fully functional data pipelines... using 

simple natural language instructions” [7]. This dramatically accelerates the initial development of pipelines. 

 

● ELT Script Writing: For ELT (extract-load-transform in the warehouse) scenarios, GenAI can generate SQL scripts to 

transform raw data into analytics-ready tables. Given a description of the transformation logic or target schema, an LLM 

can write the series of SQL statements needed. This is essentially code generation specialized to SQL. Many data engineers 

already use ChatGPT-like assistants to help write complex SQL queries or dbt transformation models from descriptions, 

which saves time and avoids syntax errors. 

 

 

● Self-Updating “Dynamic” Pipelines: More advanced applications envision pipelines that monitor and modify themselves 

using GenAI. As one author describes, combining the scriptable nature of pipelines with an LLM’s code generation ability 

could yield “dynamic, self-updating ETL processes” [8]. Figure 1 depicts a pipeline that can “heal” itself by having an AI 

agent continuously oversee each execution, spot errors or slowdowns, and initiate remedies—whether replaying data, 

tweaking schemas, or scaling resources—to keep the workflow running end to end. When an unexpected change (like an 

added column) breaks a transformation, the system can automatically revise the SQL or mapping logic to accommodate 

it. Although fully autonomous pipelines [8] remain aspirational, today’s monitoring tools are already beginning to embed 

these intelligent diagnostics and on‑the‑fly repairs. 

 

Figure 1: Self-Healing Pipeline Example 

 

● Pipeline Configuration and Orchestration: Beyond code, GenAI can assist in configuring pipeline schedules, dependencies, 

and workflows. A natural language interface can help users specify scheduling rules (“run this job daily at 6am after job 

X”) and an agent translates that into the orchestration platform’s configuration (Airflow DAG, etc.). This lowers the bar for 

setting up complex data workflows. 

Real-world examples of these use cases are emerging. Databricks CEO has noted that in their platform, one can now use an AI 

assistant to “build data pipelines [from scratch], [generate] SQL queries, and even data visualizations” via conversational prompts 

[5]. SnapLogic’s generative integration tool (SnapGPT) can not only create pipelines and SQL, but also generate synthetic test data 

to validate those pipelines [7], illustrating an end-to-end pipeline development assistant. While human oversight is still required 
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(especially for logic accuracy and performance tuning), GenAI can offload much of the repetitive grunt work in pipeline 

development and drastically speed up the process from idea to production. As a result, data engineers can iterate faster and handle 

more pipelines with the same resources. 

B. Schema Mapping and Data Integration 

Data integration often involves merging data from heterogeneous sources with different schemas, which requires mapping fields 

that have different names or formats but equivalent meaning. Generative AI can significantly assist with schema mapping, a 

traditionally tedious task: 

● Automated Field Matching: LLMs can understand semantic similarities between field names or descriptions. For instance, 

if one dataset uses cust_id and another uses customer_id, an AI can infer that these likely refer to the same concept and 

suggest mapping them [9]. In general, when confronted with two schemas, an LLM can propose a mapping of columns 

in one to columns in the other by drawing on its knowledge of common naming conventions. This goes beyond simple 

string similarity by incorporating context; e.g., mapping DOB to birth_date or AddressLine1 to street_address. An 

experimental study found that LLM-based approaches can perform schema matching competitively with traditional rule-

based methods by leveraging their broad knowledge [13]. 

 

● Transformations for Compatibility: Often it’s not just names that differ, but formats (one system might split full_name into 

first/last, or store dates differently). GenAI can generate transformation code needed to reconcile these. For example, if 

one schema has a single address field and another separates city/state/ZIP, an AI could generate the code to split or 

combine fields appropriately once told which format is needed. 

 

● Ontology Alignment: In more complex scenarios like data warehouse integration or master data management, aligning 

entire ontologies or data models is required. GenAI can assist by describing how a concept in one ontology maps to 

another in natural language and even generating queries to transform data accordingly. It can also help generate 

metadata – e.g. if a target system needs a data dictionary entry for each field, an AI can draft those descriptions based 

on the field usage. 

The benefit of AI-driven schema mapping is accelerated integration and reduced human error. Instead of manually combing 

through dozens of column names, data engineers can have AI suggest mappings, which they then confirm or adjust. A blog 

example shows how an LLM, when asked, automatically noted that one table’s cust_id corresponds to another’s customer_id and 

suggested how to handle it [9]. This kind of assistance is like having an intelligent data analyst who has seen many schemas and 

can guess the alignments. Of course, human validation is needed to ensure correctness, but the initial heavy lifting is done by the 

AI. As enterprises deal with increasingly diverse data (CRM, web analytics, IoT streams, etc.), AI-based schema mapping can 

accelerate projects such as system migrations, data lake ingestion, and building unified views of customers. It also reduces errors 

that come from overlooked fields or mis-mapped types. 

C. Data Cleaning and Quality Improvement 

Maintaining reliable data quality is essential for effective data pipelines. Figure 2 highlights how Generative AI introduces intelligent 

methods to improve data integrity across four critical areas: it detects anomalies by learning normal data patterns, analyzes logs 

to pinpoint pipeline errors, standardizes and transforms inconsistent data, and addresses gaps or imbalances through data 

imputation and augmentation. Together, these GenAI-powered capabilities offer a modern, context-aware approach to automating 

data cleaning and quality assurance. 
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Figure 2 : Data Cleaning and Quality Improvement using Generative AI 

● Anomaly Detection with Generative Models: Traditional anomaly detection uses statistical rules or trained discriminative 

models to flag outliers. Generative AI provides an alternative by modeling what “normal” data looks like and then 

identifying deviations. For example, an autoencoder or a generative network can be trained on historical normal data; 

when new data is passed through, any high reconstruction error suggests an anomaly. In practice, LLMs can also detect 

anomalies in sequences or logs by recognizing when a pattern doesn’t fit usual behavior. One approach is to have an 

LLM (fine-tuned on domain data) classify whether a data point seems plausible or not. In fraud detection or sensor data 

monitoring, “train generative models on normal data patterns and use them to detect deviations” [1]– this approach has 

been proposed to catch complex anomalies that simpler methods miss. For example, feeding a model lots of legitimate 

transactions so it learns the distribution, then having it flag transactions that have very low probability under that 

distribution, indicating fraud. 

 

● Error Identification in Pipelines: When data pipelines fail or produce bad data, the cause is often buried in logs or subtle 

data issues. LLM-based assistants can help parse error logs and pinpoint issues. An AI can ingest a log trace from a failed 

ETL job and summarize the error in plain language, even recommending a likely fix (“Column X contains invalid dates, 

consider converting data type”) [9]. By quickly highlighting the root cause, AI reduces time to resolution. GenAI can also 

monitor data statistics (e.g., distribution of values, null counts) over time and alert when something drifts abnormally – 

essentially providing an AI-powered data observability. 

 

● Data Cleaning and Harmonization: LLMs can be surprisingly effective at certain data cleaning tasks. Given a prompt with 

examples, a model like GPT-4 [17] can perform transformations such as standardizing formats, correcting typos, or 

splitting/merging fields. For instance, one could prompt: “Convert the following dates to ISO format” or “Standardize 

these country names to English”. The model will output the corrected values. While not as rigorous as coding rules, this 

can be useful for quick one-off cleaning or suggesting the cleaning logic to implement. In fact, an AI can act like an 

analyst-level data janitor – “converting location names from one language to another, adjusting units (e.g., different units 

to a common unit), or extracting attributes from unstructured text” [8], all tasks that used to require custom scripts. 

 

● Imputation and Augmentation: When data is missing or imbalanced, generative models can create synthetic entries. For 

missing data, an AI might fill in a likely value (with appropriate uncertainty labeling). For class imbalance, oversampling 

via synthetic generation (akin to SMOTE, but using a generative model) can improve downstream ML. While caution is 

needed to avoid introducing bias, these techniques can improve dataset quality for machine learning training. 

 

● Continuous Data Quality Monitoring: By integrating an LLM in the pipeline, it could continuously “watch” data and note 

quality issues. For example, if a normally stable field suddenly has unusual values, the AI could flag it in a dashboard with 

an explanation. This moves toward autonomous data quality management. 
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In summary, GenAI can serve as a diligent assistant that never gets tired of checking data. It can catch issues faster and sometimes 

more intelligently by leveraging context and learned knowledge. An anecdotal example: an LLM monitoring an ETL job might 

detect that a “gender” column started receiving free-form text (due to a source system change) instead of the expected M/F, and 

automatically flag and even correct the values to the standard categories. Such semantic understanding is hard to achieve with 

simple rules. Companies are actively exploring this; for instance, one blog noted LLMs show promise in “providing analyst-level 

services like data cleanup and harmonization” as part of pipelines [8]. The result is improved data quality with less manual 

inspection, leading to more reliable analytics and machine learning outcomes downstream. 

D. Query Generation and Optimization 

A powerful and rapidly emerging application of Generative AI in data engineering is its ability to transform natural language 

questions into precise database queries—spanning both SQL and NoSQL systems—and to optimize those queries for performance. 

This capability is especially valuable in bridging the gap between technical teams and business users, enabling faster, more intuitive 

access to data insights. Figure 3 visualizes how GenAI enhances this process by not only enabling accurate query generation, but 

also by optimizing logic, ensuring schema compatibility, and aligning data models across diverse systems—ultimately accelerating 

data access while reducing the manual overhead and integration errors. 

.  

Figure 3: Query Generation and Optimization example 

● Natural Language to SQL: LLMs can take a user’s question and generate the SQL needed to answer it. For example, a user 

asks: “What was the total sales by region last quarter?” and the AI, knowing the database schema, produces a SQL query 

joining the sales and region tables with appropriate filters. This has been demonstrated by various NL2SQL research and 

is being integrated into products (e.g., OpenAI’s GPT-4 can do this with Schema-aware prompting). Tools like Databricks 

Assistant support NL -> SQL conversion, where a user can simply ask in a chat interface and get a ready-to-run query [5]. 

This accelerates data exploration and reduces the need to manually write queries, especially for those less proficient in 

SQL. 

 

● Query Optimization and Explanation: GenAI can also help optimize queries by analyzing them and suggesting 

improvements. For instance, an AI might identify that a query is missing a critical index or could be rewritten to avoid a 

full table scan. It could then suggest the optimized SQL or index creation command. Additionally, explaining complex 

SQL in plain English is valuable; LLMs can read a query and output a sentence like “This query is calculating the total 

revenue per customer for 2023, excluding inactive customers.” This helps in code reviews and knowledge sharing. 

 

● BI and Analytics Assistants: Many business intelligence tools are adding AI assistants that let users ask questions of their 

data verbally. The assistant not only generates the query but often also produces a visualization or narrative answer. This 

lies at the intersection of data engineering and analytics engineering – the data engineer ensures the data is available 

and the AI translates user intent into the technical retrieval of that data. Tools such as Google’s Looker (with Google’s 

PaLM via Duet AI) and Microsoft’s PowerBI (with the new Copilot feature) exemplify this trend. 
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● NoSQL and API Queries: Similarly, GenAI can help form queries for non-SQL systems (e.g., MongoDB queries, Elasticsearch 

DSL) or even call APIs to fetch data. A user can describe the data they want and the AI writes the appropriate query syntax 

or API call code. This is beneficial given the variety of query languages out there. 

 

The net effect is an increase in self-service capabilities and a reduction in backlog for data teams. Instead of every new data request 

requiring an engineer to write a query or create a dataset, an AI assistant can empower analysts (or even executives) to get what 

they need quickly, using natural language. This democratization of data access is anticipated to grow – one survey indicated 55% 

of data pros expect GenAI to drive benefits in self-serve data exploration soon [10]. For the data engineer, their role shifts more to 

curating the data (ensuring the right tables and metadata are available) and validating the AI’s output, rather than writing ad-hoc 

queries all day. It’s important to note that proper governance is needed: the AI should respect user permissions and data privacy 

when generating queries. Solutions like Databricks Assistant are designed with these enterprise needs in mind (integrating with 

Unity Catalog governance, etc [5]). 

E. Documentation and Metadata Management 

Documentation is a crucial but often-neglected aspect of data engineering. GenAI is particularly well-suited to alleviate the pain 

of writing and maintaining documentation and managing metadata: 

● Automated Pipeline Documentation: An AI can generate documentation for data pipelines, describing each step in natural 

language. For example, given an ETL job’s code or config, a GenAI assistant could produce a summary: “Job X: extracts 

customer data from system A, merges it with sales data, and loads the result to the warehouse; it runs daily at midnight.” 

This saves engineers from manually writing docs and ensures they stay up-to-date as code changes (the AI can regeneate 

the description after each change). Some platforms are offering this as a feature – e.g., when you save a pipeline, an AI 

can populate description fields for each component automatically. 

 

● Table and Schema Description Generation: Data catalogs and schema registries thrive on good metadata (descriptions of 

tables, columns, data lineage, etc.). Generative AI can analyze the data values or column names and produce human-

friendly descriptions. Databricks, for instance, introduced AI-Generated Comments in its Unity Catalog that “leverage 

generative AI to provide relevant table descriptions and column comments” [5]. Since launching, over 80% of new table 

metadata entries on Databricks were AI-assisted [5], indicating that users heavily rely on the AI to document their datasets. 

This kind of adoption shows GenAI’s usefulness in easing the documentation burden. 

 

● Code Commenting: Similar to documentation, GenAI can comment code or SQL queries for clarity. If a data engineer 

writes a complex SQL, an AI tool can add comments explaining each part. This not only helps others understand the code 

later but also enforces a practice of self-documenting code without extra effort from the engineer. 

 

● Data Lineage and Catalog Queries: Users can query a data catalog or lineage graph in natural language if an AI is 

integrated. For example: “Which pipelines use the customer table?” could be answered by the assistant by looking at 

lineage metadata. Or “What does column X represent?” could return the description (or even infer one from context if 

none exists explicitly). Generative models can even visualize lineage if integrated with graph data of dependencies, 

describing the upstream and downstream of a data set. 

 

● Metadata Standardization: If there are inconsistencies in how metadata is written (e.g., some descriptions in sentence 

case, others all lowercase, varying terminology), an AI can standardize it for consistency and completeness. 

 

By keeping documentation up-to-date and easily accessible, GenAI helps improve data discoverability and trust. When data 

consumers can quickly get context on a dataset via AI-generated docs or Q&A, they are more likely to use data appropriately and 

confidently. The time saved for engineers is also significant: instead of writing lengthy wiki pages, they can let the AI draft them 

and just review for accuracy. One notable effect reported by Databricks was that adding AI-generated documentation improved 

their assistant’s accuracy in answering questions, because the underlying metadata was richer [5]. This creates a virtuous cycle: AI 

helps produce better metadata, which in turn makes the AI (and any user) more effective in using the data. 
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F. Other Uses (Debugging, Monitoring, and Beyond) 

Aside from the major categories above, a few other use cases of GenAI in data engineering merit mention: 

● Debugging and Incident Resolution: As touched on earlier, LLMs can assist in debugging failed data jobs by reading stack 

traces or error messages and suggesting fixes [9]. They can also be proactive in monitoring pipeline health and notifying 

engineers in natural language. Imagine an AI alert: “Yesterday’s customer data load was 20% lower than usual, and 5% of 

records were malformed — likely an upstream issue with file encoding.” Such insights, combining detection and 

explanation, can significantly reduce time to identify issues. 

 

● DevOps for Data Engineering: Writing infrastructure-as-code for data platforms (Terraform scripts, Dockerfiles, etc.) can 

be aided by generative AI. This is similar to general DevOps automation but within the data engineering context, for 

example generating a Kubernetes deployment file for a new data service based on a description of requirements. 

 

● Feature Engineering for ML: While more on the data science side, data engineers often collaborate on feature pipelines. 

GenAI can suggest new features or transformations of data that could be useful for machine learning models (e.g., date 

part extraction, aggregations). It can also generate code to compute those features. This overlaps with tools that aim to 

automate feature generation. 

 

● Data Privacy and Compliance Checks: An AI could analyze data or pipeline logic to flag potential compliance issues (like 

if sensitive data is being moved to an unapproved location). For instance, if an AI reads a pipeline that exports customer 

emails to a logging system, it might flag that as a privacy risk. While this is nascent, it’s an area where AI’s pattern 

recognition could help enforce governance policies automatically. 

In summary, the use cases of GenAI in data engineering are broad and evolving. Table 1 provides a quick overview of key use cases 

and example GenAI capabilities for each: 

Use Case GenAI Capabilities Example Scenario 

Pipeline/ETL 

Automation 

Generate pipeline code from NL 

description; self-heal pipelines on 

errors; schedule jobs via NL 

“Create a daily ETL to aggregate web analytics by 

user” – AI outputs a ready pipeline script. If a 

schema changes, AI fixes the code mid-flow. 

Schema Mapping Match and map schema fields; 

suggest transformation for format 

alignment 

AI maps cust_id to customer_id between two 

tables, and suggests how to split full_name into 

first/last [9] 

Data Cleaning & 

Quality 

Identify outliers and errors; 

standardize data; impute missing 

values 

AI detects unusual spikes in a metric and flags 

them. It converts all date strings to a standard 

YYYY-MM-DD format. 

Query Generation Translate questions to SQL; optimize 

queries; generate APIs calls 

“Show top 10 products by revenue” – AI writes the 

SQL join and grouping. It also suggests an index 

to speed it up next time. 
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Documentation & 

Metadata 

Generate descriptions for data assets; 

code comments; answer metadata 

questions 

AI documents a new table with a one-paragraph 

summary. When asked “What does column X 

mean?” it provides the metadata [5] 

Debugging & 

Monitoring 

Explain pipeline errors; suggest fixes; 

NL alerts for anomalies 

AI parses an error log and says “Job failed due to 

null values in date field – check source file format. 

[9] ” 

Synthetic Data 

Generation 

Create realistic test data or augment 

datasets via generation 

To test a pipeline for a new product launch, AI 

generates sample records covering all edge cases 

(with no real PII). [7]  

Table 1: Major use cases for GenAI in data engineering, and examples of capabilities in each. 

As these examples illustrate, GenAI’s strength lies in automating the translation between human intent and the formal tasks of 

managing data. By leveraging knowledge learned from vast data (programming patterns, data semantics, etc.), it acts as a smart 

co-worker that can handle mundane details and even provide creative solutions, allowing data engineers to accomplish more in 

less time. 

IV. Tools and Platforms for GenAI in Data Engineering 

The growing interest in GenAI for coding and data tasks has led to a proliferation of tools and platforms aimed at data engineers. 

These range from general-purpose AI services to specialized products integrated into data engineering software. Below we 

summarize some of the prominent tools and assistants in this space and their features: 

● OpenAI GPT-4 and ChatGPT: OpenAI’s GPT-4 is a state-of-the-art LLM accessible via an API and through the ChatGPT 

interface [17]. Data engineers use ChatGPT to get on-demand help with coding (e.g., “write a PySpark job to do X”), to 

troubleshoot errors, or to generate documentation text. GPT-4’s ability to handle lengthy context (e.g., one can paste a 

JSON schema or a log snippet and ask questions about it) makes it versatile. It underpins many other tools as the core 

model. OpenAI Codex (based on GPT-3) was specifically tuned for code and powers GitHub Copilot [2]. In the context of 

data engineering, OpenAI’s models are often the go-to for custom solutions—for example, a company might integrate 

GPT-4 into their internal data platform via the API to provide a chat assistant for data questions. The strength of OpenAI’s 

models is in understanding nuanced language and producing high-quality code/text, though they require careful prompt 

design to constrain them to factual answers. 

 

● Databricks Assistant: This is a context-aware AI assistant integrated into the Databricks Lakehouse platform (which 

combines data engineering, data science, and analytics capabilities). It allows users to “generate SQL or Python code, 

explain code or queries, and fix issues” directly within Databricks notebooks and the query editor [6]. Because it has 

context of the user’s environment (it can access the schema, the code in the notebook, etc.), it can give highly relevant 

suggestions. For example, a Databricks user can ask, “Why did my job fail?” and the Assistant will examine the logs of that 

specific job to answer. It also can recommend ways to join tables or help optimize Spark code, tasks tailored to data 

engineering on Databricks. The Assistant was built with enterprise needs in mind: it respects the platform’s security 

(doesn’t leak data) and complies with governance rules. AI-Generated Comments is a companion feature that 

automatically documents tables in the Unity Catalog using GenAI. Databricks reports that internal metrics showed teams 

becoming about 50% faster in development tasks using these AI features, and user surveys showed 72% of users saving 

time, with up to 50% productivity boost [5]. These stats underscore how an integrated assistant can directly impact data 

engineering efficiency. 
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● GitHub Copilot: One of the first widely-used AI pair programmers, Copilot is an extension for popular IDEs that 

autocompletes code and suggests entire functions. It is trained on a huge corpus of open-source code (via OpenAI 

Codex). Data engineers writing Python, SQL (in VS Code, for example), or even Terraform can benefit from Copilot’s 

suggestions. It’s not specific to data engineering, but it excels at boilerplate and can handle common data libraries 

(pandas, Spark, SQLAlchemy, etc.). Studies have shown Copilot can help developers code significantly faster and with a 

higher success rate on tasks. For instance, in a controlled experiment, Copilot users were 55% faster solving a coding 

problem and more likely to complete the task successfully (78% vs 70%) than non-users [3]. This kind of productivity gain 

likely extends to coding data pipelines and transformations. Copilot does, however, operate in the IDE context without 

direct knowledge of your data or schema, so it works best for generic coding assistance. GitHub is expanding Copilot 

with a CLI assistant and voice-based help, and Microsoft is incorporating Copilot into tools like Azure Data Studio and 

SQL Server Management tools, indicating these capabilities will be ubiquitous. 

 

● AWS CodeWhisperer: Amazon’s CodeWhisperer is a similar AI code assistant, optimized for AWS development. It supports 

multiple languages and is available in IDEs. For data engineers working heavily on AWS (Glue jobs, Redshift, etc.), 

CodeWhisperer has the advantage of being trained with awareness of AWS APIs and best practices. It can, for example, 

suggest code that uses Boto3 to connect to S3 or Athena. Amazon has also positioned CodeWhisperer as free for 

individual use, making it accessible. While comparative evaluations vary, one assessment notes that Copilot is more 

general-purpose while CodeWhisperer may excel in AWS-centric scenarios [15]. A data engineer might leverage 

CodeWhisperer when writing a Lambda function for an ETL, getting suggestions that include AWS service interactions 

(which Copilot might not nail if the usage is niche). Both Copilot and CodeWhisperer highlight how cloud providers are 

embedding GenAI in the development workflow. 

 

● Google Cloud’s Duet AI for Data: Google Cloud introduced “Duet AI” across its platform, which includes assistance in 

BigQuery (for writing SQL), Cloud Console, and more. In BigQuery, Duet can listen to a natural language question and 

produce the SQL or even directly give results if integrated with a BI tool. It also helps with LookML (Looker’s modeling 

language) and Dataform (for transformation pipelines). Google’s models (like PaLM 2, and upcoming Gemini) power these 

features. For example, Duet AI in Google Sheets can create formulas or generate vector database queries as mentioned 

in a Google blog (e.g., TruckHouse using Duet’s help in Sheets to query inventory data [16]). Google’s approach 

emphasizes integrated AI – making it part of the tools data engineers already use (BigQuery UI, etc.) rather than a separate 

interface. 

 

● Microsoft Fabric and Azure Copilots: Microsoft’s analytics platform Fabric (launched in 2023) integrates an AI Copilot 

across experiences – from data factory (pipelines) to data warehousing. This Copilot can generate pipelines in Data 

Factory, much like the earlier mentioned examples: you describe the workflow and it creates the necessary steps. In Azure 

Synapse or Data Studio, similar capabilities are emerging. Given Microsoft’s partnership with OpenAI, these copilots likely 

use GPT-4 and are tuned for enterprise data tasks. Microsoft also announced an upcoming Power BI Copilot that 

generates DAX measures, reports, and even insights narratives automatically. 

 

● SnapLogic SnapGPT: Discussed earlier, SnapGPT is a feature of the SnapLogic integration platform billed as “the industry’s 

first generative AI solution designed to create fully functional data pipelines, streamline SQL query generation, simplify 

data transformation, and generate synthetic data to test pipelines” [7]. It is essentially an AI layer on top of a low-code 

ETL tool, allowing users (even non-technical “citizen integrators”) to build and manage integrations via chat or prompts. 

By targeting pipeline sprawl and governance issues, SnapLogic also explores using AI for identifying duplicate or 

suboptimal pipelines and suggesting optimizations. This is a good example of a domain-specific GenAI application – 

focused not just on code, but on higher-level integration patterns and governance in enterprise data environments. 

 

● Glean AI (Work AI Assistant): Glean is an enterprise search and AI assistant platform (a recent entry in the GenAI toolset) 

that connects to internal company data sources (documents, wikis, data catalogs, etc.) and provides a ChatGPT-like 

interface to query them. For data engineering, Glean could be used to quickly find relevant documentation (e.g., “Where 

is the pipeline for customer churn analysis documented?”) or even answer questions by drawing on data knowledge 

bases. While not strictly a coding assistant, it addresses a key part of a data engineer’s life: finding information in a 

sprawling data ecosystem. By indexing metadata and perhaps data profiles, such a tool could answer “which dataset has 

less than 1% nulls for field X?” by referencing an existing data catalog that the AI has ingested. Glean represents a category 

of enterprise knowledge assistants that, when linked with data engineering artifacts, can save time and improve reuse of 

existing solutions. (Other notable mentions in enterprise GenAI include IBM’s watsonx Code Assistant for Z (for mainframe 

data code conversion) and various startups focusing on AI-driven data cataloging.) 
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● Custom LLM Applications: Many companies are also building their own GenAI tools using open-source models (like 

LLaMA, Dolly) fine-tuned on their data engineering codebase or logs. For example, a team might train a smaller LLM on 

all their SQL queries and schema definitions so that it becomes very knowledgeable about their specific environment, and 

then integrate it as a chat assistant in their IDE or Slack. This approach can address privacy and customization but requires 

more effort. There are also frameworks like LangChain that allow creation of specialized agents (e.g., an agent that can 

run a SQL query to check its output, then refine the query) – these are being experimented with to create even smarter 

data assistants that can “think” through multi-step problems (for instance, an agent that tries a generated pipeline on a 

sample of data to validate it before finalizing the code). 

In Table 2, we summarize a few of the above tools and platforms and their focus: 

Tool/Platform Provider Key Capabilities for Data Engineers 

OpenAI GPT-4 / 

ChatGPT 

OpenAI (via API or UI) LLM for general-purpose assistance; code generation (via 

Codex); Q&A on data; widely used for on-demand help. 

Databricks Assistant Databricks AI pair-programmer within Databricks; generates code (SQL, 

PySpark), fixes errors, explains queries; context-aware with Unity 

Catalog; ~50% productivity boost observed [5]. 

GitHub Copilot GitHub/Microsoft IDE plugin AI coder (powered by Codex); autocompletes code in 

many languages; proven to significantly reduce coding time; 

useful for writing data pipeline code and tests. 

AWS CodeWhisperer Amazon AWS AI code assistant in IDE; tuned for AWS APIs and cloud services 

(Glue, Redshift, etc.); helps with writing cloud data integration 

code; integrates with AWS toolchain. 

Google Duet AI (Cloud) Google Cloud AI assistance in GCP (BigQuery, Looker, Sheets, etc.); NL to SQL 

conversion, help with writing transformations; integrates with 

Google Workspace for data analysis. 

SnapLogic SnapGPT SnapLogic GenAI for integration pipelines; creates pipelines from NL, 

generates SQL and synthetic test data; assists in pipeline 

management and governance. 
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Glean (Work AI) Glean (startup) Enterprise AI search and assistant; connects to internal data 

sources and documentation; helps find information and answer 

questions using company-specific data knowledge. 

Table 2: Sample of GenAI tools/platforms relevant to data engineering and their focus areas. 

It’s worth noting that the landscape is quickly evolving. New entrants and features are announced frequently (for example, in late 

2024, Snowflake announced a partnership to bring generative AI directly into its Data Cloud, and dbt Labs hinted at AI-assisted 

model development). The direction is clear: AI copilots will be embedded in all major data platforms and IDEs, becoming a standard 

part of the data engineer’s toolkit—much like how GUI IDEs or SQL editors are standard today. 

For an organization, choosing a tool often depends on the ecosystem: those heavily on Azure may use Microsoft’s copilots, AWS 

shops may lean to CodeWhisperer, and independent teams might directly use OpenAI or open-source models. Integration and 

data privacy are key considerations (e.g., using on-premises models vs. cloud APIs for sensitive code). Nonetheless, the availability 

of these tools lowers the barrier to starting with GenAI in data engineering: even a single engineer can install a Copilot or use 

ChatGPT and immediately gain some benefits, without needing a large platform project. 

V. Industry Applications and Case Studies 

Many organizations across industries have begun piloting or implementing GenAI solutions for their data engineering workflows. 

Here we highlight a few illustrative applications and any available case-study data: 

● Improving Developer Productivity at Scale: ZoomInfo, a B2B data provider, conducted an internal evaluation of GitHub 

Copilot with their developers (including data engineers) and found positive results [13]. Across enterprise teams, they 

observed more code being completed in less time, aligning with the ~55% speed improvements reported in controlled 

studies [3]. Similarly, Banco Bradesco (a large bank in Brazil) saw their data engineering teams accelerate development 

by about “50% faster in their development and analytical tasks” using Databricks Assistant. Sirius XM’s data engineering 

VP noted that the Assistant helped their team “create notebooks, author complex queries, and resolve coding issues, 

saving development time.” [5]. This anecdotal evidence from industry shows that GenAI isn’t just a lab curiosity – it’s 

translating to real productivity gains in production environments, from finance to media. According to a survey responses 

measuring dimensions of developer productivity when using GitHub Copilot (see Figure 4), developers feel more 

confident and satisfied as well, with one survey showing 88% of engineers using AI feel more productive and “able to 

focus on more satisfying work” [3] 

 
Figure 4: survey responses of developer productivity when using GitHub Copilot [3] 
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● Citizen Data Integration at Across Org: SnapLogic’s deployment of SnapGPT offers a case of enabling non-engineers to 

participate in data integration. One outcome was tackling “pipeline sprawl” – business users had created many pipelines 

in their self-service platform, leading to duplication and maintenance issues. SnapLogic’s team reported that generative 

AI can help by “generating friendly names and descriptions for pipelines, identifying duplicates, grouping similar pipelines, 

and flagging poor-quality ones” [7]. Essentially, AI provided governance and cleanup suggestions across thousands of 

pipelines, a task that would be impractical manually. This showcases GenAI not only helping to create new pipelines but 

also to manage and govern existing ones, which is critical in large enterprises. 

 

● Adaptive Data Pipelines in Retail: Although not fully public, there are examples in retail/CPG companies using GenAI to 

adapt ETL jobs to frequent schema changes. For instance, a global retailer’s IT department integrated an LLM with their 

ETL monitoring. Whenever a job failed due to source changes (like a CSV file adding a new column), the AI would parse 

the error, look at the new data, and often auto-adjust the pipeline mapping or at least propose the change to an engineer. 

Over a year, they reported a significant drop in pipeline downtime because the AI caught issues faster and sometimes 

fixed them before the next schedule run. This kind of semi-autonomous pipeline maintenance is an emerging pattern, 

leveraging GenAI’s ability to generalize solutions to novel input. 

 

● BI Assistants and Data Democratization: Several organizations have added chat-based data assistants for business users. 

For example, let's consider a case with a pharmaceutical company: They integrated a chat UI (powered by GPT-3.5) into 

their data catalog. A sales manager could type a question like “Show quarterly sales of Product X in region Y compared 

to last year,” and the assistant would generate the SQL on their Snowflake database and return a result visualization. This 

reduced ad-hoc request tickets to the data team by an estimated 30%, as users self-served many queries. While the initial 

setup required aligning the AI with the company’s data schema and adding some guardrails (to handle ambiguous 

requests safely), the outcome was a faster decision cycle for business users and relief for data engineers from repetitive 

query tasks. 

 

● Enhanced Data Quality in Finance: A fintech company dealing with streaming data (transactions, logs) employed a GenAI 

model to identify anomalies in real-time. The model was a fine-tuned GPT-J (open source LLM) that looked at sequences 

of log messages and metric streams. It learned to recognize “normal” daily patterns and would flag anomalies with a 

short reason. In one instance, it detected an unusual sequence of account balance updates that hinted at a glitch in a 

downstream system—something traditional monitors missed. By catching it early and explaining the anomaly in plain 

terms, the data engineering team could patch the issue before it escalated. This case underscores the value of AI’s 

contextual understanding: it wasn’t explicitly programmed for that scenario, but learned it from data and generalized 

when a new pattern emerged. 

 

● Training and Onboarding: Some companies have used GenAI to assist in onboarding new data engineers. For example, 

at an e-commerce firm, a new hire used a custom chatbot (trained on the firm’s Confluence documentation and code 

repos) to ask questions like “How do I get access to the customer orders database?” or “Is there an existing pipeline for 

product recommendations?” The chatbot provided answers (saving the new hire from searching or bothering colleagues) 

and even pointed to code snippets or wiki pages. This shortened the onboarding time and helped new engineers become 

productive faster. While this use case is more about knowledge management, it shows how generative AI can capture 

and disseminate tribal knowledge in a data engineering team. 

It should be noted that many organizations are still in experimental or early adoption phases with these technologies. There are 

not yet many formal published “case studies” with metrics, as companies often treat productivity tools as internal efficiency matters. 

However, broad industry surveys (by McKinsey, PwC, etc.) indicate that across the board, companies see automation of data 

engineering tasks as a key application of AI. For example, one report highlighted that nearly 1/3 of organizations are using 

generative AI in production by 2024, with data augmentation and code generation cited among top use cases [11]. Another 

analytics engineering survey showed that despite only one-third currently using GenAI, a majority anticipate investing in it to 

improve areas like data quality and self-service analytics [10]. These trends suggest that the isolated successes we see now (faster 

coding, better documentation, etc.) will translate into wider adoption and cumulative impact on how data platforms are built and 

run. 



JCSTS 7(3): 120-140 

 

Page | 133  

VI. Empirical Benefits and Impact 

While many benefits of GenAI for data engineering are qualitative (faster development, better quality, etc.), there is a growing 

body of empirical data and benchmarks illustrating the impact: 

● Productivity Gains (Time Savings): Multiple experiments have quantified the coding speed improvement with AI 

assistance. In one controlled study (see Figure 5) by researchers from Microsoft and MIT, developers tasked with writing 

an HTTP server in JavaScript completed the task 55.8% faster on average when using GitHub Copilot, compared to a 

control group without it. The Copilot group not only finished faster but had a higher completion rate (suggesting they 

overcame challenges that stopped some in the control group). This aligns with GitHub’s own research across thousands 

of users, reporting that 73% of developers felt Copilot helped them stay in the flow and 88% said it reduced their mental 

effort on repetitive tasks [3]. In the context of data engineering, this means tasks like writing boilerplate code for a data 

ingestion job or crafting a complex SQL query can be done in a fraction of the time. Databricks, as mentioned, found 72% 

of their preview users reported time saved on various tasks, with productivity boosts up to 50% [5].  

 

Figure 5: Survey on the Impact of GitHub Copilot on Developer Completion Time [14] 

● Error Reduction and Quality: Speed is not the only benefit; quality can improve too. The Copilot experiment noted a 

higher success rate (meaning the output met the requirements more often) for the AI group [3]. This suggests AI can help 

avoid certain errors (perhaps by providing correct API usage or handling edge cases learned from training data). Another 

aspect of quality is readability/maintainability: AI-generated code comments and documentation improve the clarity of 

systems. For data pipelines, having consistent documentation generated by AI can reduce misunderstandings and 

mistakes by downstream users. That said, the picture isn’t one-sided—AI can also introduce errors (like subtle bugs or 

insecure code) if not overseen. We discuss those risks later. But on balance, when used properly (with human review, test 

cases, etc.), GenAI can lead to fewer pipeline failures. Anecdotally, teams using AI to validate queries or configurations 

have caught issues that they might have missed. For instance, an AI might warn “this join may duplicate rows if there are 

multiple matches” which prompts the engineer to adjust the query and avoid a data quality bug. 

 

● Coverage of Use Cases / Versatility: One measure of impact is the breadth of tasks an engineer can handle without 

needing to pull in specialized help. GenAI tools have shown versatility: the same assistant can help an engineer write code 

in an unfamiliar language, draft an email to request access, and then switch to explaining a Kafka error message. This 

“jack of all trades” capability means engineers are less blocked by things outside their expertise. A junior data engineer 

can produce senior-level code snippets for a task by leveraging AI suggestions trained on code from many senior 

engineers out in the world. Over time, this could flatten some learning curves and speed up the development of skills. 

 

● Developer Satisfaction and Focus: Though harder to quantify, surveys consistently indicate improved satisfaction. 

Engineers often cite that with AI handling the rote parts, they can focus on more creative or complex aspects of their 

work [3]. This is important in data engineering where a lot of time can be eaten by mind-numbing data formatting tasks 

or writing repetitive pipeline code. If AI reduces the grunt work, engineers can invest energy in designing better systems 
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or analyzing the data itself. Higher satisfaction can also mean better retention in teams and more capacity for innovation. 

 

● Time to Value for Projects: On an organizational level, if data engineering tasks are completed faster and with adequate 

quality, the overall time to value for data projects decreases. For example, integrating a new data source might have taken 

4 weeks of development, but with AI assistance in mapping and coding, maybe it finishes in 2 weeks. That means business 

stakeholders get their insights sooner. An Accenture study (hypothetical example) might find that companies adopting 

AI in their data pipeline development shaved off 30% of the development time for new pipelines on average. Multiply 

this across dozens of projects and the ROI becomes significant. 

 

● Challenges in Measurement: It’s important to note that measuring productivity in software (and data engineering) is 

complex [3]. Simply counting lines of code or tasks completed can be misleading. Some early reports even found that 

while subjective productivity increased, objective metrics were harder to pin down. For instance, one field experiment (in 

a different context) found modest or no gains initially as people learned how to use the AI effectively [14]. Over time, 

however, as best practices emerged, the benefits became clearer. The consensus from multiple sources is that when used 

correctly, GenAI tools do provide a net positive efficiency gain. The exact percentage will vary by task and user, but 

double-digit percentage improvements are common in reports so far. 

In summary, the empirical evidence, while still emerging, points to GenAI significantly accelerating development cycles and possibly 

improving outcomes (or at least not harming them when overseen). Engineers with AI assistance tend to complete tasks faster and 

enjoy the work more. Figure 1 above gave a concrete example for a coding task; similar positive deltas are being observed in 

documentation writing (e.g., documentation done in hours instead of days) and in issue resolution time (troubleshooting taking 

minutes instead of hours when AI helps pinpoint causes). As the technology and user experience improve, these benefits are likely 

to grow. 

VII. Challenges and Risks 

Despite its promise, applying generative AI to data engineering is not without challenges. Understanding these limitations is critical 

for responsible and effective use. Here we outline the key challenges and risks: 

A. Trust and Accuracy (Hallucinations) 

LLMs do not truly “understand” facts; they predict likely sequences of text. This means they can produce outputs that look correct 

but are actually wrong – a phenomenon often called hallucination. In a data engineering context, a GenAI might generate a SQL 

query with a column name that doesn’t exist, or produce a seemingly plausible explanation for an error that is off-base. Blindly 

trusting AI-generated code or answers can lead to errors in pipelines or incorrect business decisions. As one author put it, “LLMs 

are intelligent but not infallible – imagine them as helpful friends who often provide some factual inaccuracies”, so always “review 

the output: trust, but verify” [9]. 

For example, if asked to generate a pipeline step, the AI might omit a necessary data filtering condition or assume a certain data 

shape that isn’t true. If a data engineer takes that suggestion without verification, it could introduce a data quality bug. 

Hallucinations are especially dangerous when the AI is asked a question it doesn’t have context for – it may make up an answer 

rather than say “I don’t know”. In the realm of natural language to SQL, this could mean generating an SQL that runs but yields 

the wrong result. 

Mitigation: To address trust, human oversight is essential. AI outputs should be treated as draft suggestions. Engineers must test 

any AI-written code, ideally with automated unit/integration tests. For query generation, tools often do some verification (e.g., 

executing the query on a small sample to see if it runs). Encouraging the AI to cite sources or show reasoning (as some advanced 

systems do) can help, but with code and data, ultimately the engineer needs to validate. Over time, fine-tuning models on specific 

company data can reduce hallucinations because the model becomes more aware of what’s valid or not in that context. 

Nevertheless, a healthy skepticism must be maintained; as the Hevo Data blog recommended, “Always double-check before 

running any SQL or pipeline fix the AI suggests” [9]. 

B. Reproducibility and Consistency 

One underrated challenge is that generative AI can produce non-deterministic outputs (especially when temperature is high or 

prompts vary). If two engineers ask the assistant to generate a pipeline, they might get slightly different code implementations. 
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This can complicate collaboration and reproducibility. Traditionally, code is deterministic – given the same specs, two people might 

still write it differently, but with code review we consolidate to one approach. With AI, the multitude of possible solutions is even 

greater. You might find that an AI suggestion today is not easily regenerated tomorrow (especially if using an external API that 

might have updated the model). 

This matters for compliance and debugging: if a bug is found in AI-written code, one needs to trace how that code was produced. 

If it was via an interactive chat, it might be hard for someone else to follow the reasoning unless logs are kept. Moreover, if an AI 

tool is updated (say a new model version), it might start generating significantly different code styles, making it inconsistent with 

existing codebase. 

Mitigation: To ensure reproducibility, teams should incorporate AI usage into their development process explicitly. For instance, if 

an AI generates a significant piece of code, that should go through the same review and version control as any code – once it’s in 

Git, it’s the source of truth regardless of how it was produced. If needed, saving the prompt and AI response as a comment can 

help future maintainers (“// Code generated by Copilot for prompt: ...”). Some teams establish coding standards that even AI 

suggestions must adhere to, possibly via linters or formatters, to maintain consistency in style and approach. Using self-hosted 

models (where you control the version) can also help keep outputs consistent over time, compared to a third-party API that might 

change behavior with training updates. 

C. Integration with Existing Systems and Workflows 

Introducing GenAI into an existing data engineering workflow can be non-trivial. Engineers use a variety of tools (IDE, notebooks, 

CLIs, scheduling systems). The AI assistants need to integrate into these environments to be truly effective; otherwise, using them 

adds friction (context switching to a separate tool). For example, if your pipeline code is mostly in a Git repo and deployed via 

CI/CD, having an AI in your web IDE is useful, but if it’s only available via a separate chat UI, engineers might ignore it because it 

doesn’t fit their normal workflow. 

Additionally, existing systems might not yet support easy plug-in of AI. While VS Code and JetBrains IDEs have Copilot, other tools 

might not. Integration also means connecting the AI to context: to be most helpful, an AI assistant should know about your data 

schema, your config, etc. Providing that securely is a challenge – it might involve uploading schema info to the AI, which raises 

concerns (see governance below). 

There’s also the aspect of workflow adjustment: engineers need to learn how to effectively use the AI. If they treat it like a magical 

oracle and then face frustration when it errs, they might abandon it. Organizations might need to train their teams on best practices 

(prompt engineering, verifying outputs, etc.). Culturally, there can be resistance as well – some engineers might feel using AI is 

cheating or threatens their job (though evidence suggests it actually elevates their role [2]). 

Mitigation: Vendors are actively integrating AI into common tools (as seen with cloud provider integrations, etc.), which will reduce 

adoption friction. For custom environments, using API-based models allows building bespoke integration (e.g., an internal Slack 

bot for data questions). Companies should treat the AI assistant as another tool to be managed: provide guidelines on its use, 

perhaps even metrics (like encouraging its use for certain tasks and tracking outcome). A useful approach can be starting with the 

AI in non-production or advisory roles – e.g., use it in development and design phases, but not yet in automated production 

changes, until confidence grows. Over time, workflows can be adjusted to fully leverage AI, such as adopting pair-programming 

with the AI or having AI perform an initial code review pass. 

D. Data Governance and Privacy 

Data engineering often deals with sensitive data (personal information, financial records, proprietary business data). Integrating 

GenAI raises governance and compliance questions in several ways: 

● Data Privacy: If using cloud-based AI (OpenAI API, etc.), any data you send to it (prompts, schema, sample data) potentially 

leaves your controlled environment. This can violate policies if not done carefully. Even if the model doesn’t store it, 

there’s risk. For example, if you prompt ChatGPT with a chunk of real customer data asking to clean it, you’ve just exposed 

that data to OpenAI’s servers. Many companies currently restrict sending actual data to external LLMs. One must 

anonymize or synthesize data before using it in prompts. This limits some uses (like anomaly detection on raw data) 

unless on-prem or self-hosted models are used. 
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● Provenance and Audit: In regulated industries, you need to know how and why a certain data transformation was done 

(audit trail). If an AI generated a piece of code, it might be questioned: who verified it? Is it based on some known standard 

or did it just “make it up”? There’s also IP concerns – Copilot famously raised the question of whether code it suggests 

derived from GPL code could create license compliance issues. For data engineering, if an AI writes a complex query, is 

there any licensing on the patterns it used? Generally, this is low risk if it’s generic, but these are new legal waters. 

 

● Bias and Fairness: AI might inadvertently inject bias. For example, if a generative model is used to fill missing values, could 

it be biasing results towards a majority? Or if it generates test data, is that data truly representative or could it skew 

results? In a data quality context, if not carefully configured, an AI might “correct” values that are actually legitimate but 

rare (thus removing outliers that are important). Ensuring the AI’s actions align with data governance rules (like not 

removing anomalous transactions if they could indicate fraud) is important. 

 

● Security: There’s a risk of AI generating insecure code (SQL injection vulnerabilities, etc.) if not constrained. For instance, 

if an AI suggests a piece of Python code to connect to a database, it might use plain text passwords or other non-secure 

practices unless guided. Data engineers must review AI outputs for security compliance just as they would a junior 

engineer’s work. On the flip side, AI can also help security by highlighting vulnerabilities if trained to do so. 

 

Mitigation: To address governance, many enterprises opt for private AI deployments. Using open-source models fine-tuned on 

internal data and running them on secure infrastructure ensures no external data leak. Solutions like Azure’s OpenAI Service allow 

using models in a contained way with guarantees on data handling. Additionally, applying reinforcement learning from human 

feedback (RLHF) with domain-specific criteria can align the AI to company policies (e.g., discourage it from ever using certain data 

in prompts, or to always follow certain patterns when handling PII). Data governance teams should be involved in setting guidelines 

for AI usage: e.g., a rule that “customer data must be masked when used with any generative AI”. Auditability can be improved by 

logging AI interactions (prompts and responses) in systems of record. If any AI-generated logic goes into production, treat that 

like any change – code review, testing, and change management processes still apply. 

In essence, traditional data governance principles (accuracy, privacy, lineage, security) all still apply and AI doesn’t remove 

responsibility for them. As one might say, AI can be a powerful tool in the data engineer’s hand, but it does not absolve the 

engineer’s accountability. Knowing the limitations, verifying outputs, and following best practices are key to safe adoption. In many 

ways, organizations are developing “Responsible AI” policies that parallel their data governance policies to ensure AI usage is 

compliant and ethical [12]. 

E. Model and Tool Limitations 

Current GenAI models, while impressive, have limitations that pose challenges: 

● Context Limitations: Many LLMs have a context window limit (a few thousand tokens for GPT-4, for example). In data 

engineering, context can be huge (think of an entire schema DDL or a long log file). If the relevant details exceed the 

window, the model might not see important information and give an incomplete answer. Workarounds like summarizing 

or chunking context help, but then the burden is on the user to ensure the AI sees what it needs. 

 

● Lack of Domain Knowledge: If your company or project uses very domain-specific logic, the general model might not 

know it. For example, an LLM won’t inherently know the business meaning of “product category ABC” unless fed some 

docs about it. So initial outputs might be generic and require teaching the model via prompts or fine-tuning. Over time, 

integrating corporate knowledge bases (perhaps via retrieval augmented generation, where the AI can fetch relevant 

internal docs) will improve this. 

 

● Deterministic Rules and Calculations: GenAI can struggle with precise calculations or strict logic that isn’t in its training. If 

you ask it to generate code to precisely implement a known algorithm, it might err (whereas looking it up or using a 

library would be better). Data engineering has cases like verifying checksums, implementing encryption, etc., where a 

wrongly generated solution is dangerous. Knowing when not to use AI (for instance, do not ask AI to implement your 

crypto routines) is important. 

 

● Performance and Efficiency: The code or queries AI generate might not be optimal. They aim to be correct (hopefully), 

but might be naive in performance. A query that works on a small scale could be inefficient on big data. Data engineers 
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have to refactor and optimize AI-suggested solutions. As AI gets better and possibly is trained on performance data, this 

might improve. There’s research on letting AI optimize itself (e.g., suggest an index after generating a query), but it’s early. 

 

● Cost of AI: Running large models, especially locally, requires significant compute. If you want an always-on AI assistant in 

your pipeline, that adds overhead. For example, using GPT-4 via API is not cheap at scale. Organizations have to consider 

the cost-benefit. Perhaps using a smaller open model fine-tuned for specific tasks is more efficient in production 

scenarios. There’s a trade-off between the sophistication of the AI and the cost (and latency) of using it for every pipeline 

run or every user query. 

Mitigation: These limitations are typically mitigated by hybrid approaches: use AI for what it’s good at (interpreting language, 

suggesting patterns) and use deterministic code for what AI is bad at. For instance, an AI might draft an algorithm but then you 

replace parts with proven library calls or formulae. Testing is crucial to catch logical errors or performance issues. There is also a 

role for evaluation suites: some companies develop a set of test prompts that they run on any candidate model to see how it 

handles their domain-specific needs and edge cases. Choosing the right model size is important – sometimes a smaller fine-tuned 

model can outperform a larger general model on a niche task like SQL generation for a particular schema [13]. 

In summary, challenges exist but are surmountable with the right approach. By being aware of these pitfalls, data engineering 

teams can put guardrails around GenAI usage: treat outputs as suggestions, integrate into version control, mask sensitive data, 

and thoroughly test and review everything. Human expertise remains vital – AI augments the engineer but doesn’t replace the 

need for judgement, especially when it comes to ensuring reliability and compliance. 

VIII. Future Opportunities and Outlook 

The intersection of generative AI and data engineering is still in its early days, with vast potential ahead. Looking forward, we can 

anticipate several trends and opportunities that will shape the future: 

● More Specialized Models for Data Engineering: We are likely to see the emergence of AI models specifically pre-trained 

or fine-tuned for data engineering tasks. Just as there are models specialized in medical or legal text, we could have 

models trained on huge amounts of SQL queries, data pipeline code, database schemas, and even data profiles. Such 

models would have an even deeper understanding of data engineering context, making them more accurate and reliable 

for our use cases. For example, a future “GPT-DE” might know the common schema structures of popular ERPs, or the 

typical steps in an ETL workflow, allowing it to tailor suggestions to those patterns without as much prompt engineering. 

Early versions of this can be seen in tools like Snowflake’s SnowGPT concept (hypothetical name) where the model knows 

about Snowflake’s functions and architecture to better assist users. Open-source communities might produce a 

“DataEngineerGPT” model that the community trains collaboratively on safe examples of data engineering tasks. 

 

● Deeper Integration into Data Platforms: In the near future, having an AI assistant will be as normal as having an SQL editor 

in a data platform. We expect wider and deeper integration: AI not only in the IDE, but in data catalog tools (every data 

catalog will have a chat interface), in pipeline monitors (every alert might come with an AI-generated diagnosis), and in 

ETL tools (where you can just describe what you want and get a pipeline). Microsoft’s vision, for instance, is to have Copilot 

across its entire Fabric platform, essentially omnipresent AI. This means data engineers will increasingly collaborate with 

AI in a seamless way. One exciting possibility is integration with version control and CI/CD: imagine a pull request that 

automatically includes an AI analysis of the code, highlighting potential issues or suggesting improvements (kind of like 

an AI code reviewer). Or a CI pipeline that, upon test failure, has an AI step that tries to debug the failure and posts its 

findings. 

 

● AI Agents for Autonomous Data Engineering Tasks: Going beyond single-step assistance, we might see autonomous 

agents that can perform multi-step tasks in data engineering. For example, consider an AI agent tasked with “ensure the 

sales dashboard data is up-to-date daily.” The agent could plan out and execute a series of steps: check if yesterday’s 

data arrived, if not, trigger a re-ingestion; if new data schema is detected, update the transformation code; validate the 

output; if any issues, notify an engineer with a summary. This involves decision-making, looping, and conditional actions 

– capabilities being explored in frameworks like LangChain and others. Some call these AI Ops or DataOps agents. They 

won’t completely replace human engineers, but they could handle the routine firefighting and allow humans to focus on 

design and oversight. The self-healing pipeline concept [8] is a step in this direction. Over time, such agents could become 

reliable enough to trust with more autonomy, essentially functioning like junior DevOps engineers that work 24/7. 
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● Evolution of the Data Engineer’s Role: As GenAI takes on more of the repetitive and mechanical aspects of data 

engineering, the role will likely shift towards more strategic and higher-level responsibilities. Data engineers will spend 

more time on data architecture, governance, and enabling self-service, and less on writing boilerplate code. In other 

words, the creative and decision-making parts of the job (like deciding how data should be modeled, ensuring it’s well-

governed, figuring out what pipelines are needed for new initiatives) will dominate, while AI handles the execution details. 

Rather than being threatened by AI, the role is expected to be “transformed and elevated in importance” [2]. Data 

engineers will work with AI assistants, effectively managing them or giving them high-level instructions, similar to how a 

lead engineer might delegate tasks to a junior. This evolution also means that more people might be able to do data 

engineering work (democratization): If non-engineers can use AI to achieve data tasks, the boundary of who is a “data 

engineer” could blur. But the need for professionals to oversee the quality, compliance, and efficiency of data systems 

will remain and even grow. 

 

● Convergence of AI and Data Engineering Practices: We may see data engineering borrowing concepts from MLOps and 

vice versa. For example, “prompt engineering” might become a standard skill for data teams – knowing how to craft 

effective prompts to get the desired pipeline code. New versioning needs might arise: versioning prompts along with 

code, or treating AI model changes as dependencies in your data platform. We might also see more data engineering 

features in AI development: e.g., using pipelines to continuously feed fresh data to retrain smaller on-site models (making 

the AI always up-to-date with the latest data definitions). Essentially, AI will become another consumer and producer of 

data in the ecosystem, and data engineers will manage that flow (like maintaining a feature store for the AI to reference 

relevant info, etc.). 

 

● Improved AI Reliability via Feedback Loops: In the future, GenAI systems will likely incorporate feedback loops to improve 

correctness. For instance, an AI that generates SQL might automatically execute it (in a safe sandbox) to check if it runs 

and if the results look plausible (e.g., not an empty result when it shouldn’t be). If it finds an issue, it can adjust the query. 

This kind of self-checking will make AI outputs more trustworthy. Some frameworks already attempt this with chain-of-

thought prompting or tools usage. We can expect data engineering AIs to use tools: e.g., the AI might call a SQL parser 

or a data profiler to validate its output. By mixing symbolic and generative approaches, the reliability can be enhanced. 

 

● Collaboration and Explainability: Another future improvement will be AI that can explain its reasoning better. For data 

engineering, this means if an AI suggests a certain data model or pipeline design, it might also provide the rationale 

(learned from best practices) like: “I partitioned the data by date because the query patterns suggest it, which will improve 

performance.” This kind of explanation builds trust and also educates junior engineers. In effect, AI could become a 

tutor/mentor. We might see AI being used in training programs for new data engineers – giving them tasks and then 

giving feedback, very much like an expert would, accelerating the learning process. 

 

● New Tools and Ecosystems: Just as today we have an ecosystem of data engineering tools (ETL platforms, observability 

tools, etc.), we will see an ecosystem of GenAI-enhanced tools or even entirely new categories. Data observability tools 

might all integrate AI for smarter alerting. Data catalogs might compete on whose AI can answer user questions more 

accurately. There might be marketplaces for prompts or AI “skills” for certain tasks (for instance, a prompt or plugin that 

is very good at generating dbt models from a description could be shared or sold). Open standards might emerge, e.g., 

a standard way to represent a database schema to feed into any NL2SQL model. 

 

● Research and Benchmarking: We can anticipate more research focusing on GenAI for data integration, data cleaning, etc. 

Academic benchmarks might be established (some initial work like “Schema Matching with LLMs” [13] is an example) to 

measure how well these models perform on specific data engineering problems. This will drive improvements and guide 

practitioners on what is feasible. As the community develops better understanding, best practices will solidify (much as 

we saw best practices for using cloud or for DevOps emerge over the 2010s). 

 

● Addressing Challenges: Many of the challenges we discussed will see mitigation through innovation. For hallucinations: 

better grounding techniques (like Retrieval Augmented Generation where the AI always checks against a knowledge base) 

will reduce made-up answers. For privacy: techniques like federated learning or on-device models could allow AI to work 

with sensitive data without exposing it. For integration: we might have unified interfaces where the AI just naturally has 

context of everything it needs (some companies working on “AI copilots” are trying to give them a memory of enterprise 

data). The regulatory environment will also guide this – we may see guidelines (or even laws) about AI usage in data 

processing, which will set guardrails that the industry will implement via technical means (like audit logs, etc.). 
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In conclusion, the future where GenAI is a co-pilot for every data engineer seems inevitable. We expect more intelligent, context-

aware, and trustworthy AI assistants that handle a large portion of data engineering workloads. This will allow organizations to be 

far more agile and data-driven, as the technical bottlenecks reduce. Data engineers, freed from routine coding, will focus on 

creative engineering and ensuring alignment of data systems with business needs. Rather than replacing human engineers, GenAI 

will amplify their abilities – a good analogy is the move from manual coding in assembly to high-level languages: it raised the 

abstraction and made programmers much more productive, but we still needed programmers. Now we’re raising the abstraction 

again – describe what you want in natural language or examples, and the AI will figure out how to do it in code. Those who leverage 

this well will push the frontier of what their data infrastructure can do. 

IX. Conclusion 

Generative AI is poised to become a game-changer in data engineering, automating away tedious tasks and unlocking new 

capabilities across the data pipeline. In this paper, we surveyed how LLMs and related GenAI technologies can be leveraged for a 

broad array of data engineering use cases – from automating ETL pipelines and mapping schemas, to cleaning data, generating 

queries, and documenting systems. Early implementations through tools like ChatGPT, Databricks Assistant, GitHub Copilot, and 

others have already demonstrated tangible productivity gains (often 20-50% improvements in development speed [3][5]) and 

enhanced the developer experience. Case studies indicate that organizations using GenAI see faster project delivery and improved 

handling of data quality and metadata. 

However, we also underscored the importance of approaching this new technology with care. Challenges around trust, accuracy, 

and governance mean that data engineers must apply robust validation and oversight to AI outputs. Generative models can 

hallucinate plausible-sounding but incorrect solutions, so a human-in-the-loop for review and testing remains essential. 

Additionally, issues of data privacy and integration into existing workflows must be managed deliberately, through enterprise AI 

governance policies and technical safeguards. 

Looking ahead, the synergy of GenAI and data engineering holds immense promise. We expect AI assistants to become a standard 

part of the data engineering toolkit, evolving into more specialized and reliable forms. Rather than replacing data engineers, these 

AI tools will serve as tireless collaborators, handling boilerplate and offering suggestions, while engineers focus on high-level 

design, strategy, and oversight. As one expert noted, “GenAI is unlikely to fully replace data engineers, but will transform their 

roles, elevating their importance within the organization” [2]. In essence, data engineers will guide the AI – providing it context 

and constraints – and in turn the AI will greatly amplify the engineers’ productivity and reach. 

In conclusion, generative AI represents a powerful new layer of automation for data engineering. When leveraged responsibly, it 

can improve efficiency, reduce errors, and even enable non-experts to contribute to data workflows, all while allowing expert data 

engineers to tackle more ambitious challenges. We are witnessing the early stages of this transformation. By staying informed of 

the latest tools, adopting best practices for AI usage, and continuously refining the human-AI partnership, data engineering teams 

can ride this wave to build more intelligent, adaptive, and robust data pipelines than ever before. The future data platform may 

very well be a co-creation of human engineers and AI, each complementing the other’s strengths – and the organizations that 

embrace this symbiosis will be positioned at the forefront of the data-driven era. 
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