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| ABSTRACT 

As urbanization continues to expand and evolve in the USA, power demand has increased manifold, and with it has arisen 

significant environmental problems in the form of increased greenhouse gas emissions and loss of resources. In this paper, we 

explore how future machine-learning techniques could predict power consumption in U.S. cities. The central aim of this research 

is to develop advanced machine learning models with the potential to effectively predict energy consumption in cities. This 

involves not only identifying the key variables behind energy consumption but also selecting and fine-tuning machine learning 

algorithms that are most capable of understanding the dynamics of urban energy intricacies. This study focuses on the energy 

consumption patterns in the large cities of the United States, recognizing the diversity of challenges and opportunities presented 

by different geographic and demographic situations. The dataset used in this research project offered a comprehensive view of 

energy consumption across various fields of household, commercial, and industrial consumption, giving a holistic view of energy 

dynamics within cities. It integrated data collected from smart meters that offer granular electricity consumption patterns at the 

level of individual households and businesses with weather reports that detail ambient conditions governing energy demand, 

such as temperature and humidity fluctuations. Government energy records add historical context and policy information, further 

enhancing the dataset and enabling close analysis of trends and patterns in energy consumption. The next phase was to select 

and train three distinct machine models to explore the energy consumption dataset, namely, Logistic Regression, Random Forest, 

and XG-Boost algorithms. Random Forest outperformed Logistic Regression and XG-Boost slightly in terms of accuracy and other 

evaluation metrics. However, all models exhibit relatively low accuracy, suggesting the need for further tuning, feature 

engineering, or alternative models to improve predictions. In major cities in the U.S. such as Los Angeles, Chicago, and New York, 

smart power forecasting based on AI is revolutionizing power distribution and power planning in cities. By utilizing advanced 

machine learning models, these cities can process vast amounts of information and predict power usage with high accuracy. The 

incorporation of artificial intelligence (AI) in urban power planning has been a defining feature of modern-day power 

management in the USA. Major cities such as Los Angeles, Chicago, and New York are increasingly adopting AI-powered power 

forecasting technologies to rationalize power distribution. The integration of machine learning insights in U.S. government-driven 

green construction is instrumental in driving sustainable construction in infrastructure. By utilizing data-driven approaches, 

policymakers are in a position to identify the optimal design methods and low-power technologies with high performance in 

buildings. 
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I. Introduction 

Background and Context 

Barua et al. (2025), reported that urbanization is occurring at an unprecedented rate in the USA, and it is estimated that by 2050, 

nearly 68% of the global population will be residing in urban areas. The phenomenon brings with it a myriad of challenges, not 

the least of which is the question of energy consumption, which has been rising steadily in urban areas as a result of increasing 

population density, economic activities, and technological advancement. Anonna et al. (2023), found that the impact of this rising 

energy demand is profound, given that urban areas are drivers of carbon emissions and environmental degradation. Indeed, the 

International Energy Agency (IEA) notes that cities are the source of approximately 70% of global energy-related CO2 emissions. 

Against this backdrop, there is a requirement to develop effective strategies that not only mitigate the environmental impacts of 

urban energy consumption but also ensure a stable and efficient energy supply to meet the needs of urban populations (Al 

Mukaddim et al.,2024). 

According to Ahmed et al. (2025), accurate energy demand forecasting is essential for sustainable cities in the USA. Forecasts 

enable city planners and utilities to anticipate demand variability, optimize resource allocation, and schedule energy conservation. 

However, traditional energy forecasting models are often founded on past trends and simplifying assumptions that cannot keep 

pace with the complexity and dynamics of modern urban energy demand. Chowdhury et al. (2024), argued that as urban energy 

demand patterns become more influenced by such dynamics as climate change, technological change, and socio-economic 

processes, there is an increasing requirement for more sophisticated modeling methods that can adapt to these dynamics and 

make more precise forecasts. 

 Problem Statement 

Hasan et al. (2024a), postulated that the limitations of conventional forecasting methods present a significant challenge to effective 

energy management in cities. The models typically utilize linear regression or time-series analysis that may not completely 

represent the complexity of variables underlying energy consumption, including weather, demographics, economic activity, and 

technology adoption rates. The result is that these traditional approaches typically provide poor predictions, leading to 

inefficiencies in energy consumption and distribution. In addition, they may fail to identify emerging trends, including increasing 

penetration of renewable sources of energy and the growing market for electric vehicles, which demand a more nuanced 

understanding of energy dynamics (Gazi et al., 2024). 

This lack of traditional models highlights the urgent need for data-driven intelligence that can harness the power of advanced 

analytics and machine learning. By applying machine learning algorithms, it is possible to handle enormous amounts of data from 

disparate sources, detect hidden patterns, and generate predictive intelligence that can inform decision-making (Hossain et al., 

2025). These models can learn from the dynamic nature of urban energy consumption and hence provide a more accurate 

representation of current and future consumption patterns. Thus, there is an urgent need for research that explores the application 

of machine learning in energy consumption forecasting, which can eventually help achieve optimized energy distribution, 

enhanced efficiency, and sustainability in urban settings (Reza et al., 2024). 

 Research Objective  

The central aim of this research is to develop advanced machine learning models with the potential to effectively predict energy 

consumption in cities. This involves not only identifying the key variables behind energy consumption but also selecting and fine-

tuning machine learning algorithms that are most capable of understanding the dynamics of urban energy intricacies. The research 

aims to develop practical conclusions that can assist policymakers and city planners in developing measures to enhance 

sustainability and simplify energy management policies. 

Using machine learning algorithms, this project seeks to analyze historical energy consumption data alongside auxiliary datasets 

such as weather, economic indicators, and demographic information. The goal is to create predictive models that can accurately 

forecast energy demand in various urban areas so that stakeholders can make informed decisions regarding energy supply and 
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infrastructure development. In so doing, this project seeks to contribute to the broader debate of sustainable urban development 

and energy management with a focus on the importance of integrating advanced analytical methods into policy-making and urban 

planning processes. 

 Scope and Relevance 

This study focuses on the energy consumption patterns in the large cities of the United States, recognizing the diversity of 

challenges and opportunities presented by different geographic and demographic situations. By focusing on the U.S., the research 

aims to present findings with immediate applicability to urban planners, policymakers, and energy providers operating in this 

environment. The application of machine learning algorithms is particularly suitable because of increasing access to large datasets 

and advances in computing capability that allow investigation into complex patterns of energy consumption.  

Furthermore, the importance of this research extends beyond intellectual curiosity; it underlines the need for innovative solutions 

to the challenges posed by rising energy demands in cities. As cities grapple with the dual imperatives of procuring energy and 

achieving sustainability goals, the findings of this research can inform the development of viable energy management policies that 

align with broader environmental and economic goals. Lastly, by harnessing the power of state-of-the-art machine learning 

algorithms, this research seeks to contribute to a more sustainable urban future, one where energy consumption is optimized, 

resources are used efficiently, and environmental footprints are minimized. 

II. Literature Review 

Urban Energy Consumption Trends in the USA 

Sumon et al. (2024a), examined how urban energy consumption in the United States has evolved dramatically over the past few 

decades, with several trends emerging due to demographic change, technological advancement, and growing concern for 

environmental sustainability. Population density, economic activity, and climate are some of the key drivers of urban energy 

demand, and these variables interact in complex ways to influence consumption. Sumsuzoha et al. (2024), asserted that as urban 

areas densify, energy demand typically increases, driven by residential, commercial, and industrial demand. High population 

density tends to generate higher energy consumption for heating, cooling, lighting, and transportation, as more individuals reside 

in smaller geographic areas. Not only does this urban concentration increase energy demand, but it also presents unique 

challenges for energy distribution and efficiency. 

Second, economic activity is one of the most important determinants of energy consumption patterns. Cities are often the 

epicenters of economic growth, innovation, and employment generation, and these may reflect greater energy needs for 

commercial and industrial applications. As businesses expand and new industries emerge, the demands for energy to power 

operations, production, and transportation expand likewise (Abbas et al., 2025). Lastly, the shift toward a service-oriented economy 

in the majority of U.S. cities has implications for energy use, as services are likely to embody different energy inputs than 

manufacturing. This change demands a nuanced picture of how economic conditions influence energy use patterns, particularly in 

cities where economic activity is most concentrated (Bansod, 2025). 

As per Cui et al. (2025), climate is another significant factor affecting energy use in cities. Temperature, humidity, and seasonal 

weather patterns directly impact heating and cooling requirements, and hence total energy use. For instance, cities in warmer 

climates experience greater summer demand for air conditioning, while colder cities experience greater winter demand for heating. 

The rising occurrence of extreme weather events with climate change introduces additional complexity to these dynamics, as cities 

experience unexpected peaks in energy demand during heat waves or winter storms. It is thus necessary to appreciate the link 

between climate and energy use to be able to develop adequate energy planning solutions in cities (Shil et al., 2024). 

Ekeh et al. (2025), ascertained that Infrastructure is also a key determinant of energy consumption patterns. The design and 

efficiency of buildings, transportation, and energy distribution systems can all significantly influence energy consumption in cities. 

For example, poorly insulated buildings can lead to higher heating and cooling costs, while inefficient transportation systems can 

result in more fossil fuel consumption. Investment in new energy-efficient infrastructure, like smart grids and renewable energy 

installations, can address some of these problems by raising the efficiency of energy use and reducing overall consumption. 

Ghallabi et al. (2025), indicated that as cities continue to grow and evolve, these underlying factors and their influence on energy 

trends remain a vital area of research, providing crucial lessons for policymakers and urban planners looking to enhance 

sustainability. 

Classical vs. Machine Learning-Based Energy Forecasting 

Gera et al. (2025), established that forecasting of energy consumption has traditionally relied on statistical models such as 

autoregressive integrated moving averages (ARIMA) and linear regression. These models have been the cornerstone of energy 
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demand forecasting for many years due to their simplicity and ease of application. However, they have significant limitations that 

render them ineffective in capturing the dynamics of urban energy consumption patterns. One of the key limitations of traditional 

statistical models is that they rely on linear relationships. Most of the determinants of energy consumption, such as economic 

growth, weather, and demographic change, have non-linear relationships that cannot be effectively captured by these models. 

Traditional approaches, therefore, can yield oversimplified forecasts that fail to capture the true dynamics of energy consumption 

(Madabathula et al., 2025). 

Furthermore, traditional forecasting models typically depend on past trends with the expectation that past patterns will continue 

without accounting for abrupt changes in technology, policy, or behavior. This expectation can be particularly problematic when 

it comes to urban energy consumption, where the adoption of electric vehicles, the deployment of renewable energy sources, and 

the implementation of energy efficiency standards can radically alter consumption patterns (Marella & Palakurti, 2025). Thus, the 

models can produce forecasts that become outdated very quickly, leading to inefficiencies in energy planning and management. 

In contrast, machine learning-based approaches possess several strengths that render them more appropriate for handling 

complex energy consumption data (Mohammed et al., 2025)  

Ogunseye et al. (2025), articulated that Machine learning algorithms, including decision trees, support vector machines, and neural 

networks, possess the capacity to automatically identify patterns and relationships in large datasets without being programmed 

to do so explicitly. This adaptability allows machine learning models to capture non-linear relationships and interactions between 

variables, making them more precise in forecasting energy consumption. Through learning from large datasets that comprise 

various factors influencing energy demand—such as weather, economic indicators, and demographic data—machine learning 

models can identify intricate patterns that might elude traditional approaches (Palaniappan et al., 2025) 

Furthermore, machine learning models are capable of learning and improving over time as new data becomes available, and are 

therefore particularly well-suited to dynamic systems like urban energy systems. This allows for adjustments to be made in real-

time to forecasts based on the latest information, enabling energy providers and urban planners to respond more effectively to 

changing conditions (Robi & George, 2025). Machine learning methods can also handle high-dimensional datasets and are 

therefore capable of processing a range of different data sources, like smart meter readings and social media trends, to improve 

the accuracy of energy forecasts. As more cities adopt the use of smart technologies and the Internet of Things (IoT), the quantity 

and range of data available to be analyzed will only continue to grow further, again pointing to the relevance of machine learning 

for energy forecasting (Sahar et al., 2025) 

Applications of Machine Learning in Energy Management 

According to Satpathy et al. (2025), machine learning for energy management has garnered significant attention in recent years, 

delivering innovative solutions to forecast peak demand, optimize resource allocation, and incorporate renewable resources. Peak 

energy demand prediction is one of the primary applications of machine learning, which plays a crucial role in ensuring the 

reliability of energy supply systems. By having accurate predictions of peak demand, utilities can allocate resources more 

effectively, prevent shortages, and reduce the need for costly infrastructure development. Vasenin (2025), established that Machine 

learning algorithms can analyze historical consumption patterns alongside external drivers, such as weather and economic 

indicators, to predict when and where peak demand is most likely to occur. Based on these insights, energy suppliers can optimize 

supply chains and demand response initiatives, incentivizing users to modify consumption during peak periods, which leads to a 

more balanced and efficient energy grid.  

Furthermore, machine learning can help optimize resource allocation through better load forecasting and operation planning. 

Utilities can utilize predictive models to forecast periods of high demand and adjust their generation plans accordingly, such that 

the supply of energy is aligned with consumption patterns. Such optimization is particularly important in regions with intermittent 

renewable energy resources, such as solar and wind, where generation capacity can change in line with environmental conditions. 

By incorporating machine learning into operational systems, energy suppliers can enhance their ability to balance supply and 

demand, reduce their reliance on fossil fuels, and reduce greenhouse gas emissions. 

 Sumon et al. (2024b), argued that another crucial application of machine learning in energy management is in integrating 

renewable energy sources into the existing grids. As the energy mix shifts in favor of cleaner sources, the problem of their 

intermittency becomes increasingly urgent. Machine learning algorithms can forecast renewable energy output from variables 

such as weather and historical production data, enabling grid operators to better anticipate fluctuations in supply. Furthermore, 

machine learning can contribute to the development of smart grids that use real-time data to optimize energy distribution and 

consumption, enabling easy integration of different energy sources. Reza et al. (2024), reported that by adopting AI-based 

solutions, cities can render themselves more resilient to the impacts of climate change and build more sustainable energy systems 

that are aligned with general environmental goals. 
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Research Gaps 

Hasan (2024), argued that despite the positive advances in machine learning applications for energy management, there exist 

several research gaps that require further exploration. One of the gaps is the lack of adaptive machine-learning models for urban 

energy prediction. While existing models have been effective in other contexts, many of them fail to capture the unique dynamics 

and complexities of urban energy demand. Cities continue to evolve, and hence there is an urgent need for research studies that 

develop and test adaptive models with the ability to learn from the rapidly evolving energy demand under the influence of 

technological, environmental, and societal dynamics. This involves the incorporation of real-time data streams and the use of 

advanced algorithms with the ability to modify predictions dynamically based on emerging trends (Hossain et al., 2025b) 

Additionally, the need for real-time, high-accuracy predictive models is paramount in the instance of urban energy management. 

Traditional forecasting methods rely on static datasets and may not be able to capture the real-time changes in energy 

consumption spurred by the incidence of extreme weather events or sudden changes in consumer behavior (Gazi et al., 2025). By 

emphasizing research into the development of machine learning models that can provide real-time insights, researchers can 

significantly enhance the ability of energy providers and urban planners to make informed decisions and respond to evolving 

energy trends promptly. This avenue of research is in line with the present momentum toward smart city movements, where real-

time data and analytics play a key role in optimizing urban resource management (Chowdhury et al., 2024). 

III. Data Collection and Exploration 

Dataset Overview 

The dataset used in this research project offered a comprehensive view of energy consumption across various fields of household, 

commercial, and industrial consumption, giving a holistic view of energy dynamics within cities. It integrated data collected from 

smart meters that offer granular electricity consumption patterns at the level of individual households and businesses with weather 

reports that detail ambient conditions governing energy demand, such as temperature and humidity fluctuations. Government 

energy records add historical context and policy information, further enhancing the dataset and enabling close analysis of trends 

and patterns in energy consumption. This integrated approach not only enables a better understanding of energy consumption 

but also predictive modeling for energy planning and sustainability. 

Data Preprocessing  

The implemented code script establishes a standard data preprocessing pipeline using Python libraries including scikit-learn and 

pandas. It begins with the importation of modules for data manipulation, model selection, preprocessing, and pipeline. The script 

then proceeds to handle missing values by identifying columns with NaNs and imputing them using Simple Imputer with a mean 

strategy for numeric features and most frequently for categorical features. It then encodes categorical features, specifically "Type 

of Renewable System," using Label Encoder. Feature engineering is performed to create a new feature "Energy Potential" from 

pre-existing features. Outliers in numeric features are handled by capping them at the 5th and 95th percentiles. The script then 

separates the features and target variable (which is "Energy Consumption Category") and splits the data into train and test sets. It 

then scales the numeric features using Standard Scaler and prints the head of the preprocessed train and test data frames, marking 

the end of the preprocessing steps before model training. 

Exploratory Data Analysis (EDA)  

Exploratory Data Analysis (EDA) is a fundamental step in the process of data analysis in which datasets are systematically 

investigated and graphed to identify hidden trends, patterns, and anomalies without a predetermined hypothesis. Statistical 

techniques and graphical presentations, such as histograms, scatter plots, and box plots, are applied in EDA to summarize the 

major features of the data and allow the analyst to gain insights into the structure and distribution of the data. In research, EDA is 

a fundamental step in guiding future analyses, informing model selections, and determining potential variable relations. It helps 

researchers identify problems with the quality of the data, such as missing observations and outliers, and constructs hypotheses 

that are later testable, ultimately increasing the validity and soundness of the research results. 

a) Pairwise Relationship of Numerical Features 

The implemented code script produces a pair plot visualization of numerical features in a Pandas data frame named df with 

Seaborn. It begins with a list named numerical features with names of columns representing specific measurements such as solar 

irradiation, temperature, wind speed, humidity, cloud cover, pressure in the atmosphere, sunshine hours, and system efficiency. 

The function sns. The pair plot is called the Data Frame subset with only the specified numerical features. diag_kind="KDE" is 

included to display a kernel density estimate on the diagonal for every feature distribution, and corner=True makes the plot basic 

with only the lower triangular structure of the pairs. Finally, plt. Subtitle adds a super-title on the entire graph with added 
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information, and plt.show() shows the resulting pair plot with the ability to visually explore correlations and distribution among 

selected numerical features. 

Output: 

 

Figure 1: Pairwise Relationship of Numerical Features 

The provided figure is a pair plot plotting the pairwise relations among a variety of numerical features in the dataset, and in turn, 

giving a global overview of their distribution and potential correlations. Each of the pairs in the matrix is a scatterplot representing 

the connection between two variables, with the diagonal representing the kernel density estimates, and these represent the 

distribution of every feature on a standalone basis. Interestingly, a variety of variables exhibit distinct patterns that would represent 

potential correlations; e.g., increased energy usage is associated with increased temperatures, as in the pairs where the energy 

usage and temperature features have a rising trend. In addition, the density plots reveal the majority of features are skewed to the 

right with greater values being relatively scarce. The scatted points in a number of the relations represent variability and could 

warrant investigation. Overall, such visualization is a preliminary step in the process of identifying significant relations and guiding 

future model-building and areas warranting exploration of the relations in usage. 

b) Distribution of Renewable System Types 

This Python script generated a count plot using the Seaborn library to visualize the distribution of a categorical feature named 

"Type of Renewable System" within a Pandas Data Frame, presumably named df. The script initializes a Matplotlib figure with a 

specified size of 8x4 inches. It then employs sns. Counterplot to calculate and display the frequency of each category, using the 

Viridis color palette for distinct visual representation. The plot is enhanced with a title, "Distribution of Renewable System Types," 

and labeled axes for clarity. Specifically, the x-axis, representing the categories of renewable systems, is titled "Type of Renewable 

System," and the y-axis, indicating the counts, is labeled "Count." To improve readability, the x-axis tick labels are rotated 45 

degrees. Finally, plt.show() renders the generated count plot, providing a clear visual summary of the categorical feature's 

distribution. 
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Figure 2: Distribution of Renewable System Types 

The chart represents the distribution of system types in the renewable systems, comparing wind and solar installations in the 

database. It reveals a near-equal distribution in the number of installations of the two system types, with installations in the 

solar-type totaling approximately 500 and wind installations narrowly above the figure, also at approximately 500. The balanced 

distribution reflects the high degree of interest and investment in the two renewable resources, a reflection of how crucial they 

are in the power market. The fact that there is no significant margin in the installations reflects the technologies being adopted 

at a relatively equal pace, a reflection of a diversification strategy in the generation of renewable power. The information is 

significant in guiding policymakers and power planners on the need to invest in infrastructure and resources in wind and solar 

systems to spur a future with a power source. 

c) Energy Consumption Category 

This Python program uses the Seaborn and Matplotlib modules to plot the distribution of the target variable, "Energy Consumption 

Category," in a Pandas Data Frame variable df. It initializes a figure in Matplotlib with a size of 6x4 inches. The method sns. countplot 

is called to get a count graph with the frequency of each category in the target variable. The cool palette is called to color the bars 

in the graph. The graph is decorated with a title, "Distribution of Energy Consumption Categories," and with axis titles: "Energy 

Consumption Category" on the x-axis and "Count" on the y-axis. Finally, plt.show() shows the resulting count graph, presenting a 

graphical overview of the distribution of the energy consumption categories. 

Output: 

 

Figure 3: Energy Consumption Category 
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The chart illustrates the distribution of the categories of consumption, labeled as category 0, category 1, and category 2, with the 

frequency counts in every category. Category 2 is the largest category with approximately 400 counts, implying a high percentage 

of the dataset is in category 2. Category 0 and Category 1 are close in counts with approximately 300 in every category, with a 

relatively even distribution but with a considerably lower presence in category 2. The distribution reveals a potential trend in 

consumption patterns where category 2 would represent a high usage level or a special demographic characteristic that is 

significant and warrants investigation. The visualization helps communicate differences in the categories and is informative in 

helping researchers and policymakers discern consumption trends and guide interventions accordingly. 

d) Displays Solar Irradiance 

The Python script makes a Seaborn and Matplotlib scatter plot of the relationship between "Solar Irradiance" and "System 

Efficiency" with points differentiated by "Energy Consumption Category." It makes a figure in Matplotlib with an 8x5-inch 

dimension. The sns. The scatterplot function creates the scatter plot with "Solar Irradiance" as the x-axis, "System Efficiency" as the 

y-axis, and "Energy Consumption Category" used in coloring (hue) points. The title is "Solar Irradiance vs. System Efficiency," and 

labels are provided for axes. It has a legend to interpret coloring by energy consumption category. Finally, plt.show() displays the 

generated scatter plot to analyze the relationship between system efficiency and solar irradiance given different energy 

consumption categories. 

Output: 

 

Figure 4: Displays Solar Irradiance 

The graph is a scatter plot of system efficiency (in percentage points) and solar irradiance (in kWh/m²) with points of different 

colors coding three categories of energy consumption: 0, 1, and 2. The points indicate a broad spread of system efficiency across 

a broad range of solar irradiance, indicating that although there are highly efficient systems even at low irradiance, there are also 

systems with poorer performance. There is no apparent linear relationship between system efficiency and solar irradiance, 

indicating other performance-influence factors aside from irradiance. The color differentiation of points allows a visual observation 

to be made regarding how each category of energy consumption performs given different levels of solar irradiance and could 

determine specific trends and deviations in each category. The data could be an important contribution to optimizing solar power 

systems and determining how consumption patterns affect efficiency outcomes under different conditions. 

e) Histogram of Numerical Features 

The Python Code script program makes histograms on a list of numerical features in a Pandas DataFrame named df. It operates 

on columns in the numerical features list and uses the .hist() method to get a grid of histograms. figsize is assigned a figure 

dimension of 15x10 inches and bins=20 is included to have every histogram with a total of 20 bins. edgecolor='black' puts a black 

edge around the bars in the histograms and color='skyblue' is included to specify the filling color. Plt. The subtitle puts a title on 

the figure above the grid of subplots. Plt.show() is invoked on the resulting histograms to visually explore the distribution in every 

numerical feature. 

 



JCSTS 7(1): 265-282 

 

Page | 273  

 

Figure 5: Histogram of Numerical Features 

The chart illustrates a series of histograms depicting the distribution of a variety of numerical features related to solar power, e.g., 

solar irradiation, mean temperature, wind speed, humidity, cloud cover, pressure, daily sunshine hours, and system efficiency. Each 

histogram portrays information on the frequency within a specified range for each feature. Solar irradiation, e.g., shows a 

concentration in the value around 5-10 kWh/m², depicting favorable conditions for harnessing solar power. Mean temperature is 

quite uniformly distributed, while wind speed is skewed in favor of low wind speeds. The histograms on humidity and cloud cover 

are mostly in intermediate ranges, and these could impact solar efficiency. Atmospheric pressure is quite uniform, while daily 

sunshine hours are in a concentration of around 5-6 hours. The system efficiency histogram shows a wide variety with a cluster of 

observations around high efficiency, depicting efficient solar power systems. The visualization in its entirety facilitates 

understanding the properties and variability in these crucial variables influencing the generation and performance of solar power. 

f) Energy Potential vs. Sunshine Duration 

The code script in the Python program explores the relationship between a "calculated" "Energy Potential" feature and "Daily 

Sunshine Duration," grouped by "Energy Consumption Category," in a scatter plot. It begins with the generation of the "Energy 

Potential" feature as a multiplication of "Solar Irradiance" and "System Efficiency" and inserts it in a new "Energy Potential" column 

in the Data Frame df. It creates a Matplotlib figure with a dimension of 8x5 inches. The sns. The scatterplot function produces the 

scatter plot with "Energy Potential" on the x-axis, "Daily Sunshine Duration" on the y-axis, and "Energy Consumption Category" 

used to differentiate points based on hue. The figure is labeled with a title, "Energy Potential vs. Sunshine Duration," and 

appropriate axis titles. It includes a legend to differentiate based on the energy consumption category. Finally, plt.show() displays 

the resulting scatter plot, to observe how energy potential and sunshine duration are related to differing energy consumption 

categories. 
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Output: 

 

Figure 6: Energy Potential vs. Sunshine Duration 

The scatter plot illustrates how daily sunshine duration is related to energy potential (measured in a not specified unit), with points 

coded following categories of energy consumption: 0, 1, and 2. The graph illustrates a wide distribution in energy potential ranging 

from 0 to nearly 1000, with daily sunshine duration having a cluster in the area of 0-12 hours. Interestingly, there is a general 

upward trend where increased energy potential is related to increased sunshine durations, but the scatter reveals significant 

variability, implying other factors could play a role in influencing energy potential alongside sunshine hours. Category 2 and 

Category 1 are coded with distinct colors, with Category 2 having a cluster at high energy potential, implying a potential connection 

with high consumption categories and high potential in producing energy. The visualization helps understand how daily sunshine 

duration could impact energy potential and guide future research in optimizing energy systems based on these factors. 

IV. Methodology  

Feature Engineering 

In the feature engineering step, we targeted identifying and creating significant predictive features with high potential to influence 

the usage patterns in power. The key among these are temperature, usage timing, type of structure, and occupation. The 

temperature is significant in demand because a temperature change creates a demand for cooling and heating. The information 

about usage timing is significant because usage is variable over a day based on peak usage and seasonal fluctuation. The type of 

structure (residential, commercial, and industrial) is significant in providing usage information we would anticipate, and occupation 

information is significant in approximating how many are in a location and how much power is going to get utilized. 

To enhance the dataset even further, we incorporated features such as energy efficiency ratings, representing how efficiently power 

is utilized based on the type and size of the building. These ratings help identify buildings with potential advantages in power 

conservation. We also calculated demand peaks, representing the highest level of power usage over a specified timeframe, and 

provided insights on pressure points in the power system. These engineered features better inform what is driving power usage 

and set the stage for efficient modeling. 

Model Selection and Training 

The next phase was to select and train three distinct machine models to explore the energy consumption dataset, namely, Logistic 

Regression, Random Forest and XG-Boost algorithms. We commenced with a basic machine model, which is Logistic Regression, 

to discover linear connections in the dataset. It is a helpful model in detecting simple trends in the usage of power and is a 

reference with which other models with increased complexity are measured. Next, we applied a Random Forest Classifier, which is 

highly efficient in identifying non-linear relations and feature-feature relations. Not only is the method a robust prediction tool 

but also a feature importance tool, and we can observe what features are having the strongest impact on the consumption of 

energy. The ability of Random Forest to handle high-dimensional features without overfitting makes the method a valuable tool 

in such a type of analysis. 

Lastly, we applied the XG-Boost Classifier, a high-precision and efficient gradient boost model. The XG-Boost is perfectly applicable 

to intricate relations and large-volume datasets and is therefore an appropriate instrument in our analysis of energy consumption. 
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The reason we applied ensemble learning through Random Forest and XG-Boost is that the models can enhance predictive 

accuracy through a collection of various models and reduce overfitting risks. The approach assists in enhancing accuracy in 

predictions of energy consumption patterns and peak demand scenarios. 

Model Optimization and Performance Analysis 

For model refinement, we carried out hyperparameter tuning using the Grid Search approach, a methodical procedure for 

attempting many different combinations of parameters to find the best combination for each model. The procedure optimizes 

model performance and efficiency with the tweaking of settings that have a notable effect on predictive power. Through tuning 

hyperparameters like the quantity of Random Forest trees and the learning rate of the XG-Boost model, we sought to enhance the 

predictive power of each model. Additionally, we made use of cross-validation techniques in order not to overfit and generalize 

models on unseen data. Cross-validation is a process in which we split the dataset in a train and validation set multiple times to 

evaluate model performance uniformly. By doing this, we obtained improved predictive power estimations and decreased the 

possibility that models would generalize only on the train information. 

Evaluation Metrics 

In evaluating models, we made use of differing metrics under the specific goals in prediction and forecasting peak demand. In 

prediction problems with a focus on the prediction of energy, we took on board Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE as primary metrics. RMSE is enlightening on the mean level of prediction error made, and MAE is a basic way 

in which we calculate mean errors and is important in assessing model performance. 

For the classification issues of predicting peak demand, we employed measures such as precision, recall, the F1-score, and accuracy. 

Accuracy measures the overall correctness of the model, whereas precision and recall provide more insight into how well the model 

is doing at identifying peak demand events. The F1-score is the harmonic average of precision and recall and is a balanced 

performance metric, particularly in the case of imbalanced classes. 

Finally, we undertook a comparative performance analysis to assess the trade-offs in interpretability and predictive ability among 

the models. While there is better interpretability in Logistic Regression, Random Forest and XG-Boost are better in predictive ability 

but with greater complexity. The evaluation helps guide decision-makers in determining the model that is most appropriate for 

fulfilling their requirement, balancing precision with the ability to understand the driving forces in the consumption trends. 

V. Results and Analysis 

Model Performance Evaluation  

a) Logistic Regression Modelling 

The code snippet demonstrated how a scikit-learn model is trained and evaluated in Python. It begins with modules such as Logistic 

Regression for the model and metrics such as classification report, confusion matrix, and accuracy score for evaluation. The model 

is initialized with a random state parameter and a max_iter parameter with a value of 1000. The model is trained on the training 

dataset, X-train, and y-train, with the fit method. Predictions are made on the test dataset, X-test, with logreg. Predict. The 

performance of the model is evaluated with the imported metrics. The confusion matrix, classification report with precision, recall, 

and F1-score, and the global accuracy are printed to get a complete picture of the predictive power of the model. 

Output: 

Table 1: Logistic Regression Classification Report 

Classification Report: 

               precision    recall  f1-score   support 

 

         0.0       0.29      0.18      0.22        61 

         1.0       0.20      0.08      0.12        61 

         2.0       0.37      0.65      0.47        78 

 

    accuracy                           0.34       200 

   macro avg       0.29      0.31      0.27       200 

weighted avg       0.29      0.34      0.29       200 

 

Accuracy Score: 0.335 
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The table shows the outcome of a Logistic Regression model with a confusion matrix and a classification report on how the model 

performs on a multi-class classification with three categories of energy consumption. The confusion matrix shows a high rate of 

misclassification in correctly identifying instances with category 0 having been misclassified 41 times and category 1 having been 

misclassified 5 times, suggesting a high level of difficulty in distinguishing these classes. The classification report shows precision, 

recall, and the F1-score for every category with category 0 having a low precision level of 0.0 and a low F1-score level of 0.22, 

implying ineffective recognition. Category 2 is better with a level of recall at 0.47 and a level of F1-score at 0.63, suggesting a 

relatively high level of recognition by the model. The model’s level of accuracy at 0.335 shows only a prediction rate of about a 

third of the instances correctly, and there is a need to refine the model with a better method of classification and a need to explore 

a better and more viable method of modeling to classify correctly in all categories. 

b) Random Forest Modelling 

The code snippet illustrated how a Random Forest Classifier is trained and tested with scikit-learn in Python. It begins with the 

importation of the Random Forest Classifier in sklearn. Ensemble. The classifier is initialized with a random state to keep results 

consistent and with 100 estimators (trees in the forest). The model is trained on the train set, X-train, and y-train, with the fit 

method. Predictions are made on the test set, X-test, with rf_clf.predict. The performance of the model is then calculated with such 

metrics as the confusion matrix, classification report (with precision, recall, and F1-score), and the accuracy score.  

Output: 

Table 2: Random Forest Classifier Results 

Classification Report: 

               precision    recall  f1-score   support 

 

         0.0       0.38      0.21      0.27        61 

         1.0       0.30      0.30      0.30        61 

         2.0       0.36      0.49      0.41        78 

 

    accuracy                           0.34       200 

   macro avg       0.35      0.33      0.33       200 

weighted avg       0.35      0.34      0.34       200 

 

Accuracy Score: 0.345 

 

 

The table displays the results of a Random Forest Classifier with a classification report and a confusion matrix to evaluate 

performance in classification prediction based on categories of energy usage. The confusion matrix reveals high misclassification 

with category 0 having been classified in error 32 times and category 1 having been classified in error 18 times, suggesting a 

challenge in differentiation among these categories. The classification report reveals performance in all categories with category 0 

having a precision rate and F1-score rate of only 0.38 and 0.27, respectively, suggesting low predictive power. Category 1 reveals 

improved performance with a rate of recall and F1-score rate of 0.30 and 0.30, respectively, while category 2 reveals improved 

recognition with a rate of recall and F1-score rate of 0.49 and 0.36, respectively. The total score rate of accuracy at 0.345 reveals 

the model is correctly categorizing approximately 34.5% of the instances, suggesting a need for refinement. The feature ranking 

in order of importance reported in the Random Forest model could provide insights into what features are significant in prediction, 

guiding future refinement and adjustment in the model to improve classification performance in all categories. 

c) XG-Boost Modelling 

The code fragment trains and tests an XG-Boost Classifier with the Python library XG-Boost. It begins with the importation of the 

XGB-Classifier. The classifier is initialized with a random state to reproduce, with the parameter use_label_encoder set False in order 

not to risk having label encoding problems, and with the evaluation parameter set 'logloss'. The model is trained on the training 

dataset with the fit method with the training dataset, X-train, and y-train. Predictions are made on the test set, X-test, with 

xgb_clf.predict. The performance of the model is evaluated with the confusion matrix, classification report with precision, recall, 

and F1-score, and with the accuracy score, and printed to have a global evaluation of the predictive ability of the XG-Boost 

Classifier. 
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Output: 

Table 3: XG-Boost Classifier Results 

Classification Report: 

               precision    recall  f1-score   support 

 

         0.0       0.28      0.28      0.28        61 

         1.0       0.30      0.28      0.29        61 

         2.0       0.37      0.40      0.38        78 

 

    accuracy                           0.33       200 

   macro avg       0.32      0.32      0.32       200 

weighted avg       0.32      0.33      0.32       200 

 

Accuracy Score: 0.325 

 

The table presents the results of an XG-Boost Classifier, which serves as the best-performing model for forecasting peak 

consumption periods. The confusion matrix illustrates the model's performance across three categories, revealing that category 0 

was misclassified 27 times, while category 1 received 18 incorrect predictions, indicating difficulties in accurately distinguishing 

these classes. The classification report provides critical metrics, showing category 0 with a precision and recall of 0.28, resulting in 

an F1-score of 0.28, reflecting its inadequate predictive performance. Category 1 performs slightly better, with a precision of 0.30 

and an F1-score of 0.29, while category 2 achieves the highest recall of 0.37 and an F1-score of 0.40, suggesting it is more reliably 

identified during peak periods. The overall accuracy score of 0.325 indicates that the model correctly classifies only 32.5% of 

instances, highlighting the need for further enhancements. Despite being the best among the tested models, this performance 

underscores the necessity for additional tuning or the exploration of alternative approaches to improve the model's effectiveness 

in predicting peak consumption accurately. 

Comparison of All Models  

The implemented code script in Python program compared the performance of three machine learning models - Random Forest, 

Logistic Regression, and XG-Boost - based on some important evaluation metrics. It begins with the required library imports - 

Matplotlib and Seaborn for plotting and Pandas for data manipulation. The outcomes - the accuracy, precision, recall, and F1-score 

- are held in a dictionary model results, extracted from the classification reports of the models. The dictionary is then converted 

into a Pandas Data Frame results_df for easier handling and printing. The program prints the data frame to obtain a table view of 

the performance of the models. It plots a grid of Seaborn bar plots in a 2x2 layout where each subplot is a metric plotted across 

the three models. It is a straightforward means of comparing how effective the models are. The subplots are labeled and the title 

is given with enhanced visualization using the viridis palette. 

Output: 

 

Figure 7:Depicts Model Comparison 
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The chart is a summary performance comparison among three machine models namely Logistic Regression, Random Forest, and 

XG-Boost with a special focus on forecasting times of highest consumption. The comparison on precision is such that there is low 

performance in all models with a score in Logistic Regression at 0.335, Random Forest at a score of 0.345, and a lower score in the 

case of XG-Boost at a score of 0.325. Despite these being relatively close in value, none of the models are predictive in a suitable 

way. The precision comparison is not unlike low precision in all models with none correctly labeled in the positive category. The 

comparison on recall is low in all models and is indicative of high false negative predictions. The balance on the F1-score is low in 

these models with none having a score greater than a score of 0.40. In general, the visualization is indicative of a need in the future 

for improved performance in models with improved feature engineering, improved tuning on the hyperparameter, or even 

experimenting with other models to get improved predictions on forecast times of highest consumption. 

Policy and Sustainability Insight 

Energy forecasting is a major in optimizing resource distribution in smart cities with a master plan for efficient power usage and 

sustainability. By relying on advanced predictive models, policymakers and municipal planners are in a position to forecast demand 

with greater precision. The fact that demand is forecast in advance makes provision and distribution of resources optimal with 

power generation and usage in sync with demand and wastage and grid instability minimized. An example is how precision 

forecasting is applied in informing generation timing and quantity from a variety of power generation resources to mitigate risks 

associated with power shortages in high usage times. Furthermore, forecasting facilitates better integration with power storage 

solutions because municipalities are in a position to identify the best times and durations in which power storage systems are 

charged and discharged based on forecast demand. By relying on data-driven approaches in power usage and distribution, smart 

cities not only maximize efficiency in their day-to-day operations but are also in a position to drive sustainability agendas such as 

greenhouse gas reduction and power resilience enhancement. 

To maximize the benefits of energy forecasting, the incorporation of renewable resources in the power grid based on predictive 

models is important. Policymakers would need to prioritize the establishment of policies permitting the integration of renewables, 

such as wind and solar power, and could particularly suit cities seeking diversification away from fossil fuels. Predictive models are 

capable of identifying the best places and times where renewable generation is viable based on weather conditions, a record of 

current energy usage, and grid availability. If predictive models identify high chances of sunny weather, city planners are capable 

of incentivizing the placement of solar panels on buildings and commercial properties, harnessing the power of the sun while there 

is high sunlight. Furthermore, the incorporation of renewable resources involves having sound policies in support of grid 

modernization and smart technology implementation, such as smart grid infrastructure and demand response. These not only 

reinforce the potential of the city in harnessing fluctuating renewable generation but also involve the customer in the process of 

power management. By fostering collaboration among departments in the government, utility companies, and residents, cities are 

capable of designing a power system with high resilience and adaptability in meeting future issues. 

VI. Practical Applications in the USA 

 Urban Energy Planning and Smart Grids 

In major cities in the U.S. such as Los Angeles, Chicago, and New York, smart power forecasting based on AI is revolutionizing 

power distribution and power planning in cities. By utilizing advanced machine learning models, these cities can process vast 

amounts of information and predict power usage with high accuracy. It helps utility companies maximize power distribution in 

such a way that demand is fulfilled without overproduction and wastage is averted. In low-demand hours, excess power is either 

stored or redistributed, without the risk of power cuts or grid overload. Furthermore, smart grid construction is crucial to make 

power supply even more reliable. The smart grid is based on instantaneous information and automated systems to process power 

transmission, and in addition to reducing power loss, makes the power infrastructure even more secure. By incorporating 

forecasting based on AI in these systems, cities can better predict shifts in power demand, and generation and distribution 

strategies are formulated in seconds, resulting in a greener and more efficient power landscape in the city. 

The incorporation of artificial intelligence (AI) in urban power planning has been a defining feature of modern-day power 

management in the USA. Major cities such as Los Angeles, Chicago, and New York are increasingly adopting AI-powered power 

forecasting technologies to rationalize power distribution. These technologies process vast amounts of information, varying from 

power usage trends in the past, weather forecasting, and grid performance in real-time, to predict power demand with precision. 

The utility companies are consequently in a position to allocate resources better, reduce operational costs, and eliminate the risk 

of power outages or power shortages. Moreover, the rollout of smart grids in the USA is getting a massive boost with the 

integration of AI technologies. Smart grids, reliant on high-end sensors, IoT technology, and machine learning models, enable two-

way communication among power producers and power users. It ensures dynamic adjustment in power distribution, avoiding 

wastage and ensuring uniformity in power availability. For instance, in times of high demand, smart grids automatically reroute 

power where necessary, allowing a consistent and uninterrupted power supply to commercial and domestic users. The adaptation 
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of such technologies is not only increasing power efficiency but also preparing the foundation for longer-lasting and power-

efficient power infrastructure in cities. 

 Sustainable Infrastructure in the USA 

The integration of machine learning insights in U.S. government-driven green construction is instrumental in driving sustainable 

construction in infrastructure. By utilizing data-driven approaches, policymakers are in a position to identify the optimal design 

methods and low-power technologies with high performance in buildings. Machine learning, for example, is capable of processing 

power usage and building information to guide insulation material selection, heating, and cooling systems, and integration with 

renewable power. The empirical research-driven strategy not only makes power-efficient construction possible but also helps in 

driving broader sustainability in cities. 

 Moreover, empowering local and state policymakers with the knowledge to design data-driven policies is instrumental in driving 

sustainability in societies. By utilizing predictive analytics, policymakers are in a position to better understand the power usage of 

their constituencies and design targeted policies aimed at power conservation, encouraging integration with renewable power, 

and enhancing awareness of sustainability efforts. The collaborative process in designing policies on power ensures optimal 

decision-making based on empirical information, and in turn, maximizes their efficiency and sustainability. 

 Impact on Integration with Renewable Energy 

Leveraging machine learning in forecasting demand is crucial in optimizing the distribution of renewable resources, such as in 

California and Texas, where there are high concentrations of wind and solar resources. By forecasting accurately the trends in 

demand, utility firms are better positioned to accommodate the integration of renewable resources in the grid and balance 

generation and demand accordingly. An example is in sunny weather, where predictive models are capable of optimizing the usage 

of solar power and directing it where there is high demand. Supporting the clean transition envisioned under the Biden 

Administration with the power of AI-driven methods in managing power is a key area. By utilizing emerging technologies in grid 

upgrades, reducing reliance on fossil resources, and increasing access to clean resources, states are in a position to drive carbon-

neutrality efforts substantially. These efforts not only drive country-wide sustainability efforts but also drive economic progress in 

the establishment of green sectors and jobs. 

The transition to renewable power in the guise of wind and solar power is high on the agenda of the Biden Administration, and 

machine learning is playing a key role. California and Texas, among other major renewable power producers in the USA, are relying 

on ML to predict demand and balance wind and solar power distribution. For example, weather conditions are predicted with the 

assistance of ML models, and based on these predictions, the level of solar radiation and wind speed is calculated. Subsequently, 

grid managers are better positioned to balance demand and supply. It is a key consideration with renewable power, whose 

availability is weather-dependent. By relying on AI-driven energy management methods, the USA is taking a significant step in 

achieving clean power transition goals. These methods are in the guise of monitoring power grids in real-time, predictive power 

grid and other renewable power infrastructure maintenance, and dynamic pricing models rewarding users with lower costs to 

incentivize them to reschedule power usage away from peak times. In doing so, the USA is not only lowering reliance on fossil 

power but also optimizing power grid efficiency and stability. 

 Scalability in U.S. 

 Cities and States The implementation in high-power-consuming sectors such as commercial buildings and transportation brings 

scalability and efficiency advantages to U.S. states and cities. By tracking these sectors' information, decision-makers can identify 

trends and potential spots where energy could be saved, and can undertake targeted interventions to reduce consumption and 

costs. In commercial buildings, predictive models, for example, can inform building automation systems to modulate better on 

occupation, and in doing so, reduce usage substantially. In addition, the usage of AI in assisting power companies with demand-

side management is crucial in decreasing peak loads and particular high-demand hours. By forecasting how and when usage is 

going to hit a high, utility companies can engage in demand response programs, encouraging users to curtail usage at such hours. 

Not only is pressure relieved on the grid but a culture is instated in users to instill longer-lasting efficient usage in the country. All 

these applications of predictive analytics and AI collectively are contributing to the building of a better-resilient, efficient, and 

sustainable future in power usage in cities and states in the U.S. 

The scalability of AI-driven power solutions is a major consideration in their wide-scale implementation in U.S. states and cities. 

Predictive analytics with the power of AI is being utilized in high-power usage sectors such as commercial buildings and the 

transport segment to maximize power usage and efficiency and reduce costs. An example is in the usage of factory buildings and 

commercial buildings, where power usage is monitored and managed in real-time with the power of AI to maximize power usage. 

In a related way, the transport segment is benefiting from the power of AI-driven traffic management systems to reduce the usage 

of fuel and carbon emissions to maximize vehicle movement. On the demand side, power companies in the USA are implementing 
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demand-side power usage with the power of AI, where power usage is shaped to reduce peak loads. It is achieved with methods 

such as the usage of time-of-use pricing, where power is utilized in low-demand hours, and demand response programs, where 

firms and residents voluntarily reduce power usage in high-demand hours. By scaling these solutions, the USA is not only 

optimizing efficiency in power usage but also creating a more adaptive and secure power system responsive to the evolving 

demands of the country's cities and states. 

VII. Discussion and Future Directions in the USA 

Challenges in AI-Driven Energy Forecasting in the USA 

AI-driven energy forecasting in the U.S. is hindered by a variety of issues, with variability in consumption in different parts of the 

country owing to differences in weather. The Northeast would have a harsh winter and, accordingly, increased winter demand for 

warmth, while the Southwest would have increased cooling demand in summer. The variability in these consumption patterns 

makes developing a uniform forecasting model challenging, with what is applicable in a particular location not necessarily 

applicable in other locations. It is also necessary to eliminate the presence of biases in the consumption datasets, with these 

collected under varying state policies and regulations. Those with strict policies on energy efficiency would record lower usage, 

while the weaker policies in the states would not necessarily record the usage. These differences would result in inexact predictions 

and hinder the performance of the AI models, and strict consideration of the differences in the location and quality in forecasting 

is called for. 

 Limitations of the Study 

This study is not without limitations, with most arising due to limitations in available data in smaller U.S. cities and rural areas. The 

fact that there is not much comprehensive information on power consumption in these locations tends to limit the generalizability 

of AI models because they would not necessarily portray the unique consumption patterns and power loads in these thinly settled 

places. Furthermore, integration with feeds in real-time from sensors in the Internet of Things (IoT) is a potential constraint. While 

models based on AI are quite good with existing data, feeds in real-time from sensors in the IoT would fine-tune the accuracy and 

reaction times in power forecasting. Without integration with such feeds, models would not necessarily handle sudden power 

demand and supply shifts, limiting their performance in a dynamic system. Overcoming these constraints would be crucial in 

creating efficient and responsive power forecasting models applicable to the diverse U.S. landscape in cities and locations. 

Future Prospects  

In the USA Future research potential in USA AI-powered energy forecasting is enormous and could significantly enhance the 

precision and resilience of the power system. One such area is research in deep learning techniques in obtaining better longer-run 

power demand forecasting in cities. Deep learning models with their ability to manage complex information could pick out subtle 

power usage patterns not perceivable with traditional methods. Another area is collaboration with the U.S. Department of Energy 

and major utility companies in finding a method to enhance power grid resilience with the potential of AI. These collaborations 

could witness the provision and access to resources and information with the design and implementation of improved models 

with a better response to instantaneous power demand. Moreover, research in policy-driven models based on AI could witness 

the design and implementation of a better and more efficient power distribution system based on the specific demand and 

requirement in a location. By focusing on these research fronts, concerned parties could move in the direction of a greener and 

more secure power future based on state-of-the-art technology and information-driven insights. 

VIII. Conclusion 

This research aims to develop advanced machine learning models with the potential to effectively predict energy consumption in 

cities. This involves not only identifying the key variables behind energy consumption but also selecting and fine-tuning machine 

learning algorithms that are most capable of understanding the dynamics of urban energy intricacies. This study focuses on the 

energy consumption patterns in the large cities of the United States, recognizing the diversity of challenges and opportunities 

presented by different geographic and demographic situations. The dataset used in this research project offered a comprehensive 

view of energy consumption across various fields of household, commercial, and industrial consumption, giving a holistic view of 

energy dynamics within cities. It integrated data collected from smart meters that offer granular electricity consumption patterns 

at the level of individual households and businesses with weather reports that detail ambient conditions governing energy demand, 

such as temperature and humidity fluctuations. Government energy records add historical context and policy information, further 

enhancing the dataset and enabling close analysis of trends and patterns in energy consumption. The next phase was to select 

and train three distinct machine models to explore the energy consumption dataset, namely, Logistic Regression, Random Forest, 

and XG-Boost algorithms. Random Forest outperformed Logistic Regression and XG-Boost slightly in terms of accuracy and other 

evaluation metrics. However, all models exhibit relatively low accuracy, suggesting the need for further tuning, feature engineering, 
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or alternative models to improve predictions. In major cities in the U.S. such as Los Angeles, Chicago, and New York, smart power 

forecasting based on AI is revolutionizing power distribution and power planning in cities. By utilizing advanced machine learning 

models, these cities can process vast amounts of information and predict power usage with high accuracy. The incorporation of 

artificial intelligence (AI) in urban power planning has been a defining feature of modern-day power management in the USA. 

Major cities such as Los Angeles, Chicago, and New York increasingly adopt AI-powered power forecasting technologies to 

rationalize power distribution. The integration of machine learning insights in U.S. government-driven green construction is 

instrumental in driving sustainable construction in infrastructure. By utilizing data-driven approaches, policymakers are in a position 

to identify the optimal design methods and low-power technologies with high performance in buildings. 
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