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| ABSTRACT 

Explainable Artificial Intelligence (XAI) plays a pivotal role in advancing transparency, reliability, and informed decision-making 

in renewable energy systems. This review provides a comprehensive analysis of state-of-the-art XAI methodologies—including 

Shapley Additive Explanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), Deep Learning Important 

FeaTures (DeepLIFT), and rule-based models—by critically evaluating their applications, advantages, and limitations within 

renewable energy research. Despite notable progress, significant challenges persist, including computational inefficiencies, the 

absence of standardized evaluation metrics, and the inherent trade-off between model accuracy and interpretability. This study 

proposes a novel interdisciplinary framework that integrates domain-specific XAI methodologies, standardized benchmarking 

protocols, and collaborative efforts between AI researchers and energy experts. By addressing these challenges, this review aims 

to facilitate the broader adoption of interpretable and reliable AI-driven solutions for the sustainable advancement of renewable 

energy systems. 
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1. Introduction  

The integration of Artificial Intelligence (AI) into renewable energy systems has revolutionized energy forecasting, grid stability, 

and operational efficiency [12]. Advanced machine learning (ML) and deep learning (DL) models are increasingly deployed for tasks 

such as predictive analytics, fault detection, energy optimization, and real-time grid management. These models leverage vast 

amounts of data to enhance the efficiency and reliability of renewable energy sources, addressing intermittency challenges and 

improving energy distribution. However, despite their transformative potential, AI-driven models often function as opaque “black 

boxes,” making it difficult to interpret how specific predictions or decisions are made. This lack of transparency presents significant 

concerns regarding trust, accountability, regulatory compliance, and overall stakeholder confidence in AI-driven energy solutions. 

 

Explainability and interpretability in AI models are crucial in the energy sector, where AI-generated recommendations directly 

influence critical infrastructure decisions [13]. Without sufficient interpretability, stakeholders—including grid operators, 

policymakers, and industry regulators—may hesitate to fully integrate AI into decision-making processes due to the risk of 
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unexpected or unexplainable outcomes. Furthermore, regulatory frameworks increasingly emphasize the necessity of transparent 

AI systems, particularly in sectors that impact public safety and economic stability. 

 

Explainable Artificial Intelligence (XAI) has emerged as a key research area aimed at addressing these challenges. XAI 

methodologies seek to enhance the transparency of AI models by providing insights into how decisions are made, thereby 

improving trust and facilitating the responsible adoption of AI in renewable energy applications. This review critically examines the 

role of XAI in renewable energy systems, analyzing existing methodologies, identifying key challenges, and proposing a structured 

framework for integrating explainable AI techniques to balance predictive performance with interpretability. 

 

2. Background 

The increasing adoption of Artificial Intelligence (AI) in renewable energy systems has driven significant advancements in predictive 

analytics, grid optimization, and system automation. AI-powered models enable more accurate energy forecasting, improve fault 

detection mechanisms, and enhance overall operational efficiency. However, the inherent complexity of these models presents a 

major challenge—many function as opaque “black boxes,” limiting the ability of researchers, policymakers, and energy 

professionals to interpret and validate AI-driven decisions. This lack of transparency raises critical concerns related to trust, 

accountability, and regulatory compliance, ultimately hindering the widespread adoption of AI in safety-critical applications within 

the energy sector. 

 

Explainable Artificial Intelligence (XAI) has emerged as a crucial research domain aimed at addressing these limitations by 

improving the interpretability and transparency of AI models. Various XAI methodologies, such as Shapley Additive Explanations 

(SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Deep Learning Important Features (DeepLIFT), provide 

insights into AI decision-making processes by identifying key factors influencing model predictions. In renewable energy 

applications, explainability is particularly essential, as AI-driven models play a pivotal role in energy demand forecasting, fault 

detection, load balancing, and grid management. By enhancing transparency, XAI techniques not only foster trust among 

stakeholders but also facilitate the validation of AI-based recommendations, ensuring their alignment with industry regulations 

and operational requirements. 

 

Despite the promise of XAI, several challenges persist. There is currently no universally accepted framework for evaluating the 

effectiveness of XAI techniques in renewable energy applications, making it difficult to benchmark different approaches. 

Additionally, achieving an optimal balance between model accuracy and interpretability remains an ongoing research challenge, 

as highly complex models often provide superior predictive performance but at the expense of transparency. Furthermore, the 

computational overhead associated with certain XAI methods may limit their applicability in real-time energy management 

systems. 

 

This review aims to systematically consolidate existing research on XAI in renewable energy, critically assess the strengths and 

weaknesses of current methodologies, and identify key gaps that require further investigation. By addressing these challenges, this 

study seeks to contribute to the development of reliable, interpretable, and widely accepted AI applications in renewable energy 

systems. Furthermore, it proposes future direction for enhancing explainability in AI-driven models, ultimately facilitating their 

responsible deployment in the transition toward more sustainable and intelligent energy infrastructure. 

 

3 Literature Review 

The following table presents a structured analysis of key references utilized in this review, summarizing their primary contributions, 

strengths, and limitations. This systematic evaluation highlights the current state of research on Explainable Artificial Intelligence 

(XAI) in renewable energy applications and identifies critical gaps that warrant further investigation. 
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Figure 01.  Classification of papers based on the characteristics of the XAI model used [2] 

Table 1: Summary of Key References on XAI in Renewable Energy 

Paper Title First Author Key Points Strengths Limitations 

A Short Review on Explainable 

Artificial Intelligence in 

Renewable Energy and 

Resources 

B. Ersöz et al. 

[20] 

Discusses various XAI 

methodologies and 

their applicability in 

renewable energy 

systems 

Provides a 

comprehensive 

overview of existing 

XAI techniques 

Lacks empirical 

validation and real-

world case studies 

Applications of Explainable 

Artificial Intelligence in 

Renewable Energy Research: A 

Perspective from the United 

States National Renewable 

Perr-Sauer et al. 

[21] 

Examines the practical 

applications of XAI in 

the renewable energy 

sector 

Strong industry 

relevance with real-

world implementation 

insights 

Does not propose a 

unified framework for 

XAI adoption 

Explainable Artificial 

Intelligence (XAI) Techniques 

for Energy and Power 

R. Machlev et al. 

[2] 

Analyzes XAI 

techniques specifically 

applied to power grid 

optimization 

Focused analysis on 

grid management and 

fault detection 

Limited discussion on 

computational 

challenges associated 

with XAI 

Is Conversational XAI All You 

Need? Human-AI Decision 

Making in Energy Systems 

Gaole He et al. 

[18] 

Investigates the role of 

conversational AI in 

facilitating human-AI 

decision-making for 

energy systems 

Highlights user-

friendly AI interfaces 

for enhanced energy 

management 

Overlooks integration 

challenges with legacy 

energy infrastructure 

Methods of Explainable 

Artificial Intelligence, 

Trustworthy Artificial 

Intelligence, and Interpretable 

Machine Learning in 

Renewable Energy 

Betül Ersöz et 

al.  

[19] 

Reviews various XAI 

models used for 

optimizing renewable 

energy systems 

Provides an extensive 

taxonomy of XAI 

techniques 

Lacks discussion on 

standardization efforts 

and regulatory 

implications 

By systematically reviewing these key studies, this research identifies significant gaps in existing literature, including the absence 

of standardized evaluation metrics for XAI in renewable energy, the need for empirical validation of proposed methodologies, and 

the challenge of balancing interpretability with model accuracy. Addressing these gaps, this study proposes a structured framework 

to enhance the adoption and practical applicability of XAI in renewable energy systems, thereby fostering greater transparency, 

trust, and regulatory compliance in AI-driven decision-making. 
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4. The Role of AI in Renewable Energy Systems 

AI and ML technologies have significantly transformed renewable energy management by optimizing various processes across 

the energy value chain. Key applications include: 

 

Figure 02.  Concepts of XAI for Renewable Energy Systems [2]. 

4.1 Energy Forecasting 

Accurate forecasting of energy generation and consumption is essential for maintaining grid stability and ensuring efficient energy 

distribution. Renewable energy sources such as solar and wind are inherently variable, making precise forecasting crucial for 

optimizing energy storage and minimizing supply-demand mismatches. AI-based predictive models analyze historical weather 

data [1], energy demand fluctuations, and sensor inputs to improve forecasting accuracy. These models outperform traditional 

statistical methods by continuously adapting to new data, identifying non-linear patterns, and refining predictions in real time. 

Deep learning architectures, such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), are commonly 

used to enhance forecasting precision. By reducing forecasting errors, AI-driven solutions support better energy allocation 

strategies, reduce curtailment of renewable energy, and enhance grid reliability. 

 

4.2 Grid Management and Load Balancing 

The integration of renewable energy sources into power grids introduces operational complexities due to their intermittent nature. 

AI-driven grid management systems address these challenges by optimizing load balancing and enabling real-time grid 

adjustments [4]. Advanced ML algorithms predict fluctuations in energy supply and demand, allowing automated control systems 

to dynamically allocate energy resources. These models leverage reinforcement learning and predictive analytics to manage energy 

flow efficiently, mitigating the risks of blackouts, voltage fluctuations, and power surges. Additionally, AI-powered demand 

response mechanisms analyze consumer energy usage patterns and adjust electricity distribution accordingly, ensuring optimal 

grid performance. The adoption of AI in grid management enhances overall system resilience, supports decentralized energy 

networks, and facilitates seamless integration of distributed energy resources (DERs) such as rooftop solar panels and battery 

storage systems. 

 

4.3 Fault Detection and Predictive Maintenance 

AI-powered anomaly detection systems play a crucial role in identifying faults in renewable energy infrastructure. The continuous 

monitoring of assets such as wind turbines, solar panels, and battery storage systems enables early detection of performance 

deviations [5]. By analyzing sensor data, vibration signals, thermal imagery, and historical performance records, ML models can 

detect irregularities indicative of component wear, malfunctions, or potential failures. Predictive maintenance strategies powered 

by AI help preempt equipment failures, allowing operators to conduct timely repairs and minimize unexpected downtime. These 

models use classification algorithms, deep learning networks, and hybrid approaches combining physics-based simulations with 

AI-driven insights to improve maintenance efficiency [7]. The implementation of predictive maintenance reduces operational costs, 

enhances the longevity of renewable energy assets, and ensures consistent power generation. 
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4.4 Energy Storage Optimization 

Efficient energy storage management is vital for addressing the intermittency of renewable energy production. AI-driven energy 

storage optimization systems analyze real-time grid conditions, weather forecasts, market price fluctuations, and consumer 

demand patterns to optimize battery charging and discharging cycles. Advanced optimization algorithms, including reinforcement 

learning and deep Q-networks, enable intelligent energy management by dynamically adjusting storage strategies based on supply 

and demand variations. These AI-based systems improve the utilization of stored energy, enhance grid flexibility, and extend 

battery lifespan by preventing overcharging or deep discharge cycles. Additionally, AI facilitates vehicle-to-grid (V2G) and peer-

to-peer (P2P) energy trading mechanisms, enabling decentralized energy exchanges between electric vehicle batteries, home 

energy storage systems, and the grid. By integrating AI into energy storage solutions, renewable energy systems achieve greater 

efficiency, cost-effectiveness, and sustainability. 

 

5. Implementing Artificial Intelligence and the Need for Explainability in Renewable Energy 

Artificial Intelligence (AI) encompasses a broad spectrum of machine learning (ML) and deep learning (DL) techniques designed to 

process vast amounts of data [17], recognize patterns, and generate predictive insights [8]. These capabilities have significantly 

advanced numerous domains, including renewable energy, by improving energy forecasting [3], optimizing grid operations, and 

enhancing fault detection mechanisms. However, despite their effectiveness, traditional AI models—particularly deep learning 

architectures—often function as "black boxes," meaning their decision-making processes remain opaque to users. This lack of 

transparency poses challenges in high-stakes applications such as renewable energy, where understanding the rationale behind 

AI-driven decisions is essential for trust, regulatory compliance, and informed decision-making [6]. 

 
 

Figure 03.  The path toward XAI for power and energy systems [2]. 

5.1 Explainable Artificial Intelligence (XAI) as a Solution 

Explainable Artificial Intelligence (XAI) has emerged as a critical research domain aimed at addressing the interpretability 

challenges of conventional AI models.  
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Figure 04.  Role of Explainable Artificial Intelligence (XAI) Across AI, Machine Learning (ML), and Deep Learning (DL) Models. 

 

Unlike standard AI approaches [10], which primarily prioritize predictive accuracy and computational efficiency, XAI seeks to 

balance performance with transparency by providing insights into how models arrive at their conclusions. By elucidating AI 

decision-making processes, XAI fosters accountability and trust in AI-driven applications, particularly in energy forecasting, grid 

stability assessment, and predictive maintenance. 

 

5.2 Importance of Introducing XAI in Renewable Energy  

The rapid integration of AI into renewable energy systems has underscored the necessity of XAI to ensure the reliability and 

credibility of AI-driven insights. Regulatory bodies and industry stakeholders increasingly demand interpretable models to 

guarantee that AI-generated decisions are unbiased, explainable, and aligned with operational objectives. The lack of transparency 

in conventional AI models can hinder adoption due to concerns regarding decision accountability, potential biases, and the inability 

to diagnose errors effectively. 

 

 
 

Figure 05.  Role of Explainable Artificial Intelligence (XAI) in Renewable Energy 

 

By integrating advanced XAI techniques such as Shapley Additive Explanations (SHAP), Local Interpretable Model-agnostic 

Explanations (LIME), and Deep Learning Important Features (DeepLIFT), renewable energy applications can significantly enhance 

system reliability and stakeholder confidence. The need for XAI is particularly pronounced in safety-critical areas, including smart 
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grid management and predictive maintenance, where understanding AI-driven recommendations is essential for operational 

efficiency, risk mitigation, and long-term sustainability. 

 

5.3 Defining Explainable Artificial Intelligence (XAI) 

Explainable Artificial Intelligence (XAI) methodologies can be broadly categorized into post-hoc methods and intrinsic methods, 

each offering distinct approaches to achieving interpretability in AI-driven systems [9]. The distinction between these two 

categories lies in whether interpretability is introduced after model training or is inherently embedded within the model 

architecture. This classification is crucial for understanding the trade-offs between model complexity, performance, and 

explainability in renewable energy applications. Post-hoc methods aim to provide interpretability to complex, black-box AI models 

without altering their internal structure. These techniques are widely employed in deep learning-based energy forecasting and 

optimization systems, where high predictive accuracy is achieved at the cost of transparency. Among the most widely used post-

hoc techniques is Shapley Additive Explanations (SHAP), a game-theoretic approach [11] that assigns importance values to input 

features, quantifying their contribution to model predictions. This method has been extensively utilized in solar and wind power 

forecasting, where understanding the influence of meteorological variables such as irradiance, wind speed, and temperature is 

critical for improving model trustworthiness. 

 

Another significant post-hoc approach is Local Interpretable Model-agnostic Explanations (LIME), which generates interpretable 

surrogate models that approximate the behavior of complex AI systems. LIME has been instrumental in fault detection and 

predictive maintenance for wind turbines and photovoltaic systems by providing insight into why AI models predict system 

anomalies. Similarly, Deep Learning Important Features (DeepLIFT) compares neuron activations with a reference baseline to assign 

importance scores to input features, offering valuable interpretability for deep learning applications in energy demand forecasting. 

Gradient-weighted Class Activation Mapping (Grad-CAM) is another post-hoc method widely employed in image-based renewable 

energy applications, such as detecting solar panel defects through convolutional neural networks. Despite their utility, post-hoc 

methods face several limitations. As these techniques provide explanations without modifying the core model structure, they often 

generate approximations rather than definitive reasoning behind model decisions. Additionally, the computational cost of 

generating explanations, particularly in real-time energy management scenarios, remains a key challenge. 

 

Intrinsic XAI methods, in contrast, embed interpretability directly into the model architecture. These models are designed to 

provide transparent decision-making pathways, allowing users to trace predictions without requiring external interpretability tools. 

One of the most fundamental intrinsic methods is decision trees, which use hierarchical rule-based structures to provide human-

readable decisions. Decision trees have been widely adopted in energy management systems due to their transparency and ease 

of validation. Similarly, rule-based models offer explicit, predefined conditions for decision-making, making them suitable for 

regulatory-compliant AI systems in the energy sector. More recent advancements in intrinsic XAI include attention mechanisms, 

which highlight the most relevant input features influencing AI predictions. This approach has been particularly effective in 

transformer-based deep learning models used for time-series forecasting in renewable energy applications. Generalized Additive 

Models (GAMs) provide another intrinsic approach by modeling feature interactions additively, ensuring interpretability while 

retaining flexibility in capturing non-linear relationships. Furthermore, Symbolic AI, which integrates rule-based logic with machine 

learning, enhances model transparency while maintaining high predictive accuracy, making it particularly relevant for grid 

optimization and fault detection. 
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Figure 06.  Working of Explainable Artificial Intelligence (XAI)  

 

Despite their advantages in interpretability, intrinsic models often struggle to match the predictive accuracy of black-box deep 

learning models, particularly in high-dimensional datasets with complex feature interactions. As a result, the trade-off between 

interpretability and performance remains a major challenge in XAI for renewable energy applications. The choice between post-

hoc and intrinsic methods is largely application-dependent. While post-hoc techniques enable the use of complex AI models in 

energy forecasting, optimization, and fault detection, intrinsic models provide built-in transparency that facilitates regulatory 

compliance and stakeholder trust. The future of XAI in renewable energy lies in the development of hybrid approaches that 

combine the predictive power of deep learning with the transparency of rule-based and attention-driven models. Achieving this 

balance is essential for ensuring that AI-driven renewable energy systems remain both highly efficient and interpretable, paving 

the way for their broader adoption in critical infrastructure. By systematically integrating XAI methodologies, the renewable energy 

sector can bridge the gap between AI-driven efficiency and the need for transparent, accountable decision-making, ultimately 

paving the way for more robust and widely accepted AI applications in sustainable energy management. 

 

5.4 XAI Methodology in Renewable Energy Systems 

The implementation of Explainable Artificial Intelligence (XAI) in renewable energy integrates various methodologies to enhance 

interpretability while maintaining predictive accuracy. These methodologies are categorized into post-hoc explainability 

techniques, intrinsic interpretability models, and hybrid approaches, each contributing to the transparency and efficiency of AI-

driven energy systems [16]. 

 

Post-hoc explainability techniques improve the interpretability of black-box AI models after training. Shapley Additive Explanations 

(SHAP) quantify feature importance using cooperative game theory, making them effective in analyzing AI-driven predictions in 

wind and solar energy forecasting. Local Interpretable Model-agnostic Explanations (LIME) approximate complex model decision 

boundaries with simpler, locally interpretable models, which are useful in fault detection within renewable energy grids. Deep 

Learning Important FeaTures (DeepLIFT) assigns importance scores to neurons, aiding in power consumption predictions and 

anomaly detection in energy management systems. 

 

 
Figure 07.  (a) Intrinsic interpretability model                                         (b) Post-hoc explainability method  

      High-level illustration of Intrinsic (left)                                   post-hoc (right) model XAI technique 
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Intrinsic interpretability models offer transparency by design, making them particularly suitable for regulatory environments and 

high-stakes decision-making in energy systems. Decision trees and rule-based models provide structured, step-by-step decision 

pathways that enhance the explainability of grid optimization and load balancing applications. Generalized Additive Models 

(GAMs) extend linear models by incorporating non-linear relationships between variables while retaining interpretability, allowing 

for improved analysis of complex energy consumption patterns. Hybrid approaches combine post-hoc explainability techniques 

with intrinsic interpretability models to optimize both accuracy and transparency in AI-driven energy applications. These 

approaches are increasingly applied in renewable energy forecasting, anomaly detection, and smart grid optimization to ensure 

AI-generated insights are both reliable and interpretable. By integrating these XAI methodologies, renewable energy systems can 

enhance trust, regulatory compliance, and operational efficiency, supporting the broader adoption of AI-driven solutions in 

sustainable energy management. 

 

5.5 Hybrid Approaches in XAI for Renewable Energy Systems 

Hybrid approaches combine post-hoc and intrinsic methodologies to optimize both interpretability and predictive performance. 

Attention-based neural networks incorporate explainability mechanisms that highlight critical features influencing predictions, 

improving transparency in power generation forecasting. Symbolic AI, which integrates rule-based logic with deep learning 

architectures, enhances interpretability while maintaining model accuracy. These approaches effectively balance transparency and 

computational efficiency, making them valuable in renewable energy applications such as energy demand forecasting, anomaly 

detection, and grid optimization. Their implementation ensures that AI-driven insights remain both reliable and accessible to 

stakeholders, facilitating informed decision-making in sustainable energy management. 

 

 
 

Figure 08.  Explainable Artificial Intelligence (XAI) Methodology 

The selection of an appropriate Explainable Artificial Intelligence (XAI) methodology for renewable energy applications [14] is 

influenced by various factors, including regulatory requirements, computational limitations, and the complexity of AI models used 

in energy systems. As AI continues to play a pivotal role in optimizing renewable energy operations, the need for transparent and 

interpretable AI-driven decision-making becomes increasingly critical. Future advancements in XAI methodologies will prioritize 

improvements in computational efficiency, the development of standardized evaluation frameworks, and the seamless integration 

of explainability features into AI-driven energy management systems. Enhancing interpretability will foster trust among 

stakeholders, improve regulatory compliance, and ensure the effective deployment of AI models across different renewable energy 

applications. 
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                                   Table 02: Comparison of XAI Methodologies in Renewable Energy Applications 

XAI Methodology Description Application in Renewable Energy 

SHAP (Shapley Additive 

Explanations) 

Quantifies feature importance using 

cooperative game theory 

Energy forecasting and resource 

allocation 

LIME (Local Interpretable Model-

agnostic Explanations) 

Generates locally interpretable 

approximations of black-box models 

Fault detection and anomaly analysis in 

power grids 

DeepLIFT (Deep Learning 

Important FeaTures) 

Analyzes neuron activation changes to explain 

deep learning model outputs 

Power consumption predictions and 

anomaly detection 

Decision Trees 
Provides rule-based, transparent decision 

pathways 
Grid optimization and load balancing 

Generalized Additive Models 

(GAMs) 

Captures non-linear relationships while 

maintaining interpretability 
Energy consumption trend analysis 

Attention-Based Neural Networks 
Highlights influential features in deep learning 

models 

Power generation forecasting and 

predictive analytics 

Symbolic AI 
Combines logic-based reasoning with deep 

learning 

Explainable smart grid management and 

autonomous energy systems 

The integration of these XAI methodologies into renewable energy infrastructure will enhance transparency, optimize operational 

efficiency, and ensure compliance with evolving regulatory standards [15]. As the renewable energy sector increasingly relies on 

AI for decision-making, developing robust XAI frameworks will be essential to balancing predictive accuracy with interpretability. 

By bridging the gap between technical performance and explainability, XAI will drive the energy sector toward more reliable, 

accountable, and efficient AI-powered solutions, fostering greater adoption of intelligent renewable energy technologies. 

6. Applications of XAI in Renewable Energy 

Explainable Artificial Intelligence (XAI) is playing a transformative role in renewable energy systems by enhancing transparency, 

improving operational decision-making, and increasing stakeholder trust in AI-driven solutions. As AI and machine learning (ML) 

become integral to energy management, ensuring that these models are interpretable is crucial for regulatory compliance, risk 

mitigation, and optimal performance. The applications of XAI in renewable energy span energy forecasting, power grid 

management, fault detection, predictive maintenance, and demand-side optimization, all of which benefit from improved 

explainability and trustworthiness. One of the most critical applications of XAI is in energy forecasting. AI-driven models are 

extensively used to predict solar and wind energy generation based on historical weather data, energy demand fluctuations, and 

real-time sensor inputs. However, conventional AI models often function as black boxes, making it difficult to understand the 

reasoning behind their predictions. XAI techniques such as Shapley Additive Explanations (SHAP) and Local Interpretable Model-

agnostic Explanations (LIME) provide insights into how environmental factors—including temperature, wind speed, solar irradiance, 

and humidity—influence these forecasts [16]. By improving the interpretability of forecasting models, XAI enhances the reliability 

of energy generation predictions, enabling more effective grid balancing and resource planning. 

 

Beyond forecasting, XAI is revolutionizing power grid management by increasing the transparency of AI-driven energy distribution 

models. The integration of renewable energy sources introduces variability in power supply, requiring dynamic load balancing and 

voltage regulation. AI-based grid management systems predict fluctuations in supply and demand, but without explainability, grid 

operators may struggle to validate their decisions. XAI techniques such as Deep Learning [20] Important Features (DeepLIFT) and 

attention-based visualization make AI decisions more interpretable, allowing operators to identify key factors influencing grid 

adjustments. This enhanced transparency helps prevent power surges, reduce system failures, and improve the stability of smart 

grids. Another crucial area where XAI is making an impact is fault detection and predictive maintenance. Renewable energy 

infrastructure, such as wind farms, solar panels, and battery storage units, requires continuous monitoring to prevent failures and 

maximize efficiency [17]. AI-driven anomaly detection systems identify irregularities in system performance, but without XAI, 

operators may not fully understand why a model predicts a failure. By incorporating explainability techniques, AI models provide 

detailed explanations of fault patterns, allowing engineers to diagnose potential failures before they escalate. This proactive 

approach to predictive maintenance reduces operational downtime, minimizes repair costs, and extends the lifespan of renewable 

energy assets. 
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Figure 09.  Explainable Artificial Intelligence (XAI) for Renewable Energy 

 

Energy efficiency and demand-side optimization are additional domains where XAI proves invaluable. AI models are widely used 

to analyze consumption patterns and optimize energy distribution in smart grids [17]. However, the opacity of traditional AI-driven 

demand forecasting models has limited their real-world adoption. XAI techniques improve interpretability, enabling utilities and 

policymakers to understand consumer energy usage patterns and adjust energy distribution accordingly [18]. By incorporating 

explainability into energy efficiency strategies, XAI supports better demand-side management, reduces energy wastage, and 

facilitates the integration of decentralized renewable energy sources into the grid. The adoption of XAI in renewable energy marks 

a significant shift toward more accountable and actionable AI-driven decision-making [19]. By providing interpretability to complex 

models, XAI ensures that AI-powered innovations in forecasting, grid optimization, and maintenance are not only accurate but 

also transparent and trustworthy. As the renewable energy sector continues to embrace AI, XAI will play a crucial role in ensuring 

that energy systems remain efficient, resilient, and aligned with regulatory and operational objectives. 

 

6.1 Advantages of XAI in Renewable Energy 

The adoption of Explainable Artificial Intelligence (XAI) in renewable energy systems brings several critical advantages that enhance 

the overall effectiveness and reliability of energy management [20]. By fostering transparency and trust, ensuring regulatory 

compliance, and improving operational efficiency, XAI plays a pivotal role in transforming how renewable energy solutions are 

designed and implemented. The following table summarizes the key advantages of XAI in the renewable energy sector. 

 

Advantage Description 

Improved 

Transparency and 

Trust 

XAI provides interpretable explanations for AI-driven predictions, making complex machine 

learning models more understandable. This fosters confidence among engineers, policymakers, 

and energy consumers, ensuring AI-based decision-making aligns with stakeholder expectations. 

Regulatory 

Compliance 

XAI ensures that AI models adhere to legal and ethical standards by providing justifiable and 

interpretable outputs. This helps renewable energy organizations comply with industry regulations 

and secure approvals from regulatory bodies. 

Fault Diagnosis and 

System Reliability 

XAI enhances predictive maintenance by identifying root causes of system anomalies in large-scale 

wind and solar farms. This proactive approach minimizes downtime, optimizes energy production, 

and extends the lifespan of renewable energy infrastructure. 

Optimization of 

Renewable Energy 

Utilization 

By improving grid management and energy distribution strategies, XAI enables more effective 

energy allocation. AI-driven insights help balance supply and demand, reducing inefficiencies and 

ensuring optimal grid performance. 

Support for 

Decentralized Energy 

Systems 

XAI techniques enable real-time adjustments in decentralized renewable energy systems, 

maintaining stability and efficiency. This is particularly valuable for smart grids integrating variable 

renewable energy sources. 

Alignment with 

Sustainability Goals 

The integration of XAI ensures that AI-driven renewable energy solutions remain reliable, 

interpretable, and aligned with global sustainability initiatives, supporting a transition to a cleaner 

energy future. 
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As the renewable energy sector increasingly embraces AI technologies, the integration of XAI will be essential in ensuring that 

energy systems are not only efficient but also transparent and trustworthy. This commitment to explainability will enhance 

decision-making processes, optimize resource allocation, and ultimately contribute to a more sustainable energy future [21]. 
 

6.2 Challenges in Implementing XAI in Renewable Energy 

The implementation of Explainable Artificial Intelligence (XAI) in renewable energy systems offers significant potential for 

enhancing transparency and decision-making. However, several challenges hinder its widespread adoption [22]. Understanding 

these challenges is crucial for developing effective strategies that can facilitate the integration of XAI in renewable energy 

applications. The table below outlines the key obstacles faced in this process. 

 

Challenge Description 

Computational 

Complexity 

Many XAI techniques require substantial computational resources, limiting their feasibility in 

real-time applications. 

Trade-off Between 

Accuracy and 

Interpretability 

Highly interpretable models often lack the predictive accuracy of complex models, while black-

box models lack transparency. 

Absence of Standardized 

Evaluation Metrics 

No universally accepted framework exists for assessing the effectiveness of XAI techniques in 

energy applications. 

Integration Challenges 

with Legacy Systems 

Existing infrastructures often rely on traditional systems not designed for AI, complicating 

retrofitting efforts. 

Limited Interdisciplinary 

Collaboration 

Effective implementation requires coordination among AI researchers, energy professionals, and 

policymakers, which is often lacking. 

 

Addressing these challenges is essential for successfully integrating XAI into renewable energy systems. By overcoming barriers 

such as computational constraints, the accuracy-interpretability trade-off, and the need for interdisciplinary collaboration, 

stakeholders can unlock the full potential of XAI [23]. This will ultimately lead to more reliable and efficient renewable energy 

solutions that align with global sustainability goals. 

 

7. Proposed Framework for Overcoming XAI Challenges in Renewable Energy 

To address the challenges of implementing Explainable Artificial Intelligence (XAI) in renewable energy applications, a structured 

framework is proposed. This framework focuses on optimizing computational efficiency, developing hybrid AI models, 

standardizing evaluation metrics, ensuring seamless integration with existing energy infrastructure, and strengthening 

interdisciplinary collaboration [24]. Enhancing the efficiency of XAI algorithms is essential for reducing computational overhead 

and enabling real-time deployment. Techniques such as model compression, pruning redundant parameters, and utilizing 

distributed computing frameworks can significantly improve performance. By developing lightweight XAI models tailored for 

energy applications, the balance between explainability and performance can be effectively achieved. 
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Figure 10.  Process flow for choosing XAI-based input variables for Solar Power prediction 

 

Integrating deep learning models with interpretable AI techniques—such as rule-based reasoning and attention mechanisms—

can enhance both accuracy and transparency. Hybrid architectures [25] that combine symbolic reasoning with neural networks 

present a promising avenue for achieving explainability without compromising predictive power. These hybrid models enable 

renewable energy systems to benefit from the strengths of both explainable and high-performing AI approaches, leading to more 

reliable decision-making frameworks. Establishing industry-wide benchmarks for assessing XAI performance in renewable energy 

applications is crucial. Regulatory bodies and research institutions should collaborate to define universal interpretability metrics, 

ensuring consistency in AI model evaluation. Developing standardized testing protocols will facilitate better comparisons and 

validations of different XAI methodologies, allowing for the deployment of explainable AI solutions that comply with industry 

standards and best practices. 

 

To facilitate XAI adoption, modular and adaptive explainability frameworks must be designed to work seamlessly with legacy 

energy systems. Ensuring interoperability between XAI models and existing energy management software will streamline 

deployment and reduce costs associated with infrastructure upgrades. Implementing standardized data exchange protocols will 

improve compatibility between XAI-driven insights and traditional energy monitoring systems, ensuring effective and practical 

deployment. Fostering partnerships between AI researchers, renewable energy experts, and policymakers is essential for the 

successful implementation of XAI. Dedicated research initiatives focused on explainable AI applications in renewable energy will 

help bridge the gap between theoretical advancements and real-world deployment. Collaborative efforts can drive the 

development of regulatory-compliant XAI solutions that align with industry needs, enabling the co-design of AI models that are 

interpretable and meet the practical requirements of the renewable energy sector. 
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By implementing these strategic solutions, the renewable energy sector can fully leverage the benefits of XAI while mitigating its 

challenges. Ensuring transparency, efficiency, and sustainability in AI-driven energy management will be critical for the future of 

smart, explainable, and reliable renewable energy systems. 

 

8. Conclusion 

The integration of Explainable Artificial Intelligence (XAI) into renewable energy systems represents a paradigm shift in the 

optimization, management, and reliability of sustainable energy solutions. This review has systematically examined the 

interdisciplinary advancements that leverage XAI to enhance transparency, interpretability, and decision-making across various 

renewable energy domains, including photovoltaic (PV) systems, wind energy forecasting, smart grid management, and energy 

storage optimization. By addressing the inherent opacity of complex AI-driven models, XAI fosters stakeholder trust, regulatory 

compliance, and improved operational efficiency in the renewable energy sector. 

Despite its transformative potential, several challenges hinder the widespread adoption of XAI in renewable energy applications. 

The trade-off between model complexity and interpretability remains a fundamental obstacle, as high-performance deep learning 

models often lack the necessary transparency for real-world deployment. Additionally, the absence of standardized evaluation 

frameworks for explainability and the difficulty of integrating XAI with real-time energy systems present further hurdles. Addressing 

these challenges requires a concerted effort from academia, industry, and policymakers to develop scalable, robust, and 

generalizable XAI methodologies that ensure model reliability while maintaining computational efficiency. 

Future research should focus on advancing hybrid XAI frameworks that combine model-agnostic and model-specific explainability 

techniques to enhance interpretability without sacrificing predictive accuracy. Furthermore, the integration of XAI with edge 

computing and Internet of Things (IoT)-enabled smart grids could facilitate real-time decision support for energy management, 

enabling adaptive and self-regulating renewable energy infrastructures. As interdisciplinary collaborations continue to evolve, the 

convergence of XAI with domain-specific expertise will be instrumental in accelerating the global transition toward an intelligent, 

transparent, and sustainable energy future. 
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