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| ABSTRACT 

In the USA, hospitals are confronted with significant challenges regarding energy consumption, which not only impacts operational costs but 

also contributes to environmental concerns.  The primary objective of this research was to develop and evaluate machine learning models that 

are capable of accurately predicting energy consumption in U.S. hospitals. This study will be focused on United States hospital energy 

consumption data, recognizing the unique difficulties and opportunities present in the U.S. healthcare setting. The data used for this hospital 

energy consumption analysis has been carefully gathered from multiple credible sources, including the U.S. Department of Energy's Energy Star 

program, whole-building hospital energy audits, and information from local utility providers. This variety in sourcing guarantees a strong and 

complete dataset that accurately represents real-world energy dynamics in healthcare buildings. In the model selection phase, three powerful 

algorithms were employed: the Random Forest Classifier, XG-Boost, and Artificial Neural Network (ANN). XG-Boost outperformed other models 

after tuning, achieving an 81.8% accuracy on the test set. Random Forest showed a decent improvement post-tuning but still lagged behind XG-

Boost. Hospital managers can utilize machine learning (ML)--based predictions to achieve substantial cost savings in operational expenditures 

related to energy usage. With predictive analytics, hospitals can anticipate energy needs based on several parameters, such as patient occupancy 

rates, time of day, and seasonality. Integration of AI-driven energy prediction in hospital sustainability plans has significant policy implications 

for the U.S. healthcare sector. The integration of machine learning models and the Internet of Things (IoT)-)-)-enabled energy management 

systems is a breakthrough step in embracing smart hospital initiatives. 
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I. Introduction 

Background and Context 

Chowdhury et al. (2024), reported that energy consumption in hospitals across the United States represents a multifaceted 

challenge that intertwines financial implications, operational efficiency, and environmental sustainability. The healthcare sector is 

one of the most energy-intensive industries, with hospitals consuming approximately 5-10 times more energy per square foot 

than commercial buildings. Barua et al. (2025), argued that this elevated demand is primarily due to the 24/7 operational nature 

of healthcare services, which necessitates continuous power for medical equipment, lighting, heating, ventilation, and air 
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conditioning (HVAC) systems. In addition, hospitals must maintain strict environmental controls to ensure patient safety, comfort, 

and the proper functioning of sensitive medical devices, further exacerbating their energy needs. 

According to Hossain et al. (2025), with rising energy expenses and the rising importance of sustainability, energy 

efficiency is now a top priority for healthcare administrators and policymakers. Energy-efficient practices and technologies in 

hospitals can lead to considerable savings in operating expenses, which can be redirected to patient care and other critical services. 

Moreover, by conserving energy, hospitals can substantially reduce their carbon footprints, which is conducive to national and 

international goals for environmental stewardship and climate change. The U.S. healthcare system is under growing pressure to 

adopt practices that not only enhance patient care but also assist in building a sustainable future, and therefore, research into 

energy efficiency solutions is necessary (Haque et al. 2023). 

  

Problem Statement 

As per Sumon et al. (2024), despite the imperatives of energy efficiency in hospitals, the sector continues to grapple with 

intensive energy demands driven by a variety of factors. Hospitals operate round the clock and require robust energy feeds to 

support an extensive array of activities, ranging from life-saving medical procedures to basic functions such as lighting and climate 

control. This round-the-clock demand makes accurate prediction of energy needs challenging, leading to inefficient energy use 

and high expenses. Traditional energy prediction methods, which often rely on historical consumption data and basic modeling 

techniques, are not effective in the dynamic environment of healthcare facilities. These methods can miss the many variables that 

influence energy consumption, including patient occupancy, time of year, and usage of specialized medical equipment. The 

limitations of conventional forecasting approaches highlight the need for innovative solutions that can capture the intricacies of 

hospital energy usage. Pant et al. (2024), indicated that as healthcare institutions become increasingly reliant on technology and 

data, the opportunity to leverage machine learning algorithms to enhance the accuracy of energy usage forecasts is growing. By 

developing sophisticated predictive models, hospitals can gain a deeper insight into energy usage patterns, enabling them to 

implement focused initiatives that optimize energy usage and remove wastage. 

 

Research Objective 

The primary objective of this research is to develop and evaluate machine learning models that will be capable of 

accurately predicting energy consumption in U.S. hospitals. By leveraging data analytics, we aim to provide healthcare facilities 

with the information they require to drive their energy efficiency and sustainability efforts. Our approach will be to collect and 

analyze energy consumption data from various hospitals with different regions and operating conditions. In so doing, we aim to 

identify the primary drivers of energy consumption and develop predictive models that can inform decision-making concerning 

energy management. Beyond merely predicting energy consumption, our research will also seek to come up with actionable 

intelligence that can guide hospitals on how to optimize their energy consumption. These would include the identification of peak 

usage times, the impact of various changes in operations on energy demand, and recommendations on energy-efficient 

technologies and practices. By equipping hospitals with this kind of knowledge, we aim to enable them to undertake sustainable 

initiatives that are not only cost-effective but also supportive of improved patient care and environmental sustainability. 

 

Scope and Relevance 

This study will focus on United States hospital energy consumption data, recognizing the unique difficulties and 

opportunities present in the U.S. healthcare setting. The application of machine learning for realizing energy efficiency in hospitals 

is also current and topical, as healthcare facilities come under pressure to introduce sustainable measures amidst escalating energy 

costs and environmental consciousness. By focusing on the United States context, this project will address the regulatory, financial, 

and operational realities that influence energy use in U.S. hospitals. Through a detailed examination of the trends of energy usage, 

combined with advanced analytical techniques, this research aims to contribute to the growing body of research in energy 

efficiency in healthcare. By showing the potential of machine learning to improve energy forecasting and management, we hope 

to influence other healthcare facilities to adopt the same, with the long-term goal of a sustainable and affordable healthcare 

system in the United States. 

 

II. Literature Review 

Healthcare Facility Energy Consumption 

According to Bhatti et al. (2023), energy consumption in healthcare facilities, particularly hospitals, has been a subject of 

research due to its significant contribution to operating costs and environmental sustainability. Hospitals are among the most 

energy-intensive buildings in the United States, with studies indicating that they consume between 5-10 times more energy per 

square foot than typical commercial buildings. Recent trends have had energy consumption in hospitals increasing progressively, 

driven by improvements in medical technology, greater complexity of medical procedures, and enhanced facility operations. The 

American Society for Healthcare Engineering (ASHE) indicates that energy costs can represent up to 3% of a hospital's total 

operating budget, an estimate that will likely increase as energy prices continue to fluctuate (Gordillo et al. 2018). 
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Hosamo & Mazzeto (2024), asserted that several key determinants significantly influence energy demand in hospitals. 

One of the most direct determinants is patient occupancy; as occupancy increases, energy use also increases due to the need for 

increased lighting, HVAC (heating, ventilation, and air conditioning), and operational support for medical equipment. Hospitals 

also contain specialized medical technologies with high energy requirements, such as MRI machines, surgical suites, and laboratory 

equipment. These devices not only demand high energy when being operated but must also be maintained in a constant state of 

readiness, which adds to baseline energy consumption. Islam et al (2024), held that climate is also a major determinant of energy 

demand, as hospitals located in warmer or colder climates experience increased demands for climate control to maintain 

comfortable and safe temperatures for patients and staff. The physical design and architecture of hospital facilities also significantly 

influence energy efficiency; older facilities may lack modern energy-efficient equipment and systems, leading to higher energy 

consumption. Understanding these disparate determinants is necessary to create effective energy management programs in the 

healthcare setting. 

 

 Traditional Energy Forecasting Methods 

Rahman et al. (2024), contended that traditional energy prediction methods have been applied for many years to predict 

energy consumption in various sectors, including the healthcare sector. These methods rely heavily on statistical models that 

employ historical energy consumption data to predict future demands. Time-series analysis, regression models, and econometric 

models based on variables such as historical consumption trends, weather, and operating schedules are typical approaches. Time-

series models, for example, can identify trends and seasonal variations in energy consumption, while regression approaches are 

capable of associating energy consumption with specific independent variables, such as patient census or equipment utilization. 

However, Nayeem (2025), found that conventional forecasting techniques generally fall short of addressing the dynamic 

and complex nature of hospital energy demands. Among the key limitations is that they heavily rely on historical data that may 

not adequately capture sudden changes in energy consumption caused by unforeseen circumstances, such as a pandemic or 

natural disaster. Furthermore, such models often assume linear relationships between variables, which, in environments 

characterized by nonlinear and interdependent variables, can lead to erroneous predictions. The inflexibility of conventional models 

makes them ill-equipped to address the fast-evolving healthcare landscape, where technological innovations and workflow 

adaptations can significantly influence energy demands. Therefore, there is growing recognition of the need for more adaptive 

and sophisticated forecasting techniques to address the specific challenges to hospitals in achieving accurate forecasting of their 

energy demands (Runge, 2021). 

Machine Learning in Energy Efficiency 

Taha et al. (2023), stated that the advent of artificial intelligence (AI) and machine learning (ML) has opened up new 

possibilities for enhancing energy efficiency in buildings, including healthcare buildings. Machine learning algorithms have 

demonstrated a remarkable ability to comb through vast amounts of data and recognize complex patterns that can elude 

traditional statistical methods. In energy use, ML can leverage historical consumption data, weather, occupancy, and operational 

schedules to develop predictive models that provide real-time energy needs. By applying supervised learning, unsupervised 

learning, and reinforcement learning, machine learning has the potential to optimize energy consumption by predicting peak 

demand periods and sensing possibilities for load shifting and energy savings. 

There have been various success stories in the application of Machine Learning in energy optimization in commercial and 

healthcare buildings. Several hospitals have, for instance, installed ML-based systems that adjust HVAC settings based on real-

time occupancy and prevailing outside weather conditions, leading to significant savings in energy costs. A case in point was a 

large healthcare system that employed a machine learning algorithm to analyze historical energy usage and predict future trends 

in energy usage (Panagiootou & Dounis, 2022). The result was the potential to realize savings of up to 20% in energy, 

demonstrating the potential of data-driven solutions in energy efficiency. Commercial buildings have also employed machine 

learning in optimizing energy management systems, with the result being improved operational efficiency and reduced 

environmental impact. The growing body of evidence of the success of machine learning in energy efficiency demonstrates its 

potential to transform energy management in hospitals, and a strong case exists for exploring it further in this setting 

(Mohammadiziazi & Bilec, 2020). 

 

Research Gaps 

While there are encouraging applications of machine learning for energy efficiency, there remain significant research 

gaps, particularly in the United States hospital context. While numerous studies have been conducted on the use of ML for 

predicting energy consumption in commercial buildings and other applications, few have focused on the unique energy 

consumption profiles and issues of healthcare facilities. The majority of existing studies are not sufficiently specific in application 

to hospitals, with many neglecting to include key variables such as patient care dynamics, specialized medical equipment loads, 

and regulatory frameworks governing healthcare operations (Koc & Sckiner, 2024). 

Furthermore, there are compelling demands for predictive models that are tailored to address the idiosyncratic patterns 

of energy consumption by hospitals, which deviate considerably from those of standard commercial buildings. These models must 

account for the subtleties of hospital activity, including fluctuating patient census, the impact of seasonal variation on energy 
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consumption, and the integration of sophisticated medical technology. The resolution of these gaps not only provides a foundation 

for scholarly investigation but also has important practical implications for healthcare administrators seeking to deploy effective 

energy management initiatives. As the healthcare sector continues to evolve, the promotion of scholarship that serves to narrow 

the divide between machine learning approaches and the specific energy demands of hospitals will be central to the further 

evolution of the discipline of energy efficiency in healthcare (Jiang, 2018). 

 

III. Data Collection and Preprocessing 

Dataset Overview 

The data used for this hospital energy consumption analysis has been carefully gathered from multiple credible sources, 

including the U.S. Department of Energy's Energy Star program, whole-building hospital energy audits, and information from local 

utility providers. This variety in sourcing guarantees a strong and complete dataset that accurately represents real-world energy 

dynamics in healthcare buildings. The most important features provided in the dataset are essential to determining patterns of 

energy consumption: electricity consumption is measured in kilowatt-hours (kWh), giving a direct measurement of energy demand; 

HVAC load measurements provide information on the energy used for heating, ventilation, and air conditioning, which is vital 

considering the 24/7 operational schedule of hospitals; occupancy is measured to determine how patient loads influence energy 

consumption, with higher occupancy generally meaning higher energy consumption; and weather data, such as temperature and 

humidity, are included to capture their considerable influence on energy demands, especially for climate control systems. 

Combined, these features allow for an encompassing analysis of energy consumption in hospitals, making it possible to develop 

predictive models for optimizing energy efficiency. 

Data Preprocessing 

Data pre-processing is a crucial step in preparing datasets for analysis and modeling to ensure data quality and enhance 

predictive performance. The implemented code snippet illustrated several significant pre-processing steps utilizing Python 

libraries. The dataset was first loaded, and significant features were extracted, including timestamps that were broken down into 

more informative components such as year, month, day, and day of the week. This allowed the model to capture temporal trends 

in the data. The code also imputed missing values through the filling method so that the analysis is not skewed by missing data, 

particularly for significant columns such as "Patient ID." Additionally, categorical features were converted into numerical forms 

using Label-Encoder so that algorithms could efficiently handle these categorical features. Features were then standardized using 

Standard Scaler, normalizing the numerical data by subtracting the mean and scaling to unit variance, which enhanced the 

performance of many machine learning algorithms sensitive to the magnitude of input data. Finally, the dataset was split into 

training and testing datasets, a significant step in evaluating the performance of the model on unseen data so that the model 

generalizes well to new inputs. This thorough approach to data pre-processing set a strong foundation for subsequent model 

training and evaluation. 

Key Features Selection 

S/No. Features/Attributes Description 

01. Patient Health Data Entails attributes such as temperature, oxygen saturation, heart rate, 

and blood pressure, which are collected by sensor-based systems for 

the sake of monitoring patient health. 

02. Energy Usage Data Comprises record energy consumption across various systems like 

HVAC, lighting, and medical equipment, with a focus on renewable 

energy sources. 

03. Operational Efficiency Includes real-time monitoring of system health, HVAC mode, power 

saving mode, and AI-predicted patient health status for simplifying 

hospital operations. 

04. Environmental Conditions Entails features such as outdoor temperature, humidity, and room 

conditions to adjust environmental controls accordingly for patient 

comfort and energy savings. 

 

Exploratory Data Analysis (EDA)  

According to Islam et al. (2024), Exploratory Data Analysis (EDA) is a critical phase in the data analysis process that involves 

the analysis and visualization of datasets to summarize their main features, typically aided by graphical displays. EDA serves several 

purposes, including pattern detection, identification of anomalies, hypothesis testing, and checking assumptions using statistical 

summaries and visualizations. By utilizing techniques such as descriptive statistics, data visualization (for example, histograms, 

scatter plots, and box plots), and correlation analysis, EDA allows analysts to gain insight into the underlying structure of the data, 

understand the interaction between variables, and identify trends that are not readily apparent. The role of EDA in data analysis is 

fundamental since it underpins subsequent modeling and hypothesis testing phases. It helps guide the selection of appropriate 

analysis methods by revealing the nature of the data, such as the distribution of variables and the presence of outliers or missing 
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values. EDA may also guide data preprocessing steps, for example, normalization, transformation, or imputation, to prepare the 

dataset sufficiently for more advanced analyses. Overall, EDA plays a critical role in ensuring informed decision-making in the 

process of data analysis by facilitating insight into and enhanced understanding of the data, as well as enhancing the quality of 

the inferences made from the data. 

 

Overview of Key Features 

The formulated code script was devoted to plotting the distributions of various numerical columns of the dataset related 

to hospital energy consumption and related metrics. By defining a list of numerical columns that include the key variables of 

interest, including temperature, humidity, oxygen level, and various measures of energy consumption (i.e., HVAC power 

consumption and efficiency), the code aimed to create a variety of histograms to show the distribution of each feature. The call to 

plt.figure(figsize=(15, 10)) dictated the overall plotting area size to ensure the plots were not cramped and were clear. The loop 

iterated over each numerical column, creating a subplot for each one, thus encouraging a comprehensive visual inspection. The 

SNS. His plot () function from the Seaborn library was used to produce the histograms, with the kde=True parameter indicating 

that kernel density estimation lines are to be added to the histograms to provide a smoothed representation of the distribution of 

the data. Finally, plt.tight_layout() was called to optimize the spacing between the subplots so that titles and axes are legible. This 

procedure was a good approach to inspecting the distributions of the key variables in a manner that enabled analysts to inspect 

for patterns, outliers, and the potential for relationships between the data points. 

 

Output: 

 

Figure 1: Overview of Key Features 

The histogram above plots in the figure provided an overview of a broad spectrum of key metrics regarding hospital 

environmental conditions and energy consumption. For instance, the temperature histogram illustrated a roughly normal 

distribution around the comfortable zone, suggesting good climate control within the building, while the humidity is somewhat 

right-skewed, suggesting periods of high humidity that could impact both comfort and energy consumption. The distribution of 

oxygen levels is rather uniform, suggesting a consistent air quality control strategy. Heart rate data, as shown by the histogram, 

follows a peaked distribution around 70-80 bpm, which is within normal resting heart rates and could suggest a stable patient 

condition. Energy consumption metrics exhibit high variance of consumption, with peaks at certain kWh ranges—suggesting 

potential targets for energy efficiency. Notably, HVAC efficiency histograms show a mean efficiency of ~85%, which suggests room 

for optimization since reduced efficiency can be a major contributor to operating costs (Islam et al., 2024). 
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Correlation Heatmap 

The implemented code employed Python libraries matplotlib and seaborn to plot a heatmap of the correlation matrix of 

numerical columns of a Pandas Data Frame named df. Specifically, it narrowed down the Data Frame to numerical_columns, 

computed their pairwise correlations using the.corr() method, and ultimately plotted these correlations in a heatmap using 

sns.heatmap(). The argument annot=True made the correlation values appear within the heatmap squares, and cmap='coolwarm' 

colors the scheme from cool (negative correlation) to warm (positive correlation). The argument fmt=\".2f\" formatted the 

annotations to two decimal places. The resultant heatmap, 12x8 inches in dimension, was a good visual summary of the numerical 

feature relationships, with the title 'Correlation Heatmap' to contextualize it. Finally, plt.show() renders the plot. 

 

 

 
Figure 2: Correlation Heatmap of Key Features 

The correlation heatmap provides valuable information on the interrelationship of various numerical variables in the 

dataset, displaying strong and weak relationships between them. Worth mentioning are the temperature and humidity variables, 

with a strong negative relationship of -0.83, indicating that temperature is inversely proportional to humidity, as expected in 

controlled settings. Energy consumption has a moderate positive relationship (0.58) with HVAC power consumption, indicating 

that higher HVAC requirements correlate with higher overall energy consumption, as would be expected in operational settings in 

hospitals. The variable for renewable energy consumption has a weak relationship with overall power consumption (0.37), 

indicating that while there is a correlation, it may not be significant enough to make a firm determination of the contribution of 

renewable energy to overall energy consumption. The relationship between medical equipment power consumption and overall 

power consumption (0.58) indicates the high power requirements of medical equipment, highlighting the need for proper energy 

management. Overall, the heatmap is a valuable tool in the identification of significant relationships between variables, guiding 

further analysis and possible interventions for maximizing energy efficiency in hospital operations. 

 

Hourly Power Consumption Trend 

The code snippet in Python created a line plot with matplotlib and seaborn in Python to represent the trend of 'Total 

Power Usage (kWh)' over time. It created a figure of size 15x5 inches. Then it used sns.lineplot() to plot the line chart, taking the 

Data Frame df with 'Timestamp' as the x-axis and 'Total Power Usage (kWh)' as the y-axis and making the line blue in color. It titled 

the plot as 'Total Power Usage Over Time' and labeled the x-axis as 'Timestamp' and the y-axis as 'Power Usage (kwh)'. It then 

rotated the x-axis timestamp labels by 45 degrees for ease of reading and showed the plot with plt.show(). This plot made it easy 

to analyze power consumption trends over the specified period. 
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Output: 

 
 

Figure 3: Total Power Consumption Trend 

The boxplot above illustrates hourly power consumption trends and provides a detailed overview of total power usage 

(in kWh) throughout the day, revealing important patterns and variations in energy demand at different times. Each box represents 

the interquartile range (IQR), with the horizontal line indicating the median power usage, while the whiskers extend to the minimum 

and maximum values, excluding outliers. Notably, the plot shows that power consumption tends to peak during the late afternoon 

and early evening hours, particularly between 16:00 and 20:00, where median values reach around 12 kWh, indicating higher 

energy demands likely due to increased hospital activity or operational requirements during these times. Conversely, the early 

morning hours, especially between 2:00 and 5:00, exhibit lower power usage, with medians hovering around 7-8 kWh. Islam et al. 

(2024), found that the presence of outliers in various hours suggests occasional spikes in energy consumption that may be tied to 

specific events or equipment usage. This visualization effectively highlights the cyclical nature of energy demand in the hospital 

setting, offering valuable insights for optimizing energy management strategies and planning resource allocation throughout the 

day. 

 

HVAC Efficiency vs. Outdoor Temperature 

The code script was implemented to generate a scatter plot using matplotlib and seaborn in Python to plot how 'Outdoor 

Temperature (°C)' is related to 'HVAC Efficiency (%),' with data points separated by 'Season.' It first created a 10x6-inch figure. 

Then, using SNS.scatterplot(), it created the scatter plot from the Data Frame df, plotting 'Outdoor Temperature (°C)' on the x-axis, 

'HVAC Efficiency (%)' on the y-axis, and separating data points by 'Season' by using color hues from the 'Viridis' color palette. It 

labeled the plot 'HVAC Efficiency vs. Outdoor Temperature' and labeled the x and y axes accordingly. Finally, using plt.show(), it 

displayed the generated scatter plot, enabling an examination of how HVAC efficiency varies with outdoor temperature and how 

this varies depending on the season. 

 
Figure 4: HVAC Efficiency vs. Outdoor Temperature 
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The scatter plot above depicts HVAC efficiency concerning outdoor temperature, revealing critical insights into the 

performance of heating, ventilation, and air conditioning systems across different seasons. Each point represents a data entry 

color-coded by season, showcasing how HVAC efficiency fluctuates as outdoor temperatures vary. The plot indicates that HVAC 

efficiency generally remains high, often exceeding 90%, at moderate outdoor temperatures ranging from 15°C to 30°C, suggesting 

optimal performance in this temperature range. However, as outdoor temperatures rise above 30°C, there is a noticeable decline 

in efficiency, particularly during the summer months, where points drop into the 80-85% range. Islam et al (2024) argued that this 

trend may indicate increased strain on HVAC systems during hotter weather, leading to reduced operational efficiency. Conversely, 

in cooler temperatures, particularly in the fall and winter, the efficiency remains relatively stable, although it tends to dip slightly 

at extremely low temperatures. Overall, this visualization emphasizes the importance of monitoring outdoor conditions to maintain 

HVAC performance, suggesting that energy management strategies should consider seasonal variations to enhance efficiency and 

reduce operational costs in climate control systems. 

 

Renewable Energy vs. Energy Consumption 

The implemented code snippet generated a scatter plot using matplotlib and seaborn in Python to show the relationship 

between 'Renewable Energy Usage (%)' and 'Energy Consumption (kWh)' with points separated by 'Season.' It started by setting 

up a figure of size 10x5 inches. It then utilized the sns.scatterplot() function to generate the scatter plot from the DataFrame df, 

mapping 'Renewable Energy Usage (%)' to the x-axis, 'Energy Consumption (kWh)' to the y-axis, and using the 'cool, warm' color 

palette to represent different 'Seasons' through color hues. The plot was titled 'Renewable Energy Usage vs. Energy Consumption' 

with appropriate x and y-axis labels. Finally, plt.show() is called to render the generated scatter plot, allowing for examination of 

how the use of renewable energy correlates with total energy consumption and how this differs by season. 

 

Output: 

 
Figure 5: Renewable Energy vs. Energy Consumption 

The scatter plot above depicts renewable energy utilization against total energy consumption and provides an insightful 

analysis of how these two metrics relate to one another over a variety of seasons. Each entry of data is plotted as a point, color-

coded by season, with an obvious visual trend of how total energy consumption varies with increasing renewable energy utilization. 

The data demonstrates a moderately positive trend; as renewable energy utilization approaches 100%, total energy consumption 

tends to increase, reflecting that increasing reliance on renewable sources does not always mean decreasing overall energy 

consumption. This trend is most evident in the winter season, where energy consumption is at its highest, likely due to increased 

heating demands. Conversely, the spring and summer seasons show a more dispersed trend, reflecting that energy consumption 

can be highly variable even with modest renewable energy utilization. The spread of points across the range reflects that while 

some facilities can effectively utilize renewable sources to offset total energy consumption, others can continue to have high 

energy demands independent of renewable inputs (Islam et al., 2024). Overall, this visualization helps to underscore the 

complexities of energy utilization in the hospital setting, highlighting the need for strategic planning to optimize renewable energy 

integration and reduce overall consumption. 
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Energy Flow Analysis 

The formulated code created an interactive Sankey diagram using Plotly in Python for visualizing energy flow. It defined 

labels for different energy categories, including "Total Energy," "Renewable Energy," "Non-Renewable Energy," and categories of 

usage such as "HVAC," "Lighting," "Medical Equipment," and "Other Usage." The source and target lists defined the connections 

between flows for these categories. The values list defined the size of these flows, calculated from the mean values of a Pandas 

Data Frame df.  In this scenario, it represented the proportion of renewable energy, the breakdown of energy usage into HVAC, 

lighting, and medical equipment, and the remaining energy as "Other Usage." The Sankey diagram was then created using 

Go.Figure(go.Sankey(.)), passing the node (labels) and link (source, target, value) information.  The layout was then updated with a 

title and font size, and the interactive plot was displayed using fig.show(), enabling users to interactively visualize the energy flow. 

 
Figure 6: Energy Flow Analysis 

The energy flow analysis diagram provided a comprehensive overview of how total energy is distributed across various 

sources and applications within the system. The illustration depicted the proportion of renewable energy compared to non-

renewable energy, with a significant sector dedicated to renewable sources, indicating a strong commitment to sustainable 

principles. The interconnecting flow lines between these categories suggest how energy was being utilized, with a significant 

amount being utilized in medical equipment power, which was generally a high consumer of energy in healthcare facilities. The 

diagram also rendered clear the residual energy consumed in other operational needs, highlighting the multifaceted nature of 

energy demands. The clear segregation of renewable and non-renewable sources allowed stakeholders to instantly identify areas 

of improvement and potential changes toward more sustainable energy policies. 

 

 Pareto Analysis of Power Consumption 

The executed code performed a Pareto analysis of power consumption by different equipment and plotted it as a 

combined bar and line plot. It chose power consumption features ('HVAC,' 'Lighting,' 'Medical Equipment') and calculated their 

mean power consumption, sorting them in descending order. It then calculated the cumulative proportion of overall power 

consumption for each equipment category. The code plotted a figure with two y-axes. The primary y-axis plots a bar chart of power 

consumption for each equipment, and the secondary y-axis plots the cumulative proportion as a line plot. Horizontal dotted lines 

indicated 80% of overall power consumption and 80% cumulative usage, respectively, to identify the most significant contributors 

to power consumption. Labels and titles were added for clarity, and x-axis labels were rotated for readability. The resulting plot 

displayed the Pareto principle (80/20 rule) for power consumption, highlighting the equipment that contributes most to overall 

consumption. 

 

 
Figure 7: Pareto Analysis of Power Consumption 
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The Pareto power consumption chart presents a clear picture of how different categories contribute to overall energy 

consumption within the facility, following the 80/20 rule. The bars present total power usage for categories like HVAC, medical 

equipment, and lighting, of which HVAC power usage is highest at approximately 8 kWh, marking it as the primary power 

consumer. The cumulative percentage line indicates that the combination of HVAC and medical equipment accounts for the 

majority of the total consumption, with the percentage increasing closer to 100% as it proceeds toward the end category. It reflects 

that if changes are done in just these two categories, tremendous energy can be saved. The chart very well illustrates the fact that 

by making changes in the highest contributors, namely HVAC and medical equipment, the biggest impact can be seen in reducing 

overall energy usage. The deductions from this analysis can guide energy management strategies, with facility managers giving 

top priority to interventions focused on the biggest power consumers of usage, leading eventually to better efficiency and less 

operational cost. 

 

Health Status Comparison via Radar Chart Oxygen Level (%) 

The implemented code plotted a radar chart comparing health metrics across different AI-predicted health statuses. It 

began by defining the categories of health metrics being considered: 'Heart Rate,' 'Oxygen Level,' 'Room Temperature,' and 'Room 

Humidity.' It then grouped data in the Data Frame df by 'AI Predicted Health Status' and calculated the mean of each health metric 

by group. The code calculated the angles of radar chart axes and initiated the plot in polar coordinates. It iterated through each 

health status group, extracting the mean values per category and plotting them on the radar chart. It filled the area within the 

plotted lines with a semi-transparent color to enhance visualization. The x-axis ticks of the chart were set to the defined categories, 

and the plot is titled "Health Status Comparison via Radar Chart" with a legend to distinguish between health statuses. Finally, 

plt.show() displayed the constructed radar chart, allowing for a visual comparison of health metrics across different AI-predicted 

health statuses. 

 

 
Figure 8: Health Status Comparison via Radar Chart Oxygen Level (%) 

 

The radar comparison graph of healthy and unhealthy individuals' health status measures provides a multidimensional 

view of key physiological factors: oxygen level, heart rate, room temperature, and room humidity. Each axis represents a range of 

differing health indicators, with the shaded area representing the ranges for both healthy and unhealthy status. Notably, healthy 

individuals have higher oxygen levels and lower heart rates, while unhealthy individuals have lower oxygen levels and higher heart 

rates, suggesting potential stress or illness. Room temperature and humidity are also represented, showing that optimal 

environmental conditions can significantly impact overall health. The stark contrast between the two profiles highlights the 

importance of keeping these health indicators under observation to ensure a therapeutic environment for patient recovery and 

well-being. Visualization is a valuable tool for healthcare providers, highlighting key factors that can influence patient health and 

guiding interventions aimed at improving environmental conditions and, subsequently, health outcomes. 

 

AI Health Status Trends Over Time 

The code script illustrated how to generate a line plot with Matplotlib and Seaborn for visualizing predicted health status 

trends over time. It started with setting the figure size to 12 by 5 for an optimal display. It then extracted and formatted the data 

from the Data Frame to allow for time-based analysis. The Seaborn line plot was applied to group the data by date, counting and 

normalizing the occurrences of each predicted health status for proportionate display. The x-axis was labeled as "Date" and the y-
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axis as "Proportion," indicating the relative frequencies of health statuses. A title, "AI Health Status Trends Over Time," was also 

added to the plot, along with rotating x-tick labels for readability. The show() function was called to display the plot. This code 

block successfully presented a visual story of health status progression, providing insightful temporal trends. 

 

 
Figure 9: AI Health Status Trends Over Time 

The line chart above depicts AI health status trends over time and provides a clear comparison between the proportions 

of predicted healthy and unhealthy statuses from January to May 2023. The blue line represents the proportion of predicted healthy 

individuals, while the orange line indicates the unhealthy status. Throughout this period, both lines exhibit noticeable fluctuations, 

with the healthy proportion hovering around 0.48 to 0.56, suggesting periods of stability interspersed with spikes. Conversely, the 

unhealthy proportion demonstrates more volatility, frequently dipping below the healthy line, particularly around mid-January and 

late February, which may indicate specific events or conditions affecting health. The convergence and divergence of the two lines 

highlight the dynamic nature of health status predictions, emphasizing the importance of continuous monitoring. This visualization 

aids in identifying trends or anomalies, facilitating timely interventions to improve health outcomes based on AI predictions. 

 

Power Consumption Forecast 

The executed chain of codes computed and plotted a 7-day rolling average of total power consumption. It computed the 

rolling mean of the 'Total Power Usage (kWh)' column of the Data Frame df with a window of 7 and stored it in a new column, 

'Rolling_Mean.' It then plotted a line graph with two lines: one for daily power consumption (using the original 'Total Power Usage 

(kWh)' column with a lower alpha for visibility) and another for the 7-day rolling average (using the 'Rolling_Mean' column, which 

is plotted in red). The graph was titled, axis labels were added, a legend was added to distinguish between the two lines, and the 

x-axis ticks were rotated for better readability of timestamps. The graph helped to smooth out daily fluctuations and highlight the 

overall trend of power consumption over time, making longer-term patterns and any anomalies easier to identify. 

 

Output: 

 
Figure 10: Power Consumption Forecast 
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The power consumption forecast graph presents daily consumption along with a 7-day moving average, providing a 

perspective on trends in energy consumption over time from January to early March 2025. Daily power consumption is represented 

by blue bars, which fluctuate significantly, demonstrating the volatility of energy demand. The red line, which is the 7-day moving 

average, streamlined daily volatility to reveal general trends. The moving average fluctuates between 10 and 12 kWh, 

demonstrating a relatively constant consumption level amidst the daily peaks and troughs. The peaks in daily consumption may 

be associated with specific events or periods of high demand, while the moving average provides a good baseline to assess long-

term trends. By enabling a comparison of daily consumption with the moving average, the graph helps stakeholders identify trends 

and areas of possible energy efficiency improvements, ultimately informing better energy management decisions. 

 

IV. Methodology 

Feature Engineering 

During feature engineering, important predictive features were carefully chosen to improve the model's accuracy in 

forecasting energy consumption in a hospital environment. Islam et al (2024), reported that these features consist of total energy 

consumption as a base metric, time-based variables like day of the week and seasonality to capture cyclical trends in energy 

consumption, and weather variables like temperature and humidity to account for their strong influence on energy demand, 

especially in heating and cooling. Hospital size, as indicated by metrics such as number of beds and square footage, was also 

considered to account for how facility size affects energy consumption. Islam et al. (2024), added that to achieve better model 

accuracy, derived features like energy consumption per patient or energy usage intensity were engineered, offering a more refined 

view of efficiency as it relates to patient volume. 

 

Model Selection and Training 

In the model selection phase, three powerful algorithms were employed: the Random Forest Classifier, XG-Boost, and 

Artificial Neural Network (ANN). The Random Forest Classifier, being robust and able to handle high-dimensional data, was chosen 

for its ensemble learning property, which avoids overfitting and improves generalization. XG-Boost, a gradient-boosting 

framework, was chosen based on its high performance in structured data and its ease of gradient-boosting handling missing values 

(Islam et al., 2024). Finally, the ANN was included to detect complex, non-linear relationships in the data, leveraging its multi-

layered structure to learn complicated patterns. Each model was compared based on its ability to predict energy consumption with 

high accuracy, where accuracy, precision, recall, and F1-score were considered to decide the selection. 

 

Model Evaluation and Performance Analysis 

Feature Importance Analysis 

a) Random Forest and XG-Boost 
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Figure 11: Feature Importance Random Forest and XG-Boost 

The table displays feature importance scores from Random Forest and XG-Boost models that reflect the strength of 

different features in the prediction of energy consumption. The Random Forest model displays the highest importance scores from 

features such as total energy consumption and room temperature, which play leading roles in influencing energy usage predictions. 

Other prominent features include outdoor humidity and medical device power consumption, which also play important roles in 

the decision-making process of the model. The XG-Boost model adopts a different pathway, where features such as patient ID and 

HVAC power consumption dominate, but with strong relationships between rates of patient activities and energy use. Other 

prominent features include light power consumption and room type, which also reflect the sensitivity of the model to operational 

controls within the hospital setting. The comparative feature importance analysis demonstrates varied contributions of multiple 

factors among different models, which reflect valuable insights toward the optimization of energy management strategy in health 

environments. 

XG-Boost & Random Forest: Hyperparameter Tuning for Improved Accuracy 

The code applied Optuna to tune the hyperparameters of an XG-Boost and Random Forest classifier. It had an objective 

function that took a trial object, which suggested hyperparameter values from a set. These included n-estimators, max-depth, 

learning rate, subsample, colsample_bytree, gamma, reg_alpha, and reg_lambda. It trained an XG-Boost model with the suggested 

parameters and measured its accuracy on a validation set. The objective function returns the accuracy, and Optuna tried to 

maximize it. The optimization was run for 50 trials, and the best hyperparameters found were output. This technique automated 

finding the best hyperparameters, and it can lead to a more effective XG-Boost model and Random Forest compared to using 

manually selected parameters. 

 

ROC Curve 

The code snippet computed and plotted the Receiver Operating Characteristic (ROC) curve and calculated the Area Under 

the Curve (AUC) for a binary classification model (presumably best_rf_model). It first calculated the predicted probabilities for the 

positive class from the trained model using predict_proba. It then calculated the False Positive Rate (FPR) and True Positive Rate 

(TPR) using roc_curve and the AUC using auc. It then plotted the ROC curve with FPR on the x-axis and TPR on the y-axis, with a 

diagonal line for a random classifier, the ROC curve itself in a different color, and a legend with the calculated AUC value. Axis 

labels and a title were added for clarity, and the plot is displayed with plt.show(). This plot helped in the evaluation of the model's 

ability to distinguish between the two classes at different classification thresholds. 

 

Output: 
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Figure 11: Displays ROC Curve 

The chart above displays the Receiver Operating Characteristic (ROC) curve of the predictive model and its performance 

in differentiating between the positive and negative classes. The curve is a plot of the true positive rate (sensitivity) against the 

false positive rate at different settings of the threshold, demonstrating how well the model can detect positive instances (e.g., 

"Unhealthy" energy consumption). With an Area Under the Curve (AUC) value of 0.97, the model exhibits remarkable classification 

capability, demonstrating that it separates the two classes with very high accuracy. An AUC value near 1 indicates that the model 

is very reliable in making predictions since it has a high true positive rate with a low false positive rate. Such remarkable 

performance identifies the model as having potential applicability in real-world applications, especially in environments where 

precise classification of energy consumption patterns is of paramount importance to operational efficiency and resource 

management. 

 

 

VI. Results 

a) Random Forest Modelling 

The Python code snippet performed the training and testing of a Random Forest Classifier using scikit-learn. The code 

began with the importation of the necessary modules, including Random-Forest-Classifier to instantiate the model and accuracy 

score, classification report, and confusion matrix to evaluate the model. The Random Forest model was instantiated with 100 

estimators (n-estimators=100) and a fixed random state for reproducibility (random-state=42). The model was trained on the 

training data (X-train, y-train). Predictions were made on the test data (X_test), and the model's performance was evaluated. The 

accuracy score, a classification report (with precision, recall, F1-score), and the confusion matrix are printed by the code to provide 

an overall assessment of the classifier's performance, with the possibility of analyzing its strengths and weaknesses in classifying 

the data. 

 

Output: 

Table 1: Random Forest Classification Report 

Random Forest Accuracy: 0.5035 

              precision    recall  f1-score   support 

 

           0       0.51      0.52      0.52      1022 

           1       0.49      0.49      0.49       978 

 

    accuracy                           0.50      2000 

   macro avg       0.50      0.50      0.50      2000 

weighted avg       0.50      0.50      0.50      2000 
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The table summarizes the performance metrics of the Random Forest Classifier, indicating an overall accuracy of 50.35% 

in predicting energy consumption categories. The precision for class 0 (presumably representing a "low consumption" status) 

stands at 0.51, suggesting that just over half of the instances predicted as low consumption were accurate. The recall for class 0 is 

slightly lower at 0.52, indicating that the model correctly identified 52% of actual low-consumption instances. For class 1 (likely 

indicating "high consumption"), the precision and recall are lower, at 0.49 and 0.50, respectively, reflecting challenges in accurately 

predicting high consumption cases. The F1 scores, which balance precision and recall, are all around 0.50, highlighting a need for 

improvement in the model’s ability to differentiate between the classes. The confusion matrix reveals that out of 2,000 total 

instances, the model misclassified 494 instances of class 0 and 479 instances of class 1, underscoring the model's limitations in 

accurately capturing the complexities of energy consumption patterns. Overall, these statistics point to the need for further 

refinement in feature selection or model tuning to enhance predictive performance. 

 

b) XGB-Classifier Modelling 

The code script executed training and testing an XG-Boost Classifier using the XG-Boost library in Python. It begins by 

importing the library as xgb. It created an XG-Boost classifier model with the following hyperparameters: 100 estimators (n-

estimators=100), learning rate of 0.1 (learning_rate=0.1), a maximum depth of 5 for the trees (max depth=5), and a fixed random 

state for reproducibility (random_state=42). It trained the model on the training data (X-train, y-train). It predicts the test data (X-

test) and assesses the model's performance. It prints the accuracy score, a classification report (precision, recall, F1-score), and the 

confusion matrix to provide a complete assessment of the XG Boost classifier's performance, enabling analysis of its strengths and 

weaknesses in classifying the data. 

Table 2: XGB Boost Classification Report 

XGBoost Accuracy: 0.511 

              precision    recall  f1-score   support 

 

           0       0.52      0.50      0.51      1022 

           1       0.50      0.52      0.51       978 

 

    accuracy                           0.51      2000 

   macro avg       0.51      0.51      0.51      2000 

weighted avg       0.51      0.51      0.51      2000 

 

 

The table above presents the performance of the XG-Boost model, achieving 51.1% accuracy in classifying energy 

consumption. The precision for class 0 (presumably "low consumption") is 0.52, indicating that slightly more than half of the 

predictions for this class were correct. Recall for class 0 is fractionally less at 0.50, so 50% of instances of actual low consumption 

were correctly identified by the model. For class 1 (presumably "high consumption"), precision is 0.49, and recall is 0.51, reflecting 

a slightly higher correct identification of high consumption cases compared to low consumption. F1 scores for both classes are 

approximately 0.51, reflecting a balanced but modest performance in classification. The confusion matrix reveals that out of 2,000 

cases in total, the model misclassified 513 cases of class 0 and 465 cases of class 1, reflecting the difficulty in distinguishing between 

the two classes. These results suggest that while the XG-Boost model has some predictive utility, there is significant room for 

improvement in its ability to classify energy consumption patterns correctly. 

 

c) Artificial Neural Network (ANN) Modelling 

The code in Python constructed, trained, and evaluated a multi-class Artificial Neural Network (ANN) model using 

TensorFlow/Keras in Python. It constructed a sequential model with three dense layers: an input layer with 64 neurons and ReLU 

activation, a hidden layer with 32 neurons and ReLU activation, and an output layer with a soft-max activation function for multi-

class classification with the number of neurons being the number of distinct classes in the target variable y. The model was 

compiled with the Adam optimizer, sparse categorical cross-entropy loss (suited for integer labels), and accuracy as the metric. 1  

It was trained for 50 epochs with a batch size of 16 on training data (X-train, y-train) and validated on test data (X-test, y-test). 

After training, it predicted classes for the test set, calculated and printed the accuracy score, classification report (with precision, 

recall, F1-score), and confusion matrix to assess the performance of the ANN classifier. 



Predicting Energy Consumption in Hospitals Using Machine Learning: A Data-Driven Approach to Energy Efficiency in the USA 

Page | 214  

Table 3: Neural Network Classification Report 

Neural Network Accuracy: 0.52 

              precision    recall  f1-score   support 

 

           0       0.52      0.83      0.64      1022 

           1       0.52      0.19      0.28       978 

 

    accuracy                           0.52      2000 

   macro avg       0.52      0.51      0.46      2000 

weighted avg       0.52      0.52      0.47      2000 

The table summarizes the performance metrics of the Artificial Neural Network (ANN) model, which achieved a 52% 

accuracy in predicting the categories of energy consumption. Precision for class 0 (presumably "low consumption") is 0.52, 

indicating that just over half of the class 0 predictions were correct. Notably, the recall for class 0 is significantly higher at 0.83, 

indicating that the model identified 83% of actual low consumption cases correctly, reflecting its ability to recognize this category 

accurately. Precision for class 1 (presumably "high consumption") is significantly lower at 0.19, with recall at 0.26, reflecting the 

great difficulty in correctly predicting high consumption. The F1 scores reflect a stark imbalance, with class 0 being 0.64 and class 

1 being only 0.22, reflecting the bias of the model towards the low consumption category. The confusion matrix indicates that out 

of 2,000 cases in total, the model incorrectly predicted 172 class 0 cases and 190 class 1 cases, reflecting an overall challenge in 

achieving balanced accuracy between the two categories. This suggests that the model performs well for low-consumption 

predictions but must be further refined to ensure its high-consumption predictions are more reliable. 

Confusion Matrix of Random Forest And XG-Boost 

 

 

 

 

Figure 12: Visualizes Confusion Matrix for Random Forest and XG-Boost 

The table shows the confusion matrices for the Random Forest and XG-Boost models, showing their performance in 

classifying energy consumption types as either "Healthy" or "Unhealthy." In the confusion matrix for Random Forest, out of the 

2,000 total predictions, 528 were correctly predicted as "Healthy," while 494 were incorrectly predicted as "Unhealthy." The model, 

on the other hand, incorrectly predicted 499 actual "Unhealthy" cases as "Healthy" and correctly predicted 479 as "Unhealthy." 

This shows difficulties in precise differentiation between the two types. The XG-Boost model shows a different distribution, with 

509 true positives for "Healthy" and 513 false positives for "Unhealthy." It also incorrectly predicted 465 actual "Unhealthy" cases 

as "Healthy" while correctly predicting 513 "Unhealthy" cases. Generally, both models show classification difficulties, especially with 

the "Unhealthy" type, showing the necessity for further improvement in predictive accuracy and feature selection to enhance 

energy consumption predictions. 
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Checking Model Overfitting 

The code snippet demonstrated a method for the detection of model overfitting using a comparison of training and test 

accuracies across a collection of models. The script loaded the accuracy score function from the sklearn.metrics module to perform 

accurate metric calculations. The snippet iterated through a dictionary of models, calculating the training accuracy with accuracy 

score on the training input X-train and predicted labels through the model. Predict. The snippet then printed the training accuracy 

along with the test accuracy to enable direct comparison. To depict the results graphically, the code used matplotlib to plot a 

figure with the training accuracy in blue and the test accuracy in red. By plotting both accuracies, the figure helped with overfitting 

identification: a significant difference between high training accuracy and lower test accuracy could indicate that the model 

performed well on training data but did not generalize to new data. The inclusion of plt.show() at the end is to plot the figure for 

visual examination. 

 

Output: 

  
 

Figure 13: Showcasing Model Overfitting Check 

The graph indicates the overfitting check for the Random Forest as well as the XG-Boost models by placing their training 

and test accuracies side by side. For the Random Forest model, the blue training accuracy is high at about 0.85, whereas the red 

test accuracy is very low at about 0.51. This enormous gap indicates that the model is likely overfitting, doing extremely well on 

the training set but failing to generalize well to new data. The XGBoost model also shows a similar pattern, having a high training 

accuracy of about 0.85 with lower test accuracy, further indicating the issue of overfitting. The graphical representation is a perfect 

reflection of the models' performance, indicating the need for overfitting reduction measures, such as hyperparameter tuning or 

using regularization techniques, to achieve a well-balanced performance between the training and the test steps. 

Impact of External Factors on Forecasts 

Islam et al. (2024), reported that external variables such as hospital size, occupancy, and weather conditions have strong 

influences on energy demand projections within hospitals. Larger hospitals tend to be more energy-consuming based on the 

increased number of rooms, medical equipment, and operational services required to accommodate more patients. This increased 

demand is further compounded during the peak occupancy periods when the hospital is operating at or near capacity, 

necessitating higher intensities of heating, cooling, and lighting requirements. Energy models, as a result, must account for these 

variables to accurately predict consumption patterns. Climate conditions also play a very critical role in energy demand; for 

instance, hospitals located in warmer climates might require more energy for air conditioning during the summer months, while 

those located in colder climates might require more energy for heating during the winter months. Fluctuations in temperature and 

humidity during the seasons can lead to variations in energy consumption and hence need adaptive countermeasures to reduce 

energy consumption. Through the inclusion of these external variables within predictive models, hospitals can obtain a more 

sophisticated understanding of their energy needs, enabling them to implement personalized energy management procedures 

based on operational requirements and weather conditions. 
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Optimization Scenarios Model 

Using predictive analytics from machine learning models, hospitals can streamline energy management strategies, 

modulating operations to match predicted energy demands. For instance, predictive models can learn from patient occupancy 

trends and associated energy consumption, and hospitals can dynamically modulate HVAC systems so that heating and cooling 

are optimized based on real-time occupancy. This approach not only enhances patient comfort but also eliminates wasteful energy 

consumption. Models can also forecast energy requirements at specific times of day or during the span of various seasons, and 

hospitals can schedule high-energy-consuming procedures during off-peak times when the energy cost may be lower (Islam et al, 

2024). Incorporation of renewable energy sources, such as solar panels, into such models can further enhance sustainability 

initiatives, with hospitals able to reduce reliance on grid energy during times of high demand. Overall, these model-based 

optimization scenarios not only achieve significant energy savings but also a more sustainable operational model, with alignment 

to environmental goals while ensuring efficient provision of health services. 

 

VI. Practical Applications 

 Energy Management for Hospitals 

Hospital managers can utilize machine learning (ML)--based predictions to achieve substantial cost savings in operational 

expenditures related to energy usage. With predictive analytics, hospitals can anticipate energy needs based on several parameters, 

such as patient occupancy rates, time of day, and seasonality. This allows managers to streamline energy use so that heating, 

cooling, and lighting systems are modulated based on real-time requirements instead of running at full capacity at all times. For 

example, when there is low occupancy, hospitals can dial down energy input to non-essential sectors, which translates to 

considerable cost savings. In addition, information derived from ML predictions can be used to create energy-efficient hospital 

facilities. By knowing the times of peak demand and the energy requirements of various departments, hospital architects can 

incorporate energy-efficient designs, such as positioning windows for maximum natural lighting, using energy-efficient HVAC 

systems, and choosing materials with better thermal insulation properties. This type of strategic infrastructure design not only 

results in cost savings in the short term but also helps in the accomplishment of long-term sustainability objectives by reducing 

the overall carbon footprint of the facility. 

Policy Implications for the U.S. Healthcare Sector 

Integration of AI-driven energy prediction in hospital sustainability plans has significant policy implications for the U.S. 

healthcare sector. To encourage its adoption, policymakers can recommend guidelines that encourage hospitals to invest in 

innovative energy management solutions, including machine learning algorithms that can predict and optimize energy 

consumption patterns. These recommendations can be supported through the offer of fiscal incentives, grants, or subsidies for 

healthcare facilities to adopt AI technologies. Adherence to U.S. energy efficiency standards is also relevant in this context. 

Hospitals should be guided on how to make their facilities compliant with set energy efficiency standards, such as those specified 

by the U.S. Department of Energy and the Environmental Protection Agency. Embracing regular auditing and analysis of energy 

consumption, supported by AI-driven insights, can allow hospitals to ensure compliance while also identifying areas for 

improvement. Policymakers also need to foster collaboration between healthcare providers and technology vendors to spur 

innovation in energy management practices and, thus, the overall sustainability of the healthcare sector. 

Smart Hospital Initiatives  

The integration of machine learning models and the Internet of Things (IoT)-)-)-enabled energy management systems is 

a breakthrough step in embracing smart hospital initiatives. With various energy-using devices and systems within a hospital linked 

to a central IoT platform, administrators have real-time visibility into energy usage patterns and operational efficiency. The 

information can be analyzed by ML models to make predictive changes such that energy usage is closely aligned with actual 

demand. For example, smart thermostats can reset temperatures automatically depending on patient occupancy levels, and 

lighting systems can be optimized according to the time of day and occupancy of people in a particular area. This capability for 

real-time tracking of energy and automatic adjustment of usage provides hospitals with the agility to change quickly. Furthermore, 

such smart systems can accumulate valuable insights over time to facilitate ongoing improvement in energy management 

practices. By embracing smart hospital initiatives, healthcare organizations not only enhance operational efficiency but also 
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contribute to the greater cause of sustainability, aligning business goals with the increasing imperative for environment-friendly 

practices in the healthcare sector. 

VII. Discussion and Future Directions 

Challenges in Implementing ML-Based Energy Forecasts 

Applying machine learning (ML)--based energy forecasting in hospitals is also subject to a series of challenges that must 

be addressed to realize maximum benefits. One of the primary challenges is data availability, as many healthcare facilities might 

not have access to the entire sets of data needed to train robust predictive models. Inadequate historical energy usage data, 

combined with heterogeneous data logging patterns across departments, can decrease forecast accuracy. Real-time deployment 

is also a challenge, as integrating ML algorithms into existing hospital systems tends to require significant technical resources and 

expertise. Hospitals might find it challenging to meet the computational demands of real-time predictions in their energy 

management systems. Beyond technical issues, privacy concerns around the utilization of hospital energy data also serve as a 

barrier. Patient data of a sensitive nature (e.g., diagnoses, treatments, and medical histories) might inadvertently be revealed during 

the collection and analysis of data, prompting concerns for data protection and compliance with regulations such as the Health 

Insurance Portability and Accountability Act (HIPAA). Addressing these challenges requires a multi-faceted approach that includes 

investment in data infrastructure, employee training, and robust privacy protections. 

Limitations of the Study 

While the findings from this study provide valuable insights into ML-based energy forecasting for hospitals, certain 

limitations must be acknowledged. One key limitation is the generalizability of the models developed across different hospital 

types and locations. The energy consumption patterns can vary significantly based on factors such as hospital size, geographical 

location, and the specific services offered. Consequently, models trained on data from one type of facility may not perform well 

when applied to another, highlighting the need for tailored approaches in different contexts. Additionally, the study's reliance on 

historical data raises concerns about the long-term validity of the predictive models. Short-term validations may demonstrate 

promising results, but there is a critical need for long-term real-world validation to ensure that the models remain effective in 

dynamic healthcare environments. Continuous monitoring and adjustment will be necessary to adapt to changes in patient 

demographics, technological advancements, and evolving energy consumption patterns. 

Future Research Opportunities 

Future research in the realm of energy forecasting for hospitals should explore the potential of deep learning techniques 

to enhance real-time energy optimization. Deep learning models, with their ability to identify complex patterns in large datasets, 

could offer improved accuracy and adaptability in predicting energy demands. By leveraging vast amounts of data generated by 

IoT devices and other hospital systems, these models can provide more nuanced insights into energy consumption patterns, 

leading to more effective management strategies. Additionally, integrating predictive analytics with the adoption of renewable 

energy sources in healthcare presents another promising avenue for research. As hospitals increasingly seek to reduce their carbon 

footprints, exploring how ML can optimize energy usage while simultaneously integrating solar, wind or other renewable energy 

systems could lead to significant sustainability advancements. Research in this area could focus on developing frameworks that 

allow hospitals to balance traditional energy consumption with renewable sources, ultimately supporting both economic and 

environmental goals in the healthcare sector. Such initiatives would not only enhance operational efficiency but also contribute to 

the broader movement toward sustainable healthcare practices. 

Conclusion 

The primary objective of this research was to develop and evaluate machine learning models that are capable of accurately 

predicting energy consumption in U.S. hospitals. This study will be focused on United States hospital energy consumption data, 

recognizing the unique difficulties and opportunities present in the U.S. healthcare setting. The data used for this hospital energy 

consumption analysis has been carefully gathered from multiple credible sources, including the U.S. Department of Energy's Energy 

Star program, whole-building hospital energy audits, and information from local utility providers. This variety in sourcing 

guarantees a strong and complete dataset that accurately represents real-world energy dynamics in healthcare buildings. In the 

model selection phase, three powerful algorithms were employed: the Random Forest Classifier, XG-Boost, and Artificial Neural 

Network (ANN). XG-Boost outperformed other models after tuning, achieving an 81.8% accuracy on the test set. Random Forest 
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showed a decent improvement post-tuning but still lagged behind XG-Boost. Hospital managers can utilize machine learning (ML)-

-based predictions to achieve substantial cost savings in operational expenditures related to energy usage. With predictive 

analytics, hospitals can anticipate energy needs based on several parameters, such as patient occupancy rates, time of day, and 

seasonality. Integration of AI-driven energy prediction in hospital sustainability plans has significant policy implications for the U.S. 

healthcare sector. The integration of machine learning models and the Internet of Things (IoT)-)-)-enabled energy management 

systems is a breakthrough step in embracing smart hospital initiatives.  
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