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| ABSTRACT 

Electroencephalogram (EEG) functional connectivity analysis provides important clues about brain network abnormalities, an 

important approach to diagnose complex neurological diseases such as Alzheimer’s disease and schizophrenia. Advanced 

computational analysis can effectively analyze disorders with unique disruptions in neural connectivity. Deep learning (DL) is 

one of these, and has emerged as a powerful tool to facilitate automation in diagnostic processes and accurate classification by 

the use of DL models. The application of DL techniques and EEG functional connectivity metrics for the automated diagnosis of 

Alzheimer’s disease and schizophrenia is investigated in this study. For analysis, EEG data from patients with these disorders 

were used. To quantify the interregional synchronization of neural activity, functional connectivity metrics, such as coherence 

and phase locking value were extracted. Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) networks 

based multi class classification framework was designed to detect patterns related with the disorders. Results demonstrated DL 

framework performance at 94% for Alzheimer’s disease and 91% for schizophrenia. The DL models were then found to robustly 

replicate such inter-regional disruptions, with connectivity patterns analyzed via connectivity maps, revealing distinct inter-

regional patterns in both conditions. This has also been demonstrated by the superior performance of DL methods in processing 

EEG data with complex and high dimensionality, and in extracting informative features for diagnosis. Finally, EEG functional 

connectivity metrics and DL methods greatly increase diagnostic accuracy for Alzheimer’s disease and schizophrenia. These 

findings point towards the transformative power of AI driven solutions in clinical diagnostics to achieve scalability and efficiency 

in neurological disorder diagnosis. Future research should be directed towards gap expanding application level of these models 

to other neurological conditions, and refinement of frameworks that can be implemented in a clinical setting. 
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1. Introduction  

1.1 The Global Challenge of Neurological Disorders 

Neurological disorders Alzheimer’s disease (AD) and schizophrenia (SZ) emerge as critical health issues worldwide because they 

harm millions of sufferers and overwhelm medical resources. Alzheimer's disease causes brain cells to break down as it makes  

people first struggle with their memory and then become unable to take care of themselves without help. Schizophrenia presents 

as a severe mental illness that produces delusions and hallucinations while causing patients to think in disorganized patterns and 

suffer brain power loss according to Loch 2019 findings. The brain issues and disorganized neural functions found in both 

conditions make professional diagnosis hard especially when they first emerge despite their different symptoms. Scholars need 

well-designed diagnostic solutions now more than ever because these sophisticated tools can solve the current diagnostic 

problems when evaluating complex brain conditions. 

1.2 EEG as a Window into Brain Connectivity 

EEG technology now serves as an effective non-invasive way to track how brain networks communicate with each other. Through 

EEG measurements of brain electrical signals scholars can study how neurons coordinate brain function according to Babiloni et 

al., 2020. Measuring how brain regions work together reveals the abnormal connections in brains affected by neurological 

disorders. Scientists measure brain connections using coherence and PLV methods to understand how network activity differs in 

people with AD and SZ. The evaluation of EEG data stays complicated due to its detailed data structure, changing signals over time 

and hidden patterns within. 

1.3 The Role of Deep Learning in EEG Analysis 

Deep learning technology transforms how scholars analyze data in every sector especially healthcare. DL uses smart AI setups to 

process neural networks for finding important data points that beat older machine learning ways according to Taye's 2023 findings. 

Through deep learning technology engineers can automate EEG studies with high precision and work with large datasets to find 

complex signal patterns that standard methods miss. CNNs and LSTM networks effectively extract essential information from EEG 

data which improves classification results and boosts diagnostic performance of different brain disorders. 

1.4 Objectives and Scope of the Study 

The research uses deep learning methods to analyze brain connectivity patterns from EEG data for identifying Alzheimer’s disease 

and schizophrenia. This research links the measurable patterns found in functional connectivity data to deep learning models that 

detect patterns and classify results to fix existing problems in diagnosis methods. The research extracts coherence and PLV 

functional connectivity data using EEG measurements from established AD and SZ patient cases. The research team uses deep 

learning with CNN and LSTM models to study the extracted functional connectivity data. The findings demonstrate that the AI 

system can correctly identify Alzheimer's disease in 94% and schizophrenia in 91% of cases proving that this automated diagnostic 

approach can revolutionize clinical assessments. 

1.5 Insights and Contributions 

This study shows how important analyzing brain connections are to understand how neurological disorders affect brain function. 

Theconnectivity maps show different patterns of brain region disruptions that illuminate the scientific basis for both Alzheimer's 

and Schizophrenia. The study results demonstrate that connectivity analysis improves diagnosis precision and expands disease 

knowledge which helps create specific treatment plans for each patient (Singh et al., 2023). 

1.6 Challenges and Future Directions 

The progress made in this research presents important technical hurdles that need overcoming before practical implementation. 

Thestudy shows that DL models require more research to work properly across different patients while needing bigger and 

balanced data sets along with clearer explanations of neural network results (Alzubaidi et al., 2024). Using these technologies in 

everyday healthcare settings requires evaluation of processing needs as well as ethical and system preparedness factors. Research 

proves that using deep learning with EEG functional connectivity provides a powerful automated diagnosis tool for Alzheimer's 

and schizophrenia that works well at scale and produces precise results (Dixit et al., 2023). 
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The first section of this study reviews research about EEG functional connectivity to show how it helps diagnose Alzheimer's disease 

and schizophrenia. The methods section explains how scholars collected and processed EEG data to prepare it for analysis and 

then developed the deep learning system. This section shows study outputs including deep learning model success rates and the 

knowledge gained from neural connectivity analysis. The paper continues by examining what the results mean as well as research 

boundaries and proposes new study directions. The final part of this paper reviews the important discoveries made and assesses 

how this research will affect medical and neuroscience studies. 

2. Literature Review  

2.1 EEG Functional Connectivity 

Both scientific research and brain scans using EEG help us better understand how brain networks behave in people with 

neurological disorders. Du, Fu, and Calhoun's 2018 study shows that analyzing brain connection patterns helps detect brain 

disorders and tracks how neural networks become disconnected. However they point out the basic limitations when working with 

multifaceted brain data. Babaeeghazvini and team (2021) show through their research on MRI and EEG combination that brain 

disorder information is best understood when scholars study how different parts of the brain connect structurally and functionally. 

By combining different research methods scholars can better understand how multiple communication disruptions occur between 

brain cells and this helps us study complex conditions such as Alzheimer's disease and schizophrenia. Ahmadlou and Adeli (2011) 

launched functional community analysis as a fresh method for studying brain disorders via EEG data to demonstrate the value of 

connectivity measurements in finding specific disease patterns. 

Science uses coherence and phase-locking value (PLV) as standard methods to examine brain signal integration between different 

areas. Yu (2020) tested key metrics of brain communication on complex EEG data sets and proved they can identify functional links 

between brain areas effectively. Through their work with cognitive tasks Duc and Lee (2019) showed how a multivariate Gaussian 

HMM and PLV can track different brain activity states in real-time. According to Baselice et al. (2018) their new phase linearity 

measurement index reveals brain connections better than standard methods. The studies show how modern connectivity analysis 

helps reveal the brain function changes in neurological disorders. 

Research proves that EEG biomarkers can reliably detect Alzheimer’s disease and schizophrenia. In 2018 Horvath and colleagues 

used EEG and ERP biomarkers to discover brain patterns that signal cognitive loss in Alzheimer's patients. The 2018 Smailovic 

research team demonstrated that EEG measurements align with Alzheimer's biomarkers from cerebrospinal fluid tests to enhance 

early detection capabilities. Functional connectivity loss remains a consistent finding in schizophrenia research. According to van 

den Heuvel and Sporns (2019) who analyzed brain network patterns their work shows how psychiatric and neurological disorders 

create unique connectivity issues. According to Zhang et al. (2021) resting-state EEG patterns reveal unique connections in different 

types of psychiatric disorders helping doctors make diagnoses. 

2.2 Deep Learning in EEG Analysis 

Deep learning methods lead EEG research by delivering perfect results when extracting features and categorizing data. Through 

their 2022 study Khademi, Ebrahimi and Kordy proved how combining CNNs and LSTM networks in a transfer learning model 

works well for motor imagery EEG signal classification. The research team of Craik, He, and Contreras-Vidal (2019) explored how 

CNNs and LSTMs can handle large amounts of EEG data to find detailed brain disorder patterns. 

Finding important features remains necessary to understand EEG data properly. Wang and Wang's 2021 research shows that deep 

learning methods detect tiny brain patterns in emotional EEG data better than standard extraction methods. Pahuja and Veer 

(2022) investigated new developments in EEG feature extraction methods and showed how deep learning technology leads to 

better diagnostic performance. 

DL systems shine because they can handle complex large datasets without needing extensive human supervision. Through their 

2018 study Rahimi and colleagues showed that hyperdimensional computing simplifies biosignal processing tasks including EEG 

analysis as deep learning frameworks make the process more efficient. Research by Ranjan and colleagues (2024) shows that DL 

systems do better than others at recognizing significant details in EEG data for schizophrenia detection. 

2.3 State of the Art in Automated Diagnosis 

The latest research shows EEG combined with Deep Learning technology can accurately identify Alzheimer’s disease and 

schizophrenia. The 2022 study from Alves and colleagues proved functional connectivity and deep learning systems can 
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automatically diagnose medical conditions with high success rates. The research from Smailovic and Jelic (2019) proves that 

quantitative EEG markers match other diagnostic standards by using biomarkers. 

Traditional EEG analysis methods have given way to DL techniques that deliver better performance outcomes and handle more 

data efficiently. According to Wang, Fan and Wang's 2021 research traditional methods are less effective than deep learning  

 

models because the latter achieve better results in classification performance. Bui and his team (2020) tested how well DL and 

standard models predict outcomes when handling difficult EEG data with many variables and determined DL methods performed 

better. 

2.4 Deep Learning in EEG Analysis 

Deep learning technology has improved how scholars process EEG data to better identify and treat brain disorders. The field 

benefits most from using both Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks in their current 

applications. The combination of CNNs for processing EEG spatial data with LSTMs handling time-based patterns creates strong 

potential for EEG analysis. The research team Khademi, Ebrahimi, and Kordy identified that mixing transfer learning with CNN and 

LSTM models produces successful and prompt classification of motor imagery EEG signals in 2022. Such hybrid architectures 

leverage the strengths of both methods: The approach uses CNNs to identify data features and LSTMs to evaluate time-based 

relationships. 

In their 2019 work Craik, He, and Contreras-Vidal examined how well Deep Learning methods CNN and LSTM work with EEG 

classification tasks across multiple EEG datasets. The experts found that CNNs excel at discovering local patterns in data but LSTMs 

outperform them in tracking the time-based connections in signal information which benefits time-focused studies. Current EEG 

studies show growing use of combined techniques to develop better and more reliable diagnostic solutions. 

2.5 Applications in Feature Extraction and Classification 

Finding important information from EEG data proves difficult because the signals represent complex patterns in high dimensions. 

DL models help computers find important data patterns faster and make better evaluation results. In their 2021 study Wang and 

Wang determined that DL methods surpassed conventional techniques by picking up detailed emotional elements within EEG data 

that older methods could not find. In their observations, CNNs demonstrated strong performance in removing background 

disturbance and preserving important spatial details at the same time LSTMs proved essential for detecting time sequence patterns 

across extended brain recordings. 

Pahuja and Veer (2022) continued this research by investigating modern ways to process and classify EEG data. They showed how 

DL models adjust well to different data scenarios to assist doctors in finding brain conditions. Deep learning models enable 

automatic feature recognition that eliminates dependence on specialist-designed features to produce repeatable and dependable 

findings. Deep learning can handle the natural changes in EEG patterns which happen across different people and situations. 

2.6 Benefits of DL in Handling High-Dimensional EEG Data 

Standard techniques have problems with accurate results and fast processing when they work with high-dimensional EEG data. DL 

models process multi-channel data better because they handle complex inputs at the same time. Rahimi and his colleagues (2018) 

tested hyperdimensional computing for biosignal processing and found that DL frameworks make learning and classification in 

EEG analysis more powerful. They demonstrated DL models perform better at combining space, time and frequency data elements 

to achieve richer insights into brain activity. 

Through their 2024 study Ranjan, Sahana and Bhandari applied deep learning models to EEG signals for detecting schizophrenia. 

The authors described current developments in this domain and shared difficulties encountered by researchers who apply DL 

methods to extract detailed feature patterns from complex datasets. Research demonstrates that these models identify critical 

distinctions between healthy and abnormal EEG signals which traditional analysis cannot detect. The research shows that Deep 

Learning will revolutionize how EEG tests are used for medical diagnosis. 

2.7 State of the Art in Automated Diagnosis 

Modern research shows that linking EEG functional brain network studies with Deep Learning helps doctors identify Alzheimer's 

disease and schizophrenia more effectively. According to their 2022 publication Alves and associates developed a system that  
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brings together functional connectivity measurements and deep learning to correctly identify diseases more precisely. Their 

findings show integrated methods can find different brain network connections that link to these illnesses. Smailovic and Jelic 

(2019) proved that quantitative EEG measures accurately detect Alzheimer's disease and yield results that match cerebrospinal 

fluid tests supporting early clinical diagnosis efforts. 

Traditional EEG analysis techniques struggle to scale and prove effective because they need manual feature extraction. During their 

research Wang, Fan and Wang (2021) tested machine learning versus DL systems and showed DL technologies performed better 

at delivering precise and dependable results. DL models learn features at multiple levels naturally which makes preparation steps 

straightforward. 

According to Bui and his team from 2020 research DL models proved better in several different prediction tests. The researchers 

discovered that DL systems deliver better accuracy when classifying data while managing the typical noise and variation present 

in EEG readings. DL systems prove crucial in automatic diagnosis systems for brain disorders including Alzheimer's disease and 

schizophrenia. The new DL frameworks enhance EEG-based diagnostics through sophisticated feature extraction and strong 

classification tools while handling large datasets to surpass limitations of traditional approaches.  

      Table 1: References Table for Literature Review 

Author(s) Title 

Du, Y., Fu, Z., & Calhoun, V. D. Classification and prediction of brain disorders using functional connectivity 

Babaeeghazvini, P., et al. Brain structural and functional connectivity: A review of combined works 

Ahmadlou, M., & Adeli, H. Functional community analysis of brain: A new approach 

Yu, M. Benchmarking metrics for inferring functional connectivity 

Duc, N. T., & Lee, B. Microstate functional connectivity in EEG cognitive tasks 

Baselice, F., et al. Phase linearity measurement: A novel index for brain functional connectivity 

Horvath, A., et al. EEG and ERP biomarkers of Alzheimer’s disease: A critical review 

Smailovic, U., et al. Quantitative EEG power and synchronization correlate with Alzheimer’s disease 

biomarkers 

Zhang, Y., et al. Identification of psychiatric disorder subtypes from EEG patterns 

Khademi, Z., et al. A transfer learning-based CNN and LSTM hybrid model for EEG signals 

Craik, A., He, Y., & Contreras-Vidal, J. 

L. 

Deep learning for EEG classification tasks 

Alves, C. L., et al. EEG functional connectivity and deep learning for automatic diagnosis of brain 

disorders 

Wang, P., Fan, E., & Wang, P. Comparative analysis of image classification algorithms 
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                                                 Figure 1: EEG Analysis Flowchart with CNN and LSTM 
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3. Methodology  

 

3.1 Data Collection and Preprocessing  

The research used brainwave data from public databases that focus on Alzheimer's and schizophrenia disorders. The data came 

from open EEG recordings of AD and SZ patients plus healthy people. The team accepted recordings that met quality standards 

and showed few errors so they would work well for deep learning studies. Scholars received ethical clearance to access the datasets 

while converting all personal details into anonymous format. 

The team performed initial treatment steps to make EEG data more effective for analysis. The researchers applied a filter to the 

raw EEG data that removed noise from 0.5 to 50 Hz including muscle and powerline interference and 50 "Hz" to remove noise and 

artifacts such as muscle activity and powerline interference. The ICA approach helped separate and eliminate disturbances from 

eye blinks in the recorded EEG data. Thesignals underwent time-normalization through 2-second isolated segments that serve as 

processed inputs for connectivity investigations. The normalization of each time segment made feature detection by the deep 

learning system more accurate. 

3.2 Equation for Band-Pass Filtering 

y(t) = ∑ ak

N

k=1

x(t − k) + ∑ bk

M

k=1

y(t − k)                (1) 

where x(t) is the input signal, y(t) is the filtered signal, ak and bk are filter coefficients, and N, M are filter orders. 

 

 

  Figure 1: Heatmap of Artifact Removal Efficiency 

This heatmap above highlights the distribution of artifact removal success rates, with a consistently high efficiency (>70%>70\%) 

observed across all groups: control, Alzheimer’s disease, and schizophrenia. 

The heat map displays how the system removes unwanted noise yet captures key brain signals during processing. Filtering out 

noise and artifacts helps preserve trustworthy data which lets analysts study real brain activity without background disruptions. 

The visual representation shows the strong scientific process while building trust in the data preparation method. 

Functional Connectivity Analysis  

Scholars measured brain region connections using functional connectivity metrics such as coherence and phase-locking value 

(PLV) to determine synchronization strength. The study calculated how EEG channels worked in unison through coherence analysis 

and measured how consistently two channels maintained their relative phase timing using PLV. The team made network  
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visualization charts for patients with AD, SZ alongside healthy control groups to demonstrate the typical neural connection 

breakdowns in these conditions. 

Coherence Equation: 

Cxy(f) =
∣ Pxy(f) ∣2

Pxx(f)Pyy(f)
                  (2) 

where Pxy(f) is the cross-power spectral density between signals x and y, and Pxx(f) and Pyy(f) are the power spectral densities of 

x and y, respectively. 

Phase-Locking Value Equation: 

PLV =
1

N
∣ ∑ ejΔϕn

N

n=1

∣ .             (3) 

where Δϕn is the phase difference between two signals at time n, and N is the total number of time points. 

The frequency bands of interest included delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz), 

as these bands are associated with various cognitive and neural functions. Connectivity values were averaged within these bands 

to extract meaningful features for subsequent analysis. Statistical techniques, such as permutation testing, were applied to identify 

significant differences between the groups. 

 

 

Figure 2: Connectivity Map 

This map shows how ten brain areas connect with each other through neural activity patterns. Every point on this map stands for 

a brain region and connecting lines demonstrate functional relationships between them with thicker darker lines showing stronger 

connections. Connections show high synchronization through darker thicker lines on the map. The connectivity map helps us 

examine how brain regions interact both within and between different groups. This visual tool shows us how brain networks are  
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disturbed in each condition and makes it easier to understand their unique biological characteristics. These results show how 

functional connectivity analysis helps us diagnose and understand brain disorders better. 

3.3 Deep Learning Framework 

A hybrid deep learning framework combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks was designed for multi-class classification. The framework aimed to classify EEG recordings into three categories: AD, SZ, 

and controls. 

3.3.1 Model Architecture 

The CNN module comprised multiple convolutional layers followed by max-pooling layers. These layers extracted spatial features 

from the connectivity maps, such as patterns of disruption across specific brain regions. Batch normalization and dropout 

techniques were applied to improve model generalization and prevent overfitting. 

The LSTM module processed temporal sequences derived from the EEG epochs. It captured temporal dependencies and dynamic 

changes in functional connectivity over time, making the model robust to variations in signal characteristics. 

The output from both modules was concatenated and passed through fully connected layers, culminating in a softmax layer for 

classification. 

3.3.2 CNN Operation 

f(x) = ReLU(W ∗ x + b)          (4) 

where W is the convolution filter, x is the input, b is the bias, and ∗ represents convolution. 

3.3.3 Training Process 

The model was trained on 80% of the dataset, with the remaining 20% reserved for validation and testing. Data augmentation 

techniques, such as random noise injection and epoch shuffling, were employed to increase data diversity and improve model 

robustness. 

The model was optimized using the Adam optimizer: 

θt+1 = θt − α
mt

√vt + ϵ
            (5) 

where mt and vt are the first and second moments, respectively, α is the learning rate, and ϵ is a small constant for numerical 

stability. 

3.4 Evaluation Metrics 

Accuracy, precision, recall, F1-score, and the Receiver Operating Characteristic (ROC) curve were used to evaluate performance. 

3.4.1 Feature Importance Analysis 

Grad-CAM (Gradient-weighted Class Activation Mapping) was applied to the CNN module to highlight regions of connectivity 

maps contributing most to classification 

3.4.2 Statistical Analysis  

Theteam analyzed the data through statistical tests to find important differences in brain connection patterns between all patient 

groups. Scholars tested the group differences in functional connectivity metrics between Alzheimer's disease, schizophrenia, and 

control groups using ANOVA. Tukey’s HSD tests followed the results to find which groups differed from each other. 

The research team tested different data arrangements to make sure their classification findings were reliable. The research team 

randomly changed patient classification labels many times to retrain the model each time. The team created a baseline 

performance distribution through randomization to establish how likely the real findings were due to direct cause rather than 

random patterns. 
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Scholars studied the relationship between connectivity metrics and patient data by evaluating how these patterns aligned with 

cognitive performance of AD patients and symptom levels of SZ patients. The results helped us understand better how changes in 

brain networks affect how severe the diseases become. 

 

The team created confidence intervals for essential performance figures to validate their study outcomes. Through these statistical 

procedures the research established firm proof that the deep learning model works well at interpreting EEG signals to tell apart 

different brain conditions. 

4. Results and Discussion  

 

4.1 Performance of the Deep Learning Models  

The combination DL model showed top results when sorting EEG measurements into Alzheimer's schizophrenia and healthy 

groups. The system combined CNNs and LSTMs to classify brain scans and obtained 94% accuracy for Alzheimer's Disease 

detection and 91% accuracy for schizophrenia plus 95% accuracy for healthy controls. The model shows strong ability to distinguish 

between the unique brain patterns of these medical conditions. 

Each performance measurement within the framework achieved above 90% for every category proving the system's consistent 

accuracy. The analysis shows few errors in rejecting normal results while the system successfully finds correct cases for all test 

categories. The evaluation using F1-score proved the model's consistent strength when combining precision and recall. 

Table 2: Performance of the Deep Learning Models 

Metric Alzheimer's Disease (%) Schizophrenia (%) Controls (%) 

Accuracy 94 91 95 

Precision 93 90 94 

Recall 92 91 95 

F1-Score 93 91 94 

 

The model works well because it can process EEG data through time and space dimensions at the same time. Through CNN 

technology the model discovered special brain region connections in AD and SZ from connectivity maps. The LSTM module 

processed EEG data through time to reveal how neural patterns evolve during each sequence. 

Through data augmentation methods scholars made the model perform better on new data sets. The research team added random 

noise and shuffled data epochs to their dataset which helped train the system to recognize new patterns it had never seen before. 

Scholars integrated the Adam optimizer with the techniques to improve learning results and reduce model overfitting. The research 

team created a bar graph to display the model's results across all the evaluation dimensions for patients with AD, SZ, and healthy 

controls. The visual outcome shows the system works accurately and consistently in diagnosis. 
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Figure 3: Bar graph showing model performance metrics across categories 

The hybrid DL model successfully processes EEG data for classification and delivers dependable results that scale well in automated 

detection of neurological disorders. The model shows great potential to improve clinical neuroscience diagnosis because it 

analyzes brain activity both on a spatial and temporal level. 

4.2 Functional Connectivity Analysis Results  

Researchers found abnormal brain network connections between neurons in Alzheimer's patients, schizophrenic patients, and 

control subjects. The analysis evaluated brain signal disruptions between patients and control groups by measuring coherence and 

PLV results on primary brainwave frequency bands. 

The AD study detected diminished overall coherence with strong effects in both the theta wave range and the alpha wave range. 

The brain uses these frequency patterns to store memories and concentrate theattention but Alzheimer's disease breaks down 

these mechanisms. The analysis demonstrated that AD produces extensive weakened connections between brain regions 

throughout the entire brain network.  

Table 3: Connectivity Metrics for Neural Synchronization 

Group Global Coherence 

(Theta) 

Global Coherence 

(Alpha) 

Hyper-Synchronization 

(Beta) 

Hyper-Synchronization 

(Gamma) 

Control 0.85 0.87 0.12 0.10 

Alzheimer’s 

Disease 

0.68 0.65 0.08 0.06 

Schizophrenia 0.72 0.74 0.38 0.42 

 

In contrast, SZ exhibited irregular and hyper-synchronized connectivity patterns, predominantly in the beta (13–30 Hz) and gamma 

(30–50 Hz) bands. These patterns suggest disorganized and exaggerated neural communication, which align with SZ’s clinical 

manifestations, including delusions, hallucinations, and impaired cognitive functions. The localized hyper-connectivity in SZ 

highlights distinct disruptions compared to the global reductions observed in AD. 
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Figure 4: Connectivity maps for alzheimer’s and Schizophrenia used to visualize the inter-regional synchronization 

To display synchronization changes between brain regions scholars created connectivity maps for both AD and SZ disorders. AD 

connectivity maps show widespread brain disconnection while SZ maps reveal enhanced high-frequency connections in specific 

brain areas. By comparing the data mappings scholars can easily tell which patient has AD or SZ. 

 

The statistical testing confirmed the results. The statistical tests found meaningful differences in brain network connection 

measures between patients in different study groups across all brain wave frequencies. The research proves that brain connectivity 

parameters serve as dependable markers for differentiating AD, SZ and control participants in medical investigations. 

The network study shows that EEG measurements can identify how each brain disorder affects neural activity differently. The results 

show clear patterns of reduced brain network integration in AD patients and abnormal localized synchronization in SZ patients 

which will help improve diagnosis methods. The visual connectivity mapping tools help decode research outcomes which deepen 

the knowledge about how these disorders develop. 

4.3 Receiver Operating Characteristic (ROC) Curve Analysis  

The study tested the hybrid deep learning model by examining how well it recognized patterns through Receiver Operating 

Characteristic analysis. The method determines how well the model predicts positive results while maintaining low false positive 

results. The model demonstrated very high diagnostic precision as shown by AUC scores of 0.97 for Alzheimer's disease patients 

and 0.94 and 0.96 for schizophrenia patients and control subjects respectively. 

For every category the ROC analysis achieved an almost flawless match between correct detections and accurate rejections. The 

model successfully detects Alzheimer's disease cases at a rate of 0.97 without many errors. The AUC results for SZ patients and 

control subjects show the model reliably separates these patient categories. Diagnostic accuracy based on these high AUC values 

becomes essential when doctors treat patients because it affects how well patients recover. 
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Figure 5: ROC curve for diagnostic performance 

The diagnostic performance charts for AD SZ and normal subjects show clearly how well the model makes correct diagnoses. The 

curves demonstrate that the model reaches excellent detection rates and precise measurements validating its performance. The 

framework shows promise in spotting small signal changes in brainwave data which could support early detection even for patients 

who display mild symptoms. Results show that using ROC curves in diagnostic processes adds value to model assessment and 

helps medical professionals adopt the technology. The research establishes that the DL framework reliably performs automated 

diagnosis of brain conditions effectively. 

4.4 Discussion 

4.4.1 Significance of Findings  

Research shows that combining EEG functional connectivity analysis with hybrid deep learning systems proves very effective at 

detecting Alzheimer's and schizophrenia. The advanced neural network setup produced top classification results with 94% accuracy 

in spotting AD and 91% accuracy in detecting SZ. The evaluation system produced performance values including precision recall 

and F1-score that surpassed 90% for every category tested. The model proved its reliability when Controls were correctly identified 

at a 95% accuracy rate. 

The DL system produces trustworthy outcomes because it correctly identifies important patterns in complex EEG brainwave data. 

The analysis of brain signal relationships between groups depended on coherence and PLV measurements according to di Biase 

et al. (2023). AD patients showed reduced brainwave connections in the theta and alpha bands which affected their overall brain 

functions. Beta and gamma wave patterns in SZ showed too much synchronization that matched the disordered brain connections 

seen with psychotic symptoms. The table below summarizes the model's performance metrics for AD, SZ, and controls:  
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                                                                    Table 4: Performance Metrics Across Groups 

Metric Alzheimer's Disease (%) Schizophrenia (%) Controls (%) 

Accuracy 94 91 95 

Precision 93 90 94 

Recall 92 91 95 

F1-Score 93 91 94 

 

Theresults match earlier studies which show EEG can effectively detect conditions. Adding DL to the process improves diagnosis 

results while allowing the system to grow and work without manual control. The system makes diagnosis faster by using machine 

learning to handle large clinical datasets instead of manual adjustments. 

This research brings important benefits to medical practices apart from improving diagnostic precision. The research tool shows 

both visually and numerically how brain connectivity works differently in AD and SZ patients. The results show that combining EEG 

network patterns with deep learning creates better diagnostic methods for brain healthcare that work well at every level. 

4.4.2 Clinical Implications  

The hybrid deep learning system shows doctors new ways to spot unique brain connection changes in both Alzheimer's disease 

and schizophrenia. The reduced global brain connectivity detected in both theta and alpha brain waves matches the memory 

problems and thinking difficulties of AD patients. These changes show how major brain networks that manage focus and memory 

have failed. Brain connections in SZ patients overact in the beta and gamma frequency bands which create abnormal neural 

patterns that cause their hallucinations, delusions, and loss of cognitive function. This framework detects brain network changes 

unique to each disorder helping doctors diagnose earlier so they can start treatment that reduces disease impact sooner. 

Having a scalable DL framework makes it more valuable for medical applications. Standard diagnosis processes need trained 

professionals and manual data studies which makes setting them up hard for places with limited resources. The automated EEG 

analysis system solves existing challenges in healthcare by delivering an affordable biomarker detection method that works 

everywhere according to Dev et al., 2022. This approach helps rural and underserved areas because they lack trained brain 

specialists. 

The system performs diagnostic functions while also having benefits for patient monitoring and customizing medical care. 

Measuring how brain networks work together over time lets healthcare providers see if treatments work so they can personalize 

next steps in patient care. The adaptable system lets us give patients care plans that match their distinct requirements. The use of 

connectivity maps and performance metrics makes result data clearer which helps doctors trust and accept the findings. The system 

makes advanced neural data easy to understand for clinical staff by analyzing brain signal patterns through real-world health data. 

The new hybrid DL system marks important progress in diagnosing brain-related conditions. By using this system to analyze EEG 

patterns scholars achieve better diagnostic accuracy while delivering advanced medical care to more people which benefits patient 

results. 

4.4.3 Limitations of the Study  

The research shows great progress in using deep learning with EEG data to identify Alzheimer's and schizophrenia even though 

researchers need to pay attention to specific study boundaries. The identified study limits help us develop a better research plan 

and make the framework work better in medical practice. 

The research used a small dataset which limited different sample representation for the model. The dataset reflects specific clinical 

traits of a narrow demographic which does not show the full range of conditions found in actual populations. The model could 

give less reliable diagnoses in diverse and extensive patient groups as discovered by Liu & Panagiotakos (2022). Next studies 

should gather large data from several research sites containing subjects of all ages and ethnic backgrounds as well as patients 

with multiple health issues to make the model work better for all populations. 

The hybrid deep learning model's decision-making process continues to be not easily understood. The team used Gradient-

weighted Class Activation Mapping (Grad-CAM) to identify important features but Kumar & Jyoti (2024) noted these insights 

remain basic explanations of the model's thinking. Deep learning models do not clearly explain their results which make clinicians  
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resistant to use them for medical decisions. The use of clear AI methods like attention systems or rule sets will help medical staff 

trust these technologies more. 

The research addressed only AD and SZ which reduces the ability to use this framework with other neurological conditions. Special 

brain network problems in diseases like epilepsy, Parkinson's and autism need their own specific analysis technology. Making the 

framework work with additional health issues will make it useful for doctors treating many mental and brain disorders. Enduring 

technical specifications make up one final challenge. Despite excellent performance the framework needs powerful hardware which 

makes it difficult to use in places with limited technical resources. Next versions of this system must find ways to run more efficiently 

while maintaining the quality of results. The hybrid DL framework needs these improvements to achieve its best possible results. 

The system needs better patient data variation and simpler models to expand into more health conditions and be faster to run if 

it wants to become more valuable clinically and get used more widely in brain health evaluation. 

4.4.4 Future Research Directions  

Following these initial results the next studies must extend this system to diagnose more types of brain and mental health 

conditions. Disorders including epilepsy, ASD and Parkinson's disease show specific neural connection patterns that can be better 

understood through EEG functional connectivity analysis when paired with deep learning techniques. Using this framework for 

more types of brain conditions will make it more useful as a standard tool that detects numerous neurological problems. Building 

extensive datasets from multiple research centers will help make the model work better across different test scenarios. The data 

collection needs to represent multiple population groups by including people of all ages, races, and medical histories (Seoni et al., 

2024). Studying patient data over extended periods will allow the model to monitor changes in disease and treatment results more 

effectively which benefits diagnostic procedures and patient care methods. 

The combination of structural and functional MRI or DTI brain images creates a complete understanding of brain performance. 

Analyzing brain architecture alongside its operational patterns would reveal subtle brain interactions to support precise and 

prompt disease detection. Research progress requires better explainable AI methods to be developed. Medical teams need 

understandable model results so they will trust AI tools more. Using attention mapping or rule-based methods will show healthcare 

providers how decisions are made by the AI system. Clear models will help healthcare teams use advanced computer methods in 

real-world medical settings. 

Building interfaces that medical staff can easily operate represents the final important step. DL framework usability improvements 

would help doctors use these tools more easily in their daily care routines to reach better medical results for all patients. New 

developments can transform brain disease detection and evaluation methods. 

4.4.5 Summary of Key Insights  

The research demonstrates how combining EEG connectivity data and deep learning models leads to better automated detection 

of brain disorders. The combined model reached high diagnostic results with 94% accuracy for detecting Alzheimer's disease and 

91% accuracy for identifying schizophrenia. Testing proved that the framework correctly distinguishes between these disorders 

and normal brain patterns because of its strong performance measures. The brain connectivity patterns identified through these 

techniques confirm that functional connectivity metrics provide strong indicators for identifying brain disorders. 

The measurements of brain connection patterns through coherence and PLV metrics revealed essential information about brain 

disruptions in AD and SZ patients. AD shows decreased overall brain communication in the theta and alpha ranges whereas SZ 

presents extra connectivity within beta and gamma frequency bands matching their known disease characteristics. The results 

show that pairing advanced deep learning methods with EEG connectivity analysis creates powerful tools for disease detection 

and confirms their clinical importance. Visual tools like connectivity maps and ROC curves make the study results easier to 

understand. Connectivity maps show clear differences in brain wave links between groups while ROC curves demonstrate the 

model's medical identification accuracy. These tools make difficult virtual research results easy to use in real-world medical 

decision-making. 

The research achieved successful outcomes but additional investigation is required because of problems with dataset variety and 

understanding model decisions. Advanced testing will help medical teams use this framework more effectively in their work 

settings. This research introduces vital steps toward better medical technology for detecting brain disorders even as it creates 

opportunities to help patients more effectively through automated diagnosis systems. 
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5. Conclusion  

 

The research proves that using deep learning together with EEG connectivity measurements shows promise in detecting brain 

diseases like Alzheimer's and Schizophrenia at high accuracy rates. Through coherence and PLV analysis the system identified and 

measured brain pattern changes specific to each disease with 94% accuracy for AD and 91% accuracy for SZ detection. The 

combination of EEG technology with deep learning shows better accuracy and easier application in clinics while keeping diagnostic 

costs low and methods non-invasive. 

Research found two mental disorders show unique brain activity signatures through separate markers: AD shows lower overall 

brain coherence while SZ shows increased focus of brain connections. Using visual displays including connectivity maps and ROC 

curves makes the findings easier to understand and translates the computational work into clinical practice. These tools allow 

medical professionals to easily understand and trust the framework when deciding on proper patient diagnosis. The promising 

framework requires additional development because the dataset limits its applicability and interpretability issues make it hard to 

understand. The framework will become stronger in medical practice when scholars add varied patient data to the sets and use AI 

methods that clinicians can understand. By using the framework to study other brain diseases scholars can make it useful to more 

patients. 

The research shows the way for using AI technology in neurological diagnostic practices. The framework shows that using advanced 

computer systems with brain network analysis methods results in better diagnosis results and supports early treatment for 

improved patient survival rates. The approach can transform care for neurological disorders when scholar s fix its weaknesses and 

use its strong points to the advantage. 
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