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| ABSTRACT 

The automotive industry in the USA is going through some significant transformation as global efforts to mitigate climate change 

and diminish greenhouse gas emissions intensify. Focal to this Paradigm shift is the advancement of New Energy Vehicles (NEVs), 

which comprise electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hydrogen fuel cell vehicles (FCEVs). This 

research project aimed to examine the deployment of AI in forecasting and optimizing fault management in NEVs. This study 

intended to leverage machine learning algorithms with data analytics to provide high reliability and operational efficiency within 

the US automotive industry with NEVs. The dataset for the present study was accessed from accredited automotive manufacturing 

companies. The dataset was designed to predict the faults and optimize maintenance at NEVs. It covered simulated real vehicle 

data, such as sensor readings, environmental factors, driving patterns, and maintenance logs needed to understand performance, 

diagnose faults, and optimize a vehicle's maintenance schedule. Different algorithms were selected, such as Random Forest 

Classifier, Gradient Boosting Classifier, and Logistic Regression with other advantages, depending on the dataset's characteristics 

and the problem's complexity. Performance evaluation of the model was done with several metrics, most notably precision, recall, 

and F1-score. The results demonstrated that the Random Forest model attained the highest accuracy, followed closely by Gradient 

Boosting. AI-driven fault prediction models brought into play would greatly raise the level of impact that can be caused to the 

automotive industry in the US concerning the enhancement of NEV reliability and efficiency. Interpretation of the model's 

predictions is important in fault management strategies because it converts raw predictive outputs to actionable insights. 
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Introduction 

Background 

According to Shil et al. (2024), the automotive sector is going through some substantial transformation as global efforts to combat 

climate change and reduce greenhouse gas emissions intensify. Prime to this shift is the advancement of New Energy Vehicles 

(NEVs), which comprise electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hydrogen fuel cell vehicles (FCEVs). 

NEVs are a cornerstone in the movement towards sustainable transportation: they reduce the dependence on fossil fuels and lower 

carbon emissions. Governments worldwide have implemented policies and incentives to accelerate the adoption of NEVs, such as 

tax credits, subsidies, and stricter emissions standards.  
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Dubois et al. (2022), reported that exponential growth in the US market for NEVs is induced by continuous developments related 

to battery technology, growing consumer awareness, and a rising charging infrastructure. Yet, with more NEVs on the road, 

expectations are on the rise: NEVs have to be much more reliable and powerful despite all the technological challenges arising 

from their concept. Thus, addressing the issues related to faults in NEVs has become an urgent necessity for car manufacturers 

and other stakeholders involved in the US automotive sector. Today's consumers are becoming very selective, looking for a vehicle 

that is not only "green" but also one that delivers reliable performance. In NEVs, reliability becomes an especially critical issue 

because all defects and problems affecting customer satisfaction tend to strongly impact brand loyalty. Therefore, car 

manufacturers have to develop strong automobiles that can withstand daily wear and tear with minimal maintenance costs and 

loss of time (Cheliah et al., 2023). 

Challenges 

Mamatha et al. (2024), argued that despite all the relative advantages, NEVs develop many faults that could render the performance 

of the motor vehicle unsatisfactory; likewise, customer satisfaction in its use is reduced to a minimum. Common failures that occur 

in NEVs include degradation of the traction batteries, failure of the charging system, and software problems; these may affect the 

functions of the vehicle negatively. Besides reduced performance, a rise in maintenance costs as well as reduced consumer 

confidence in the NEV technology are common repercussions from these faults. The challenge in fault detection and resolution 

within NEV systems is that these usually consist of complex integrations involving hardware and software. 

Conventional fault detection and regulation techniques, which frequently depend on reactive maintenance and manual inspections 

are increasingly insufficient in resolving the unique challenges presented by NEVs (Gupta et al., 2021). These mainstream 

techniques can be time-consuming and may not efficiently capture the nuances of system performance, culminating in prolonged 

vehicle downtime and customer dissatisfaction. As a consequence, there is a pressing need for newer ways and means that use 

advanced technologies for improved fault prediction and management (Sumsuzoha et al., 2024). 

Purpose of the Study 

This research project aims to examine the deployment of AI in forecasting and optimizing fault management in NEVs. This study 

intends to leverage machine learning algorithms with data analytics to provide high reliability and operational efficiency within the 

US automotive industry with NEVs. The integration of AI into fault management processes may well revolutionize how 

manufacturers approach vehicle maintenance-from reactive to proactive in a big way. The overall aim is to provide insight 

concerning how AI has been or may be usefully employed in the prediction of faults before they occur so that timely interventions 

may be enacted to improve vehicle performance and customer satisfaction. This paper will help add to the growing literature on 

how AI is going to shape the future of transportation by addressing some limitations in traditional fault detection methods. 

Research Questions 

RQ1: How can AI models effectively predict faults in NEVs? 

o This research question aims to ascertain the methodologies and algorithms that can be employed to analyze vehicle data, 

identify patterns, and predict potential faults before they manifest. 

RQ2: What optimization techniques can be applied to improve fault management in NEVs? 

o This research question centers on pinpointing strategies that can elevate the efficiency of fault detection, diagnosis, and 

resolution processes, ultimately reducing downtime and maintenance costs. 

RQ3: How will these AI-driven strategies impact the reliability and efficiency of NEVs in the US market? 

o This inquiry seeks to explore the broader implications of executing AI in fault management, comprising its potential to enhance 

customer satisfaction, reduce operational costs, and enhance the overall reputation of NEVs. 

Literature Review 

New Energy Vehicles (NEVs) 

As per Shrimal (2024), NEV involves all kinds of vehicles that are powered by alternative sources of energy to reduce carbon 

emissions and decrease dependency on fossil fuels. This category, in the main, comprises electric vehicles, hybrid electric vehicles, 
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and plug-in hybrid electric vehicles. NEVs are positioned for critical roles in the transition of the global automotive industry towards 

sustainable transportation. They offer the possibility of being a non-polluting alternative not only to traditional internal combustion 

engine vehicles but also to respond to related governmental policies that deal with climate change and energy independence. 

As more countries of the world, like the United States, determined to cut greenhouse gas emissions, the role of NEVs has emerged 

as increasingly important. All these are empowered by the advancement of technology in batteries, the building of charging 

infrastructure, and also different forms of government incentives that favor cleaner vehicles (Shern et al., 2024). Thus, there is a 

proportionate growth in the manufacturers' engagement in research and development into performance improvement, extension 

of the range of travel of electric vehicles, and price accessibility that works in favor of making these NEVs firm alternatives in 

transportation (Ukoba et al., 2024). 

Sathya et al. (2024), posits that during the last decade, the improvement of NEV technologies has considerably improved, driven 

by increasingly high demand from consumers and growing regulatory pressures. Key recent trends in this area have been 

improvements in battery technology the development of solid-state batteries with higher energy density and faster charge times 

and improvements in electric drivetrains and regenerative braking, allowing efficiency and performance to increase further in NEVs. 

The integration of smart technologies like IoT connectivity and ADAS has already brought or promised a sea change in the 

landscape of NEVs. The key benefits of these innovations, improving vehicle safety and user experience, also facilitate the collection 

of real-time data that will provide insights into predictive maintenance and fault management. As NEVs continue to evolve, this 

makes reliability and performance the biggest challenge for the auto sector. Consumer trust and satisfaction rely heavily on this 

(Muthukumar et al., 2024). 

Faults Prediction in Automobiles 

Traditional Methods of Fault Prediction and Their Limitations 

Rehan (2024), indicated that traditional methods of fault prediction have included scheduled maintenance, manual inspections, 

and diagnostic tools. Most of these approaches are reactive, with faults usually detected after their occurrence, thus involving 

costly repairs that may result in vehicle downtime. Some of the techniques used include fault tree analysis and failure mode and 

effects analysis, but most of them lack dynamic capabilities to address modern NEV complexities. 

One major limitation of such techniques is that they would draw upon historical data or even expert knowledge, both of which 

may not cover all the fast-evolving technologies and diversified usage patterns of NEVs. Besides, the increasing sophistication of 

vehicle systems, especially in NEVs, which are packed with state-of-the-art software and hardware components, makes fault 

prediction particularly challenging. There is, correspondingly, growing recognition of the need for more sophisticated, active 

approaches to fault prediction with increased capacity to accommodate such complexity in modern vehicles (Noori et al., 2021). 

Overview of AI Techniques for Fault Prediction 

As per Giri et al. (2024), AI has immense transformational potential in fault prediction within the automotive industry. Machine 

learning algorithms can analyze a huge amount of data generated by vehicle sensors, and identify patterns and anomalies that 

may indicate impending faults. Techniques such as supervised learning, unsupervised learning, and reinforcement learning are 

being employed to enhance predictive accuracy and operational efficiency. The historical maintenance records, real-time sensor 

data, or external factors like weather conditions form the feeding stream for these AI-driven fault prediction systems. This kind of 

system inherently gets wiser over time with increased exposure and will leap over an unparalleled edge for predictive maintenance 

scheduling. These, in turn, would promote enabling strategies from reactive to proactive. The impact would be noticed: radical 

reductions in operational costs, enhancements in vehicle reliability, and, of course, heightened customer satisfaction (Franki et al., 

2023). 

Optimization Techniques for Fault Management 

Garikapati et al. (2024), contended that thhe general fault management of the automotive industry today is usually based on 

routine checks, diagnostic tests, and maintenance schedules provided by manufacturers. While these techniques may work well, 

they are usually burdened with inefficiencies in identifying the root cause of the fault and delays in addressing the maintenance 

needs. Furthermore, these traditional practices may not leverage the full potential of data generated by NEVs. 

The biggest challenges in vehicle fault management include the difficulty arising in the interactions involved during diagnosis. A 

single failure or malfunction may involve the interrelationship of several components interacting; this complicates its diagnosis. 

This has proved to be an enormous challenge in NEV because there could be close interdependency of software with the hardware 

and potential cascading outcomes from the integration of many technologies. There is, consequently, a great demand for new 
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optimization techniques to be developed to work on the enhancement of the processes of fault management in vehicles and, 

generally speaking, improve performance (Ajao, 2024). 

AI-Driven Optimization Techniques for Fault Management 

AI-driven optimization techniques are therefore promising solutions to the challenges posed by fault management. Analytics of 

data and machine learning could improve diagnostic processes concerning efficiency and maintenance scheduling. For instance, 

predictive maintenance algorithms can analyze real-time data to predict possible failures and enable timely intervention that 

minimizes downtimes. Artificial intelligence makes for the development of an intelligent system able to schedule maintenance 

based on fault criticality and priority as affecting vehicle performance (Ajao, 2024). It ensures better resource utilization while 

leaving customers satisfied that issues, especially those critical, do not go unsolved over considerable time. In addition to this, AI 

optimizations can learn and grow like vehicles by identifying patterns in past events. This forms knowledge necessary for the 

improvement of their predictions over time. 

AI Applications in NEVs 

Retrospectively, AI application in NEVs extends beyond mere fault prediction to include several aspects of vehicle performance 

optimization. AI technologies are being applied in the vehicle's systems for energy management, improvement of driving dynamics, 

and optimization of charging strategies. For example, AI algorithms can analyze driving patterns and optimize battery use to 

expand the range of electric vehicles (Dubois, 2022). 

Another very vital application of this idea is in fault prediction, where AI-driven diagnostic tools introduced or in the process by 

some manufacturers apply processes for machine learning on sensor data for fault prediction that are most likely to happen when 

that fault has not set in (Gupta et al. 2021). Such applications extend reliability for NEVs in ways manufacturers will push into more 

tailored solutions while improving overall satisfaction since these solutions can offer higher-value services to their clientele. 

A growing body of research evidence underlines the successes of AI implementation in NEVs. For instance, a case study on one of 

the leading electric vehicle manufacturers showed that it utilized machine learning algorithms to predict instances of battery failure 

and, therefore, was able to reduce warranty claims by a fairly significant percentage, restoring customer trust in the brand. Other 

studies have reviewed the use of AI inefficient charging station networks and have proposed that smart routing algorithms cut 

down waiting times and improve user experience (Bukya et al., 2024). Previous research findings reveal that fault management AI 

applications can have great cost savings for manufacturers in being able to predict faults with high accuracy and optimizing the 

maintenance schedule, hence minimizing operational interruptions and improving lifecycle management for vehicles. With the 

continuous evolution of the field, much more research is needed that can further reveal how artificial intelligence can improve 

reliability and efficiency in NEVs to cater to the demands of grown consumers in the competitive market (Mamatha et al., 2024). 

Data Collection and Preprocessing 

Data Sources 

The dataset for the present study was accessed from accredited automotive manufacturing companies. The dataset was designed 

to predict the faults and maintenance optimization at NEVs. It covered simulated real vehicle data, such as sensor readings, 

environmental factors, driving patterns, and maintenance logs that are needed to understand performance, diagnose faults, and 

optimize a vehicle's maintenance schedule. The dataset was from many different vehicle models and therefore includes both real-

time operation data and historical maintenance records (Ziya, 2024). The dataset was designed to assist machine learning 

algorithms in fault prediction, fault diagnosis, and maintenance optimization, therefore enabling the development of more 

advanced solutions to improve the performance and longevity of electric vehicles. 

Data Preprocessing 

The Python code snippet described the step-by-step data pre-processing for any machine-learning task. It first began with the 

splitting of data into features and target variables using pandas, ensuring specifically that 'fault_type' was isolated as a target. The 

subsequent step identifies categorical and numerical columns, using a predefined list of categorical variables, and leveraging the 

Pipeline class from sci-kit-learn to streamline the scaling of numeric features by standardization. Thirdly, the preprocessing of 

categorical data was an important step, whereby OneHotEncoder was used to transform the categorical variables into a readable 

format for machine learning models. Fourthly, the preprocessed features are then joined together into one data frame to ensure 

both types of data are integrated cohesively. Fifth, the data was split into training and testing sets using train_test_split; this helps 

evaluate model performance. Finally, both the training and test sets have been transformed into a form that is more consistent 

with other analyses, having interpretability due to the clear mapping of the original indices. This ultimately has structured the 

dataset in such a way for modeling that it is more time-efficient to extract meaningful information from it. 
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Exploratory Data Analysis (EDA) 

Exploratory Data Analysis is a pivotal step in the analysis of data, whereby the main characteristics of the dataset are summarized 

and visualized to uncover patterns, anomalies, and relationships among variables. This study relies on EDA to gain insight into the 

underlying data structure concerning New Energy vehicle fault occurrence and factors contributing to it. EDA develops predictive 

models for fault management by pointing out trends and their correlations through descriptive statistics, visualizations, and 

correlation analyses. By highlighting potential issues inside the data, EDA facilitates informed decision-making, guiding the choice 

of appropriate methods for analysis and ensuring subsequent modeling efforts are based upon a proper understanding of what 

exists in the data landscape. Therefore, EDA lays the necessary ground for the ensuing improvement in the reliability and 

operational efficiency of NEVs. 

Distribution of Fault Types 

The computed Python code snippet created a distribution of fault types in a given dataset. It first imported important libraries 

such as matplotlib.pyplot and seaborn to generate a variety of plots. Using Seaborn's counterplot, the code generates a bar chart 

representing the frequency of each fault type in the dataset. The plot has a title, labels, and a color palette for better readability, 

customized. Finally, it displayed the plot with the plot. Show () as showcased below: 

 

Output: 

 

Figure 1: Distribution of Fault Types 

The bar chart above represents the distribution of the types of different faults in the dataset. The most frequent is "battery_issue," 

which happens nearly 400 times. Then, "sensor_malfunction" and "engine_overheating" each happened around 200 times. More 

interesting is that even "no_fault" is a considerable category because it has happened around 200, meaning quite a fair number of 

the instances are those that are not considered faulty. A good view comes from that on types of issues encountered versus their 

respective frequencies. 

Battery Voltage Across Fault Types 

The computed Python code was designed to create a box plot visualization using the Seaborn library.  In essence, it explored how 

battery voltage varies across different fault kinds in some datasets. That is, the code sets up a figure with the inch dimensions of 

10 x6 inches, creating a box plot by mapping the, identifying its source as 'data', x as 'fault-type', and y as 'batter_voltage'. It also 

sets the color palette to "pastel" for an appealing presentation. The title of the plot is set to "Battery Voltage Across Fault Types," 

and the x- and y-axis labels are labeled appropriately with font sizes. Finally, the line plot.sticks (rotation=45) rotate the x-axis 

labels by 45 degrees to improve readability if the fault type names are long. The plot is then displayed using plt.show() as displayed 

below: 

 

 



AI-Powered Fault Prediction and Optimization in New Energy Vehicles (NEVs) for the US Market 

Page | 6  

Output: 

 

Figure 2: Displays Battery Voltage Across Fault Types 

The boxplot depicts the distribution of a battery voltage for various kinds of faults. We observe that the median of a battery voltage 

for all the types of faults is almost equal to 13 volts with the difference in dispersion. Therefore, the "sensor_malfunction" group 

has the lowest range, which indicates small variability in the battery voltage for these instances. In contrast, it can be seen that the 

"no_fault" group presents the biggest range, and thus is expected to bear the widest spread concerning voltage battery value 

when no kinds of faults were recorded. The findings would hence insinuate that while, perhaps, the battery voltage may not be a 

primary pointer in the type of fault determination, it could hitherto be employed to supplement ancillary insights into the system 

health and performance of such a battery. 

Road Condition Distribution 

The Python code script was designed to make a counterplot to show the distribution of road conditions in a given dataset. As a 

consequence, it created a figure with 8x6 dimensions using plt-figure (). Then, it uses the SNS. Counterplot () function from the 

Seaborn library, creating the counterplot with the dataset as data, the x-axis set to the road_condition column, and a color palette. 

The plot then got the title "Road Condition Distribution" in a certain font size. Then, label the x-axis as "Road Condition" and the 

y-axis as "Count", with their corresponding specified font sizes. It also included the x-axis labels to be rotated 45 degrees for 

readability. It finally added a grid in the y-axis with the given line style and transparency and plt.show () was used to display this 

plot as showcased below: 

Output: 

 

Figure 3: Exhibits Road Condition Distribution 
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The bar chart below depicts the distribution of road conditions available within the dataset. The frequent condition is "Hilly," with 

about 350 instances. Then there are "Smooth" roads, which have been found around 300 times. Finally, "Bumpy" roads are recorded 

to have occurred around 325 times. This plot creates great insights into the prevalence of different road conditions, and it shows 

that this dataset has more hilly and bumpy roads rather than smooth roads. 

Pair Plot of Selected Features 

The code snippet in Python, using the Seaborn library, was meant for creating a pair plot and studying relationships that may exist 

among a selected set of features in some data, and how these vary with different types of fault. Specifically, this selects 'battery 

voltage', 'engine temperature', 'speed', 'fuel efficiency', and 'fault type' from the data. Then, sns. Pair plot () had to be executed to 

create the pair plot; select the features for hue to paint data points with different colors regarding their fault type, while the palette 

is chosen to 'tab10' since this looks nice, meaning it offers visually very nicely distinguishable colors; and set diag_kind='kde', since 

kernel density estimation plots look nice as diagonal elements within this kind of pair plot. Finally, the plot is given a title "Pairplot 

of Selected Features" with appropriate font size and positioning, and the plot is displayed using plt.show(). 

 

Figure 4: Portrays Pair Plot of Selected Features 

The pair plot above provides a full overview of the relationships of selected features ('battery_voltage', 'engine_temperature', 

'speed', and 'fuel_efficiency') with each other and the relation to different fault types. We can see a few interesting patterns. There 

is a small positive correlation between battery voltage and engine temperature; we can see that from the upward trend in the 

scatter plot. Furthermore, the trend on fuel efficiency is different from that for different fault types in which some of them have 

higher density within the low fuel-efficiency region. The plot above, a pair-plot, also depicts other important relationships that 

might exist amongst other pairs of features showing avenues for further in-depth analysis into how these various variables could 

interact and correlate to determine fault occurrence in this model. 

 

The computed Python code snippet was intended for creating a scatter plot with the Seaborn library. The aim was to explore the 

relationship between Service Frequency and Repair Cost, color-coding the points according to Fault Type. This will create a figure 

with size 10x6 and make the scatter plot using sns.scatterplot() on data with the x-axis as service_frequency y-axis as repair_cost 

and hue as fault_type. The color palette used here is 'viridis' and alpha is 0.8. Set the title to "Service Frequency vs. Repair Cost" 

and give the appropriate font size. Label the x and y axes, giving the appropriate font size for each. Finally, display the plot using 

plt.show(). 
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Output: 

 

Figure 5: Visualizes Service Frequency vs. Repair Cost 

The scatter plot shows the relationship between service frequency and repair cost, where each point is color-coded according to 

its corresponding fault type. We can notice some interesting patterns. In particular, there seems to be a positive trend between 

service frequency and repair cost-for example, as service frequency increases, so do repair costs. However, it is also not a perfectly 

linear relationship in that some points lie off of this general trend. Again, the scatter plot displays different fault types exhibiting 

varying repair costs at different service frequencies. For instance, it appears that "sensor malfunction" cases always have lower 

repair costs independent of service frequency. This visualization provides much-needed insights into the financial implications of 

service frequency and its relation to fault types. 

The code in Python attempted to build a scatter plot, using the Seaborn library to study the correlation between ambient 

temperature and humidity, with colors mapped to the road conditions. The code created a figure with 10-inch width and 6-inch 

height using sns.scatterplot() plot settings with arguments: dataset='data', x-axis variable='ambient-temperature', y-variable= 

'humidity' but coloring (Hue) to vary by 'road-condition ', palette='cool', is visually appealing. Alpha-  0.8 for some transparency 

towards overplotting visibility;. This sets the title for this plot to "Ambient Temperature vs. Humidity by Road Condition" along 

with a suitable font size. Labels are added on x and y-axis correspondingly, using suitable font size. Lastly, the plot was exhibited 

and viewed with plt.show() as presented below: 

 

Figure 6: Showcases Ambient Temperature vs. Humidity by Road Condition 

The scatter plot maps the variation of ambient temperature versus humidity, where color-coding was done based on the condition 

of the road, hilly, smooth, or bumpy. The plot has shown a big variation both in ambient temperature and humidity, but no specific 

clustering or patterns have emerged in this plot. The data points representing the entire three road conditions are sprinkled all 

over the plot; therefore, there is no strongly identified correlation between ambient temperature-humidity and road condition 

variations from this dataset. This would now probably suggest that other more controlling factors like road construction and 

maintenance may play the role of determining the road conditions in such a case. 
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Methodology 

Feature Engineering and Selection 

Feature engineering and selection are among the most important steps in the machine learning workflow that mainly aims at 

improving performance for predictive models. Feature engineering is a process to transform raw data into informative features 

that can better capture meaningful patterns related to the problem at hand. These techniques for feature extraction and 

engineering of relevant features from the dataset may include the creation of interaction terms, polynomial features, and 

aggregating data over time or categories. For example, in fault prediction from the NEVs' perspective, one may feature-engineer 

any number of average temperatures a battery has been running for, frequency of maintenance events, or even cross-terms of 

vehicle speed and battery efficiency. The nature of these features could bring in a different level of context that raw data alone 

would not be able to do, thus enabling the model to learn complex relationships present in the data. 

Of equal importance are criteria on the selection of most predictive features, as not all features contribute positively towards model 

performance. A standard method for feature selection considers some techniques like correlation analysis; features are screened 

with regards to their statistical dependence with the target variable. Herein, fault types will act as target variables. Furthermore, 

other techniques such as Recursive Feature Elimination and feature importance from tree-based models can also be used to 

determine which features bear the most influence on the predictions. This will help balance model complexity with interpretability, 

making sure that not only does the choice of features enhance predictive power but also remains tractable and understandable. 

This careful curation of features is essential for building robust models that can generalize well to unseen data. 

Model Selection 

Fundamentally, fault prediction depends on the selection of appropriate machine learning and deep learning models. Different 

algorithms were selected, such as Random Forest Classifier, Gradient Boosting Classifier, and Logistic Regression-all with different 

advantages, depending on the characteristics of the dataset and the complexity of the problem. The Random Forest Classifier was 

appropriate for high-dimensional datasets, which can handle numerical and categorical features efficiently. Its ensemble approach 

avoids overfitting and hence can be an excellent choice to predict faults in NEVs where there may be a lot of interacting features. 

On the other hand, the Gradient Boosting Classifier is known to perform well in boosting the performance of weak learners with a 

high degree of accuracy and robustness against overfitting. Due to its iterative in nature, it can hone in on fixing errors made by 

other models in the sequence; this really helps when modeling complex relationships. Logistic Regression has much in common 

with those, though simpler, as a good baseline model of binary classification tasks. Further, due to its interpretability, understanding 

how features contribute to making predictions will provide valuable insight into automotive applications, fault mechanism insight 

that leads to actionable insight. 

The choice of model was justified on the premise of characteristics of the data: dimensionality, feature types, and nature of the 

target variable. Also, the goal of the prediction task guides model selection, for example, whether to maximize accuracy to minimize 

false positives or to ensure interpretability. In this work, several models are combined that leverage strengths to enable a more 

complete view of the landscape of fault prediction. 

Model Development and Evaluation 

Model development involves the training and testing of the selected models using the collected data. First, the dataset is divided 

into a training set and a test set to make sure that the model performance can be evaluated on unseen data, thus providing a 

realistic estimate of the performance of the models. The models learn from the features and their corresponding target values in 

training to optimize their internal parameters and reduce prediction errors. This phase is very important to develop a model which 

generalizes well on new data. 

Cross-validation techniques, including k-fold cross-validation made sure that the performances of these models are robust. It 

worked by dividing the training dataset into k subsets and training the model on k-1 subsets, then validating it on the remaining 

subset. This protocol was repeated k times, each time using one subset for validation. Cross-validation helps mitigate the 

associated risks of overfitting and provides a more real-world estimate of the model's predictive performance by evaluating the 

model across different subsets. 

Other important areas of model development included tuning the hyperparameters, which are crucial to optimizing the 

performance of a model. The hyperparameters are configurations set from the outside before training, like the number of trees in 

Random Forest and the learning rate in Gradient Boosting. Approaches like Grid Search or Random Search were used, which were 

systematically explored within a range of hyperparameters to determine the best mix of them that yields superior metrics. This 

tuning ensures that the model lives up to its full potential and caters well to the nuances within the data. 
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Performance evaluation of the model was done with several metrics, most notably precision, recall, F1-score, and ROC-AUC. 

Accuracy gives a general measure of the model's correctness, but can be misleading for imbalanced datasets. Precision and recall 

provide insight into how well the model is able to identify correctly the positive cases, those with faults, while avoiding false 

positives - something particularly relevant in scenarios involving fault prediction. F1-score yields a harmonic mean of precision 

and recall into one single metric balancing both. Lastly, ROC-AUC examines the performance of a model across various threshold 

settings for distinguishing classes and offers a more robust performance metric, especially when working on binary classification 

problems. The use of such metrics would mean that the study develops models that are accurate and, at the same time, reliable 

and efficient in the prediction of New Energy Vehicles faults. 

Results and Analysis 

Model Performance 

a) Logistic Regression 

This snippet of Python code performed a logistic regression modeling. It started by importing the necessary libraries: Logistic 

Regression and performance metrics-classification report, accuracy score. Next, it created a pipeline for smoothly going through 

the pre-processing stage, assumed to be defined elsewhere, and the logistic regression classifier itself. Then, the model was trained 

with the training data and used to predict the test data. The model was finally evaluated by printing out an accuracy score and a 

classification report showing its precision, recall, and F1 score on both classes as showcased below: 

Output: 

Table 1: Displays Performance of Logistic Regressions  

Performance of Logistic Regression: 

Accuracy: 0.3550 

Classification Report: 

                    precision    recall  f1-score   support 

 

     battery_issue       0.37      0.89      0.52        76 

engine_overheating       0.27      0.09      0.13        34 

          no_fault       0.00      0.00      0.00        48 

sensor_malfunction       0.00      0.00      0.00        42 

 

          accuracy                           0.35       200 

         macro avg       0.16      0.25      0.16       200 

      weighted avg       0.19      0.35      0.22       200 

 

From the classification report, we observe that the Logistic Regression model achieves an accuracy of 0.3550, which is moderately 

adequate. Also, within-class metrics indicate that for "battery issue" the model has a high recall of 0.89 but low precision of 0.37, 

showing many false positives; whereas for "engine overheating", it has a low recall of 0.09 and low precision of 0.27, showing poor 

performance in identifying this class. The model works really bad for "no fault" and "sensor malfunction" classes, obtaining zero 

precision, recall, and F1-score, which shows it is not able to correctly classify these instances. Also, the model is performing very 

low according to the macro and weighted average metrics. These scores denote that the model needs further tuning to classify all 

fault types well. 

b) Random Forest Modelling 

The Random Forest Classifier model was equally implemented in Python. The script first imported the necessary Random Forest 

Classifier from the sklearn. ensemble library. It then instantiates the pipeline for processing, made up of a preprocessing step 

assumed to be defined somewhere and, finally, the Random Forest classifier itself. Thereafter, the training data, X-train, y-train, 

was used in training the model while making its predictions on the test set X_test. Finally, the code evaluated the performance of 

the model by calculating and printing the accuracy score and a classification report, which provided insight into the model's 

precision, recall, and F1-score for each class as displayed below: 
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Output: 

Table 2: Portrays Performance of Random Forest Classifier 

Performance of Random Forest Classifier: 

Accuracy: 0.3850 

Classification Report: 

                    precision    recall  f1-score   support 

 

     battery_issue       0.40      0.95      0.56        76 

engine_overheating       0.43      0.09      0.15        34 

          no_fault       0.40      0.04      0.08        48 

sensor_malfunction       0.00      0.00      0.00        42 

 

          accuracy                           0.39       200 

         macro avg       0.31      0.27      0.19       200 

      weighted avg       0.32      0.39      0.26       200 

 

The classification report for the Random Forest algorithm achieved an overall accuracy of 0.3850, indicating a slightly better 

performance than the Logistic Regression model. Once again, even though highly effective in yielding high recalls, as seen in 

"battery_issue" with 0.95, the highest in precision is only an average of 0.40. Similar to LR, it struggles with three classes: "engine 

overheating," "no fault", and "sensor malfunction," managing zero each in precision, recall and F1-score for latter two. The above 

metrics are the perfect reflection of the model's overall problem, as evidenced by the macro and weighted average. These results 

show that the Random Forests model, though improved rather compared to Logistic Regression, still needs further optimization 

to give a good classification for all forms of fault types. 

c) Gradient Boosting Classifier 

The code snippet in Python implemented the Gradient Boosting Classifier model. It commenced by importing the library necessary 

for the Gradient Boosting Classifier from sklearn. ensemble, creates a pipeline for easy flow, and consists of preprocessing-

preprocessing that is presumably defined elsewhere-and a Gradient Boosting classifier. Finally, the model was trained on the 

training data, X_train, y_train, and made its prediction on the test data, X_test. Finally, the code evaluated this model by computing 

and printing the accuracy score and also a classification report, both of which contain the results of the model's precision, recall 

score, and F1-score for classes: 

Output: 

Table 3: Illustrates Gradient Boosting Classifier 

Performance of Gradient Boosting Classifier: 

Accuracy: 0.3650 

Classification Report: 

                    precision    recall  f1-score   support 

 

     battery_issue       0.40      0.80      0.54        76 

engine_overheating       0.36      0.26      0.31        34 

          no_fault       0.38      0.06      0.11        48 

sensor_malfunction       0.00      0.00      0.00        42 

 

          accuracy                           0.36       200 

         macro avg       0.28      0.28      0.24       200 

      weighted avg       0.30      0.36      0.28       200 

 

The Gradient Boosting Classifier has an accuracy of 0.3650-outperforming the Logistic Regression model but still falling behind 

the Random Forest Classifier. Although it gives very good recall for "battery_issue" at 0.80, it has very low precision at 0.40. It 

follows the trend of earlier models in having low performance on "engine_overheating," "no_fault," and "sensor_malfunction" 

classes while managing zero precision, recall, and F1-score for the latter two classes. The macro and weighted average metrics 

reflect the general limitations of the model. These results clearly indicate that the Gradient Boosting model, while promising and 

performing better for some classes than Logistic Regression, needs further optimization in order to classify all fault types effectively. 
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Comparison of All Models 

The code in Python compared several performances of machine learning techniques, namely Logistic Regression-Random Forest-

Gradient Boosting. The script imported required libraries, among those: matplotlib. pyplot, a seaborn, and accuracy _score. Then, 

estimated the accuracy for each of, them by using the accuracy function. After that, store estimated accuracies in a dictionary and 

convert it over pandas Data Frame for easier, prettier visualization. Finally, the code printed out the performance table, using 

seaborn for a bar plot to visually compare the accuracy of the three models. Finally, the plot was labeled accordingly with labels, 

title, and other formatting for good readability. 

 

Figure 7: Visualizes Model Performance Comparison 

The bar chart showcases visual comparisons of accuracy scores that Logistic Regression, Random Forest, and Gradient Boosting 

were able to generate in three machine-learning models. The results demonstrate that the Random Forest model attained the 

highest accuracy, followed closely by Gradient Boosting. Logistic Regression had the lowest accuracy among the three models. 

These findings suggest that among those based on pure accuracy, the Random Forest would be the most promising option for 

the task at hand. However, other metrics, such as precision and recall, including the F1-score, are also useful to gain a better overall 

understanding of the results of each model. 

Feature Importance Analysis 

The most important role of feature analysis in any machine learning model is understanding the root causes of the predictions, 

especially for New Energy Vehicle fault prediction. Models such as Random Forest and Gradient Boosting have some intrinsic 

mechanisms to estimate feature importance that may guide the engineers and decision-makers on which are the most important 

variables related to faults. For example, with Random Forest, it gives you the contribution of the importance of the feature used 

with Gini impurity or mean decrease in accuracy toward the model's predictability. These importance scores over all the trees sum 

to show you which features generally always come as important over several random subsets. This allows stakeholders to 

concentrate on the most influencing variables, enhancing the interpretability of the model and thus targeted interventions in 

strategies of fault management. 

On the other hand, feature importance in Gradient Boosting is calculated with respect to the reduction of the loss functions upon 

the addition of a feature in the model. The idea behind this approach is to provide a nuanced view: it considers how features 

interact with each other and their cumulative impact on the performance of the model in question. By analyzing feature importance 

scores derived from both models, one can identify the key contributors to fault prediction. Instances of top contributors may be 

battery temperature, charging frequency, vehicle speed, and historical maintenance records. 

Predictive Insights 

Interpretation of the model's predictions is important in fault management strategies because it converts raw predictive outputs 

to actionable insights. Studying the predictions of models like Random Forest and Gradient Boosting gives a better understanding 

to stakeholders on potential faults and causes. For instance, if the model predicts a high probability of battery failure in a given 

condition, such as high temperatures combined with long charging time, the insight can be used to inform preventive measures. 

In this regard, maintenance teams can then focus their inspection or cooling solutions to decrease the risk of battery degradation 

and improve vehicle reliability. 
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Moreover, the insights from predictive models may assist in communicating better with customers. With transparent explanations 

of why something is predicted to fail, the manufacturers can help reassure the users. For instance, if a model comes back with a 

high likelihood of a pending fault based on driving patterns or battery usage type, the manufacturer can provide certain 

suggestions to the vehicle's owner about how to regulate his or her usage in particular. 

Furthermore, predictive insight also allows the curation of dynamic maintenance schedules responsive to current data and not 

necessarily bound by rigid time frames. By integrating all these insights into their systems, companies can do better fleet 

management to ensure necessary maintenance on vehicles is correctly timed, when the vehicles are most likely to develop faults. 

From reactive to proactive, the maintenance itself has shifted, thereby not only indirectly contributing to the improvement in 

operational efficiency but also the overall sustainability of NEVs due to a decrease in downtime and full vehicle availability. 

Interpretation of model predictions is important for translation of insights drawn from data-driven information into practical ways 

of improving performance through better fault management of New Energy Vehicles. 

 

Implementation Strategy 

Integration into NEV Operations 

In such new-energy vehicle-integrated fault-predictive models, AI needs to be woven into an integral unit in the form of a system 

and carefully planned for easy integration with the best results. The first step in that direction would be an appraisal of the existing 

data infrastructure regarding NEV systems concerning types, sources, vehicle performance data, sensor data, and maintenance 

records. It therefore requires developing a strong data pipeline that would ensure the continuous gathering and storage of the 

most relevant real-time data. This sometimes involves the deployment of various IoT devices and sensors able to capture detailed 

operational data in great detail from different components of vehicles. 

After the data architecture is in place, the next step is to implement the trained fault prediction models into the NEV’s onboard 

systems. That would require close cooperation between data scientists and automotive engineers to ensure the models are 

harmonious with vehicle architecture and will run seamlessly within the given computational constraints. Once implemented, the 

models should be interfaced with existing vehicle diagnostic tools to enable real-time monitoring and analysis. A user-friendly 

interface should be devised to provide presents predictive insights to maintenance personnel and vehicle operators, who can then 

take quick action based on the model's recommendations. Finally, continuous monitoring and updating of the models are 

important to ensure their accuracy and relevance over time, as new data and evolving technologies may necessitate retraining or 

fine-tuning the algorithms. 

Such a proactive approach will result in better customer satisfaction, while at the same time lowering warranty claims and 

maintenance costs by the manufacturers. 

Such understanding of the relationship will be useful not only for model performance enhancement but also for the design of 

maintenance protocols and engineering solutions to tackle the root causes of faults. By giving priority to such key factors, 

manufacturers can optimize resources and improve the reliability and efficiency of NEVs. 

 

Scalability and Flexibility 

The scalability and flexibility of the AI-driven fault prediction models should be realized with their successful deployment across 

different types of NEVs and operational scales. Scalability in this context means that the models can handle increased volume in 

data and complexity while the fleet grows or new models are introduced. This may be realized using cloud-based platforms able 

to store large datasets and provide computation resources for real-time processing. More the use of in-service vehicles, larger the 

data set on which the models could be retrained again at improving their predictions by accommodating different driving 

conditions and modes of use. 

Flexibility is equally essential, as NEVs come in distinct forms—ranging from completely electric vehicles to hybrid algorithms—

and each type may present unique operational challenges. Fault prediction models have to be flexible, which means their design 

must include a modular architecture that easily adapts to changes for different specifications of vehicles and their respective 

features. Algorithms should be extensible so that they can easily cover new types of data, like newly developed sensor technologies, 

and other sources reflecting changes in users' behavior. Scalability and flexibility will allow AI-driven fault prediction systems from 

manufacturing to be relevant and effective against the changing landscapes of NEVs. 
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Business Impact Analysis 

Estimating the potential business impact of the implementation of AI-driven fault prediction and optimization includes an analysis 

of how these technologies can enhance operational efficiencies, reduce costs, and enhance customer satisfaction. One of the 

biggest advantages of all is to reduce maintenance costs by proactive detection of faults. By identifying upcoming issues before 

they develop into major failures, manufacturers can reduce not only the frequency but also the severity of repairs and, simply put, 

reduce any claims on warranty or service costs to as low as possible. Better reliability in vehicles also leads to better customer 

satisfaction, which then affects brand loyalty and repeat purchases. 

A full cost-benefit analysis of the implementation would include the initial investment in AI-driven systems and long-term savings. 

Initial costs could include software development, integration, and training personnel to use the new systems effectively. On the 

other hand, these upfront costs can be offset by the long-term savings from fewer breakdowns and reduced downtime, with added 

value through optimized maintenance schedules. In addition, this capability to provide better predictive insights brings more 

revenue streams, as it can charge subscription-based services for real-time monitoring or even advanced analytics. Ultimately, the 

quantifying of these benefits through appropriate implementation will go a long way in highlighting the substantive returns on 

investments possible with AI-driven fault prediction and optimization in NEV operations. 

Discussion 

Implication for the US Automobile Industry 

AI-driven fault prediction models brought into play would greatly raise the level of impact that can be caused to the automotive 

industry in the US concerning the enhancement of NEV reliability and efficiency. It is expected that the sophisticated algorithms in 

fault prediction by the manufacturing industry will help avoid random breakdowns, if not great reduction, that could reduce the 

time the vehicles can put in and customer satisfaction. Such a proactive approach will not only limit repair costs but also lead to 

increased trust between consumers and manufacturers, as customers start to demand reliable vehicles in the competitive 

automotive market. The ability to predict will also further enable the manufacturing industry to improve its supply chain and 

maintain the right inventories of vital parts required by customers while minimizing operational bottlenecks. 

To efficiently incorporate predictive algorithms into NEV manufacturing and maintenance protocols, several recommendations 

should be considered. First, automotive manufacturers will need to develop a robust data infrastructure able to collect and analyze 

data about vehicle performance throughout its production and operational life cycle. This may involve investments in both IoT 

technologies and data analytics platforms that can process and analyze large volumes of data in real time. A combination for the 

development of predictive models addressing practical aspects should be approached, involving cross-functional teams of data 

scientists, automotive engineers, and maintenance staff. The necessary training programs in essential competencies for relevant 

staff needed for effective interpretation and insight actioning should also be developed. With these strategies in place, the US 

automotive industry will fully implement AI-driven fault prediction for entry into a more resilient NEV ecosystem. 

Challenges and Limitations 

While there are substantial benefits from AI-driven fault prediction, several challenges and limitations in the process of optimization 

of their effectiveness should be overcome. In this regard, a serious ethical issue touches on the use of automotive data for predictive 

analytics. The privacy and security of that data are of great concern since gathering and processing sensitive information includes 

driving habits and performance of a vehicle and involves serious concerns of user consent and data misuse. This will call for clear 

data governance policies by manufacturers to guarantee user privacy with a strategic goal of engendering trust among consumers. 

This then suggests clarity in what is collected, how it will be used, and wherever possible anonymized, so it will not compromise 

the identity of the individuals. 

Apart from that, some limitations in data quality, model interpretability, and generalizability restrain the use of AI-driven fault 

prediction models. The path to getting the right predictive models requires high-quality data, yet inaccuracies in predictions result 

from inconsistencies, gaps, and biases in the data. To overcome this problem, effective collection of data has to be done, 

accompanied by stringent data cleaning. Despite AI models being very efficient in the output of highly accurate predictions, 

interpretability is a double-edged sword. For example, complex models often behave like "black boxes," where stakeholders can't 

understand why certain predictions are made. This lack of interpretability can make people lose faith in the models and thus 

complicate decision-making. Finally, there is the issue of generalizability: models that have been trained on specific datasets may 

not generalize well to different vehicles or operating conditions. 
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Future Research Directions 

In the future, the research directions for NEVs powered by artificial intelligence in fault prediction would be directed to several 

pathways to enhance model accuracy and effectiveness in operations. One favorable opportunity may come from a larger and 

more diverse set of datasets. As the population of NEVs increases further, so does the quantity of operational data. Further, 

researchers should focus on data aggregation from various sources like different models of vehicles, varied environmental 

conditions, and diverse driving behavior. The richness in this data landscape could facilitate richer model training, thus offering 

finer predictions that incorporate more variables and complexities. 

Moreover, the increased potential of real-time data integration and advanced analytics techniques opens more avenues for 

innovation. The higher the connectivity that characterizes modern vehicle design, the greater the number of real-time monitoring 

and in-depth analysis of performance data being generated. Additional research is needed to identify the best ways of tapping 

streaming data and applying appropriate machine learning techniques for realistic predictions to be made enabling runtime 

scheduling of maintenance and in good time warnings of likely faults. Finally, other enhanced analytics techniques such as transfer 

learning or ensemble learning should therefore be considered concerning their potential for improving model ability and 

adaptiveness. These focused areas would keep the researchers and practitioners continuously working toward fine-tuning the AI-

driven fault prediction models, thereby increasing the reliability and efficiency of New Energy Vehicles within an evolving 

automotive ecosystem. The robustness of these models in diverse scenarios would continuously have to be validated and refined. 

Conclusion 

This research project aimed to examine the deployment of AI in forecasting and optimizing fault management in NEVs. This study 

intended to leverage machine learning algorithms with data analytics to provide high reliability and operational efficiency within 

the US automotive industry with NEVs. The dataset for the present study was accessed from accredited automotive manufacturing 

companies. The dataset was designed to predict the faults and maintenance optimization at NEVs. It covered simulated real vehicle 

data, such as sensor readings, environmental factors, driving patterns, and maintenance logs that are needed to understand 

performance, diagnose faults, and optimize a vehicle's maintenance schedule. Different algorithms were selected, such as Random 

Forest Classifier, Gradient Boosting Classifier, and Logistic Regression-all with different advantages, depending on the 

characteristics of the dataset and the complexity of the problem. Performance evaluation of the model was done with several 

metrics, most notably precision, recall, F1-score. The results demonstrated that the Random Forest model attained the highest 

accuracy, followed closely by Gradient Boosting. AI-driven fault prediction models brought into play would greatly raise the level 

of impact that can be caused to the automotive industry in the US concerning the enhancement of NEV reliability and efficiency. 

Interpretation of the model's predictions is important in fault management strategies because it converts raw predictive outputs 

to actionable insights.  
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