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| ABSTRACT 

Undoubtedly, time series data prediction stands as a primary focus of computational intelligence among researchers in both 

academia and industry, owing to its wide-ranging applications and significant impact. The efficacy of prediction models heavily 

relies on the optimization techniques employed to enhance both efficiency and accuracy. Within the realm of Machine Learning 

(ML), researchers have developed numerous optimization techniques and models, leading to a plethora of studies. 

Consequently, there exists a considerable body of literature comprising reviews of ML-based time series prediction. Recently, 

Deep Learning (DL) models have emerged in this domain, demonstrating performance levels that notably surpass those of 

traditional ML methods. Despite the burgeoning interest in advancing time series prediction models, there remains a noticeable 

absence of systematic review papers dedicated solely to enhancing the efficiency and accuracy of optimization techniques. 

Therefore, this paper is motivated by the need to present a systematic review of the efficiency and accuracy of optimizers studies 

concerning time series prediction implementations. We not only classify these studies based on their targeted optimization 

techniques, prediction applications—such as crop yield prediction, weather forecasting for farming, and pest detection and 

management—but also categorize them according to the types of optimization techniques and models employed, including 

Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Long-Short Term Memory (LSTM) networks. 

Additionally, this study endeavor to provide insights into the future of the field by highlighting the challenges and potential 

future research opportunities, thereby offering guidance to interested researchers. 
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1. Introduction  

Time series data conceptually defined as a sequence of observations or measurements collected, recorded, or observed over 

successive and evenly spaced intervals of time[1]. For example, Sharma et al. (2022)  argued that in time series data, each data 

point is associated with a specific timestamp or time period, allowing for the temporal ordering of the observations[2]. The  data 

format is particularly relevant for capturing and analyzing the evolution of a phenomenon, variable, or system over time. Adamides 

et al. the primary characteristics of time series data include its temporal structure, where the order of observations is critical, and 

the dependence between consecutive data points [3]. Time series analysis involves exploring patterns, trends, seasonality, and 

irregularities within the data to gain insights into the behavior of the underlying process [4].  

 

However, efficiency and accuracy, are two fundamental pillars in the domain of time series prediction, wielding significant 

importance due to their implications across various fields such as finance  meteorology, healthcare and agriculture [5][6][7] . 

Efficiency in time series prediction is crucial as it directly influences the responsiveness and scalability of predictive models[2]. As 
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highlighted by Mazambani & Mutambara, in financial markets, timely decision-making is paramount for maximizing returns and 

minimizing risks[8]. Therefore, predictive models must operate efficiently to process vast amounts of data swiftly, enabling traders 

and analysts to capitalize on fleeting market opportunities. Moreover, in real-time applications like traffic management systems or 

energy grid optimization, efficient prediction algorithms are indispensable for making rapid adjustments and optimizations based 

on incoming data streams[9]. Concurrently, accuracy holds paramount importance as erroneous predictions can lead to suboptimal 

decisions, resulting in significant financial losses or even jeopardizing lives in critical applications. In healthcare, inaccurate 

predictions in disease outbreak forecasting could lead to inadequate resource allocation and ineffective containment measures, 

potentially exacerbating public health crises[10]. Similarly, in climate modelling, inaccuracies in predicting extreme weather events 

may hinder disaster preparedness efforts and lead to inadequate mitigation strategies[11]. The synergy between efficiency and 

accuracy is evident in their complementary roles. As noted by Sze et al., achieving high accuracy often requires complex models 

that demand substantial computational resources[12]. However, these resource-intensive models may sacrifice efficiency, leading 

to longer prediction times and hindering real-time decision-making. Hence, there is a delicate balance to be struck between 

efficiency and accuracy, where optimizing one aspect may come at the expense of the other.  

 

Despite the existence of a vast amount of review studies covering many fields of time series prediction using traditional soft 

computing techniques, to the best of our knowledge, no systematic reviews have been performed in the literature for accuracy 

and enhancing efficiency and accuracy. Therefore, this research opted for a systematic review of time series data prediction 

optimization methods. Our motivation is twofold: first, to offer an up-to-date overview of both academic and industrial viewpoints 

on the optimization techniques employed in time series data prediction and deep learning models, and second, to identify the key 

and unique features of each optimization model studied, thus aiding researchers and practitioners in making informed decisions 

during their system development phase. Additionally, we speculate on future industry trends. The primary objective of this paper 

was to address the following research inquiries: 

1) Which optimization techniques are mostly used for time series prediction?  

2) What are the current challenges of optimization techniques in time series studies? 

3) What are the potential future directions for optimization techniques research for time series prediction? 

 

Our focus was solely on modern optimization techniques implementations for enhancement of efficiency and accuracy in time 

series data prediction such as Adam, RMSprop, Adagrad and AdaDelta etc. For other traditional optimization techniques-based 

applications such as Genetic algorithms, Stochastic Optimization, Gradient Descent, Stochastic Gradient Descent (SGD), Swarm 

Intelligence etc., interested readers can check the recent survey paper [13]. The study conducted a systematic literature review 

focusing on optimization techniques for time series prediction, excluding ML or DL models that were not centered on optimization. 

Optimization algorithms were included if they had use cases, even if not directly intended for time series prediction. Algorithmic 

trading papers addressing efficiency and accuracy prediction were considered, while those lacking a time series component were 

excluded. Sources surveyed included journals, conferences, PhD theses, book chapters, and web searches, limited to English 

language articles. Despite the recent prevalence of the term "deep learning," older studies implementing deep models like 

Recurrent Neural Networks (RNN) were incorporated. This review closes a gap in the body of knowledge, offering insight into the 

efficiency and accuracy of optimization techniques for time series prediction. The aim is to aid researchers and developers in 

implementing optimization algorithms effectively. This study distinguishes itself from existing ML-focused reviews by emphasizing 

optimization techniques. 

 

The rest of the paper is organized as follows: Following this brief introduction, in Section 2, the existing optimization techniques 

that are focused on ML and DL studies for any type of time series prediction are mentioned. In Section 3, we will cover the existing 

optimization algorithms that are used, such as CNN, LSTM, Deep Reinforcement Learning (DRL). In each subsection, the problem 

definition will be given, followed by the particular optimization implementations. In Section 5, the overall statistical results of our 

findings were presented including histograms about the yearly distribution of different subfields, models, publication types, etc. 

As a result, the state-of-the-art snapshot for time series prediction studies will be given through these statistics. At the same time, 

it will also show the areas that are already mature, compared against promising or new areas that still have room for improvement. 

Section 6 will provide discussions about what has been done through academic and industrial achievements and expectations of 

what might be needed in the future. The section will include highlights about the open areas that need further research. Finally, 

we will conclude in Section 7 by summarizing our findings. 

 

2. Literature Review  

The application of machine learning methods in time series forecasting has widely and deeply impacted various fields. Traditional 

time series forecasting methods, such as ARIMA and exponential smoothing, while performing well in some cases, often fall short 

when dealing with complex nonlinear relationships and high-dimensional data. Machine learning methods, especially deep 
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learning techniques such as Long Short-Term Memory Networks (LSTMs) and Convolutional Neural Networks (CNNs), excel in 

capturing complex patterns and long-term dependencies in data. 

 

2.1 Optimization Techniques 

Optimization techniques are algorithms and methods used to find the best solution from a set of possible solutions, typically in 

the context of mathematical or computational problems. In machine learning and deep learning, optimization techniques are 

crucial for training models and finding optimal parameter values.  

 

Prior studies identified and investigated some common optimization methods used in various fields, including machine learning 

[14]–[16]. For example, Diab proposed an improvement of Stochastic Gradient Descent (SGD) algorithm performance in text 

classification. Utilizing a Grid-Search approach for hyperparameter tuning, the study explores various settings for feature 

representation, transformation, and weighting in terrorist attack incident summaries [17]. Testing SGD on SVM, Logistic Regression, 

and Perceptron classifiers via 10-K-fold cross-validation reveals that grid-search optimization enhances both pre-classification 

settings and classifier performance in accuracy and execution time.  Liu et al. (2021) addresses the challenges in medical image 

processing using deep learning, focusing on the time-consuming nature of model training due to numerous parameters [18]. It 

introduces a novel algorithm, Particle Swarm Optimization-Stochastic Gradient Descent with Momentum (PSO-SGD), combining 

the advantages of both stochastic gradient descent and particle swarm optimization.  

 

To overcome inadequacies associated with SGD, alternative methods, such as RMSProp, adapt learning rates individually based on 

historical gradient behavior, mitigating convergence challenges have been proposed [2], [19], [20]. For example, Uddin et al. argued 

that RMSProp uses the running average of squared gradients to normalize the gradient updates for each parameter. This 

normalization helps prevent the learning rates from becoming too large for parameters with large gradients which can lead to 

overshooting the optimal solution and too small for parameters with small gradients which can lead to slow convergence [21]. Li 

et al. introduce the Advanced Root Mean Square Propagation with Warm-Up (ARW) algorithm to enhance fiber coupling efficiency 

in applications like free-space optical communication [22]. The ARW algorithm adapts gain and perturbation rates, achieving higher 

effective range and steady-state coupling efficiency. It outperforms the SPGD algorithm, requiring fewer iterations to handle 

sudden disturbances and offering a 20% larger effective range in specific coupling platforms. Simulation and experimental results 

validate the ARW algorithm's efficacy. Most optimization techniques such as RMSPro, Adam, and Nadam are grounded in the 

same foundational principles as the original SGD [23]. Since the emergence of the ML and more recently DL, researchers on 

prediction have paid more attention to the building and training model with less emphasis on the optimization techniques 

ecosystem. As for the data science scholars, this requires a more vivid discussion [24]. Therefore, the main focus of this review is 

on the optimization techniques perspective of time series data prediction in the ML or DL models. 

 

2.2 Machine and Deep Learning Model 

ML frameworks are the foundation of numerous machine learning systems [24]. They are algorithms or mathematical 

representations that discover links and patterns in data, empowering them to make predictions, decisions, or classifications without 

being explicitly programmed [25]. These models form the core of various applications across industries, from recommendation 

systems in e-commerce to image recognition in healthcare [26], [27]. In an attempt to capture temporal dependencies, DL models, 

particularly recurrent neural networks (RNNs) and their variants like long short-term memory networks (LSTMs) and gated recurrent 

units (GRUs), are often preferred for time series data prediction over traditional machine learning models[28]–[30]. For example, 

Abiodun et al.,found Simple ANNs have been applied to pattern recognition and linear regression tasks[31]. Annotation networks 

(ANNs) have been developed in several studies to capture intricate relationships in data. The design and training of ANN models 

and model evaluation, tuning, testing, deployment, and continuous monitoring and maintenance are all covered by statistical 

model prediction techniques. Through the integration of several steps, this process guarantees that the models are theoretically 

valid but also dependable and effective in practical applications. 

 

For example, Kadam et al. apply ANN and The Western Ghats, the Shivganga River Basin in India, uses multiple linear regression 

(MLR) techniques to predict whether the groundwater quality is suitable for drinking [32]. The outcomes verify that the performance 

is consistently acceptable in both seasons and that the ANN model's predictions are satisfactory. The suggested ANN model might 

be helpful in related research for predicting groundwater quality for human consumption. Xia et al. utilizes an ANN to analyze the 

impact of rolling parameters (e.g., thickness reduction, tension, speed, friction) on tandem cold rolling processes [33]. The ANN is 

trained with real data from practical rolling experiments. The best-performing ANN network topology has nine neurons in the 

hidden layer, achieving high correlation coefficients. The results also reveal the critical slip phenomena in cold rolling and 

demonstrate an accurate prediction of parameters, particularly slip, friction, and angular velocity. The Mean Squared Error for 

predicting slip is 4.2 × 10^(-4).In another study, Noori et al., created a hybrid model by combining the suggested process-based 

watershed model with ANN [34]. The two models work together to maximize the process of calibration and validation., and the 

hybrid model has good predictive power for nitrate, ammonium, and phosphate. In fact, it even outperforms the SWAT model 
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calibrated at every location. Jagannath et al. present a practical and efficient Automatic Modulation Classification (AMC) system 

that leverages ANN [35]. The system's key strengths lie in its ability to provide robust performance across different SNRs, low 

computational complexity for easy implementation, and flexibility for future expansion of modulation format dictionaries, thereby 

showcasing its suitability for real-time commercial scenarios. Ibrahim et al., reported investigated the potential sources of pollution 

and the most important parameters leading to spatial variability, and used principal component analysis (PCA) and artificial neural 

networks (ANN) to develop optimal inputs for water quality modeling [36].  

 

2.3 Time Series Data Prediction 

Time series data conceptually defined as a sequence of observations or measurements collected, recorded, or observed over 

successive and evenly spaced intervals of time [1]. For example, Sharma et al. argued that in time series data, each data point is 

associated with a specific timestamp or time period, allowing for the temporal ordering of the observations [2]. The  data format 

is particularly relevant for capturing and analyzing the evolution of a phenomenon, variable, or system over time. Adamides et al. 

the primary characteristics of time series data include its temporal structure, where the order of observations is critical, and the 

dependence between consecutive data points [3]. Time series analysis involves exploring patterns, trends, seasonality, and 

irregularities within the data to gain insights into the behavior of the underlying process [4]. A comprehensive literature review of 

time series data covers a wide range of topics, methodologies, and applications across various disciplines [37]–[40]. For instance, 

Büyükşahin & Ertekin introduce a new hybrid approach, joining Autoregressive Integrated Moving Average (ARIMA) and Artificial 

Neural Network (ANN), operating in a more versatile framework. Experimental results highlight the significance of data 

decomposition and the hybridization process for improved forecasting accuracy, suggesting the method's effectiveness in 

enhancing traditional hybrid and individual forecasting methods [41]. The study discusses the importance of accurate time series 

forecasting across various domains and the limitations of existing methods. Ugurlu & Oksuz Umut explore intraday electricity 

markets, emphasizing the surge in research on price prediction. While many studies focus on market features, this work compares 

various models, highlighting the superiority of recurrent neural networks, especially the gated recurrent unit network architecture. 

Results reveal the day-ahead market price's pivotal role in intraday forecasting, suggesting it is an efficient method for prediction 

[42].  

 

Gurrib et al. introduce a method for predicting Bitcoin price direction, combining linear discriminant analysis (LDA) and sentiment 

analysis [43]. The model, utilizing current Bitcoin prices and Twitter headline news, achieves high accuracy, surpassing benchmark 

targets with a forecast accuracy of 0.828. Heintz et al. explore Linear Discriminant Analysis (LDA) for supervised classification, 

demonstrating that with minimal prior information, it is possible to compute the exact LDA projection vector from unlabeled data. 

Three pieces of information are identified as sufficient, and the proposed Minimally Informed LDA (MILDA) model, validated 

through experiments, matches the performance of supervised LDA, offering adaptability to non-stationary data [44]. Karimuzzaman 

et al. demonstrated the application of linear data analysis in predicting stock prices based on historical data, highlighting the 

practical relevance of linear models in financial decision-making. The stock price prediction using linear classification models like 

Logistic Regression (LR), Linear Discriminant Analysis (LDA), and Partial Least-Square Discriminant Analysis (PLS-DA) [25]. Despite 

the dataset having characteristics favoring other models, LR performs the best, suggesting its suitability in scenarios with high 

correlation, multicollinearity, multivariate normality, and high dimensionality. The related work dealing with the time series data 

are given in a summary in Table1, with the application domain. 

 

Table 1 Summary of some selected time series data research 

Author Dataset Number 
Domain 

Application 

Büyükşahin & 

Ertekin 

Wolf’s sunspot data, Canadian 

lynx data, and the British 

pound/US dollar exchange 

rate data 

731 data points Finance 

Ugurlu & Oksuz 

Umut 

Electricity price of Turkey 

intraday market 
26,280 data point Finance 

Heintz et al.  Image 100 N/A 

Gurrib et al. 
Daily bitcoin prices 

 
990 data point 

Finance 
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3. Methodology  

For the analysis of indicators and indicator selection processes, the systematic literature review (SLR) methodology was followed. 

SLR aims to capture and evaluate the current research findings in a specific area of knowledge by answering research questions 

with data that satisfies pre-defined inclusion criteria [45]. SLR was chosen to guarantee a systematic and unbiased approach that 

produces reliable results [46]. The PSALSAR framework suggested by Mengist et al.[47] and search and selection procedure by 

Kitchenham, B & Charters [48] respectively was followed for the review. PSALSAR stands for the six steps in the framework: Protocol, 

Search, Appraisal, Synthesis, Analysis and Report (See Figure 1). After the research scope was determined, the research questions 

were formed in the Protocol step. The research scope of this study.  

 

 

Figure 1 The PSALSAR framework 

 

3.1 The Search Process 

In the Search step, the search strategy was developed. This strategy consists of the search queries and the respective databases. 

The search was conducted in the title, abstract, and keyword search fields. To find all relevant studies, the following string was 

formed and used considering possible synonyms: “Time series data*” AND “time series”, “smart series data*” AND “optimization 

algorithm”, “efficiency” AND “accuracy”, “prediction*” AND “forecasting”, “linear data*” AND “non-linear data”, “Enhancing 

Efficiency” AND “Accuracy of Optimization Techniques”.  

 

3.2 The Inclusion and exclusion criteria  

At this stage, the papers were selected based on these three criteria. The Scopus, ScienceDirect, and Google Scholar databases 

were searched as they are internationally recognized, prominent and widely used abstract and indexing databases for peer-

reviewed scientific literature. For testing the effectiveness of the search, queries were tried out in the databases determined for the 

study. The search has resulted in the retrieval of papers that were previously identified as relevant. Therefore, the search queries 

were considered valid.  The Assessment step consisted of the evaluation of papers according to the following predetermined 

inclusion and exclusion criteria: 

 

Before you begin to format your paper, first write and save the content as a separate text file. Keep your text and graphic files 

separate until after the text has been formatted and styled. Do not use hard tabs, and limit the use of hard returns to only one 

return at the end of a paragraph. Do not add any pagination anywhere in the paper. Do not number text heads-the template will 

do that for you. 

 

Finally, complete content and organizational editing before formatting. Please take note of the following items when proofreading 

spelling and grammar: 

 

Table 2 lists the inclusion and exclusion criteria for the papers that were critically evaluated in this review 

Actions Criteria 

Inclusion Criteria 

1) Must have publication dates ranging from 2019 to 2024. 

2) Must present a theoretical framework for optimization techniques in time series data 

prediction. 

3) Must evaluate optimization techniques in time series data prediction must be written in 

English. 

Search Strategy Scope 

Appraisal Synthesis Analysis  

Report writing  
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Exclusion Criteria 

1) Research lacking a theoretical framework despite examining optimization techniques 

2) Research presenting a theoretical framework yet not related to optimization techniques 

3) Research published in languages other than English. 

114 papers were selected from the literature using the above inclusion criteria. All these papers were used for the optimization 

techniques for time series data prediction. The papers were subjected to a filtering procedure before analysis. 65 of these papers 

had to be excluded based on the title, and abstract text did not include one of the keywords such as optimization techniques or 

time series data prediction. Another 11 of the papers from 49 papers had to be excluded based on reading the full text. At the end 

of the filtering procedure, 38 papers were found to be suitable for qualitative analysis. Extraction and classification of data from 

the papers were conducted in the Synthesis step. Firstly, the papers were classified into two sub-categories according to the 

concepts they were dealing with: (i) optimization techniques (ii) time series data (See Table 3). 

 

Table 3 Categorization of the reviewed articles according to the concepts they were dealing with (i.e., optimization techniques, 

time series data). 

Category Number of Papers Studies 

Optimization 

Techniques 

 

33 

 

 

Diab, Gorbunov et al., Liu et al.,Zou & Sugihara, Li et al., 

Prilianti et al., Uddin et al., Bock et al., Reddi et al., Prabowo et 

al., Attrapadung et al., Sharma et al., Zhang et al., Xie et al. , 

Fatima, Kuppusamy et al., et al. 

Time series data 5 
Ugurlu & Oksuz Umut, Büyükşahin & Ertekin, Heintz et al., 

Gurrib et al., Karimuzzaman et al 

 

After that, variables were identified to organize the papers: (i) Type, (ii) Author, (iii) Year, (iv) optimization techniques. The Type 

variable showed if the paper was on optimization techniques, time series data prediction, or efficiency and accuracy. The Author 

and Year variables were used for the identification of the paper. The optimization techniques variable demonstrated the 

methodology used in enhancing the efficiency and accuracy of the study was implemented. All the variables and the related data 

were extracted to an Excel spreadsheet and made ready for analysis. In the Analysis step, all relevant information was retrieved 

from the data. The articles were analyzed according to the keywords used, year of publication, journal the paper was published in, 

and the optimization techniques used by the study. Further analysis was conducted on the category and their respective selection 

processes using the above-mentioned variables. 
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Figure 2  Search and selection procedure 

3.3 Quality Assessment  

In this paper multi, assessment criteria were deployed. First, the quality of the selected articles for the review was assessed based 

on whether the study presented clear objectives, provided appropriate data collection method, discussed appropriate data analysis 

method, and presented clearly stated findings. For example, if the objectives were clear, a score of 1 is given; if the objectives were 

partly clear, a score of 0.5 is given and if the objectives were not clear, a score of 0 is given. The quality assessment criteria were 

adapted from [49]. The total score for each article is calculated by adding the score. Table 4 shows the results of the quality 

assessment 1. 

 

Table 4 Quality Assessment 1 

Quality (scores) Total 

 
Poor 

(1-1.99) 

Fair 

(2-2.99) 

Good 

(3-3.99) 

V. Good 

(4) 
100 

Number of studies 2 5 10 21  

Percentage of 

papers (%) 
5.2 13 26.3 55.2  

 

Out of 38 papers, 21 papers were rated very good and only two (2) papers were rated poor.  Secondly, another set of nine criteria 

derived from Al-Emran et al. and Alqudah & Al-emran was utilized for quality assessment, shaping a method to evaluate the 

selected research papers (n = 38) for final analysis [50], [51]. The intent of this criteria wasn't to critique scholars' work but to gauge 

research quality, adapted from recommendations by Kitchenham & Charters [52]. Like the first criteria above each checklist 

question was rated on a three-point scale: if the objectives were clear, a score of 1 is given, if the objectives were partly clear, a 

score of 0.5 is given and if the objectives were not clear, a score of 0 is given, culminating in scores ranging from 0 to 9 for each 

study. Higher scores indicated a greater alignment with research objectives, determined through scrutiny of nine quality 

assessment criteria. The first and second authors independently assigned scores to each study, reconciling differences through 

discussion and further review of contentious papers. Table 4 outlines the quality assessment outcomes for all 38 papers, revealing 

that each study met the criteria and was deemed suitable for final analysis. As shown in Table 5: 

 

Table 5 Quality Assessment 

Numb Checklist measurements 

1 Are the research objectives clearly stated? 

2 Was the aim of the study successfully accomplished? 

3 Are the variables addressed the study clearly outlined? 
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4 Is the study's context clearly articulated? 

5 Are the methods of data collection adequately? 

6 Are the instrument reliable and valid? 

7 Are the data analysis technique adequate? 

8 Do the findings contribute to existing literature? 

9 Does the study enhance knowledge? 

 

Additionally, a supplementary set of nine criteria, drawn from Al-Emran et al. and Alqudah & Al-emran , was employed for quality 

evaluation, thus shaping a comprehensive method for assessing the 38 selected research papers, as delineated in Table 2 [50], [51]. 

This approach, inspired by recommendations by Kitchenham & Charters [52], aimed not to critique scholars' work but to evaluate 

research quality. Each criterion was rated on a three-point scale, contributing to a score ranging from 0 to 9 for each study. Higher 

scores indicated better alignment with research objectives, as determined through scrutiny of the nine quality assessment criteria. 

Both the first and second authors independently assigned scores to each study, resolving discrepancies through discussion and 

further examination of contentious papers. Table 6 provides an overview of the quality assessment results for all 38 papers, 

indicating that each study met the criteria and was deemed suitable for final analysis. 

 

Table 6 outlines the quality assessment outcomes 

Papers  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Sum % 

Paper1 0.5 1 0 1 1 0.5 1 1 1 7 77.7% 

Paper2 1 1 1 0.5 1 1 0.5 1 1 8 88.8% 

Paper3 0.5 1 1 1 1 1 1 1 0.5 8 88.8% 

Paper4 1 1 1 0.5 1 1 1 1 1 8.5 94.4% 

Paper5 0 1 0.5 1 1 0.5 1 1 1 7 77.7% 

Paper6 1 1 1 1 1 1 0 0.5 1 7.5 83.3% 

Paper7 0.5 1 1 0.5 1 1 1 0 1 7 77.7% 

Paper8 1 1 1 1 1 1 0 0.5 1 7.5 83.3% 

Paper9 0 0.5 1 1 1 1 1 1 0.5 7 77.7% 

Paper10 1 1 1 1 1 0.5 1 1 1 8.5 94.4% 

Paper11 1 1 1 1 1 1 0.5 0 1 7.5 83.3% 

Paper12 0 0.5 1 1 1 1 1 1 0.5 7 77.7% 

Paper13 1 0.5 1 1 0.5 1 1 0.5 1 7.5 83.3% 

Paper14 1 1 1  1 1 1  1 7 77.7% 

Paper15 1 1 0.5 1 1 1 0.5 0.5 0.5 7 77.7% 

Paper16 1 0.5 1 1 0.5 1 1 1 1 8 88.8% 

Paper17 1 1 1 0.5 1 1 1 0.5 0.5 7.5 83.3% 

Paper18 0.5 1 1 1 0 1 0 0 1 5.5 61.1% 

Paper19 1 1 1 0 1 1 1 0.5 1 7.5 83.3% 

Paper20 1 1 1 0.5 1 1 1 1 0.5 8 88.8% 

Paper21 1 0.5 1 1 0.5 1 1 1 1 8 88.8% 

Paper22 0.5 1 1 1 1 1 1 1 1 8.5 94.4% 

Paper23 1 0 1 0 0.5 1 1 1 1 6.5 72.2% 

Paper24 0.5 1 1 1 1 0.5 1 1 0.5 7.5 83.3% 

Paper25 1 0.5 1 1 1  0.5 1 1 7 77.7% 

Paper26 1 0 1 1 1 1 1 1 1 8 88.8% 

Paper27 0.5 1 1 1 1 0.5 1 1 1 8 88.8% 

Paper28 1 0.5 1 1 1 1 0 0.5 1 7 77.7% 

Paper29 0 1 0.5 1 1 0.5 1 1 1 7 77.7% 

Paper30 1 1 1 1 1 1 0 0.5 1 7.5 83.3% 

Paper31 0.5 1 1 0.5 1 1 1 0 1 7 77.7% 

Paper32 1 1 1 1 1 1 0 0.5 1 7.5 83.3% 

Paper33 0 0.5 1 1 1 1 1 1 0.5 7 77.7% 

Paper34 1 1 1 1 1 0.5 1 1 1 8.5 94.4% 

Paper35 1 1 1 1 1 1 0.5 0 1 7.5 83.3% 

Paper36 0 0.5 1 1 1 1 1 1 0.5 7 77.7% 
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Paper37 1 0.5 1 1 0.5 1 1 0.5 1 7.5 83.3% 

Paper38 1 0.5 1 1 0.5 1 1 0.5 1 7.5 83.3% 

 

To address the research inquiries in this review, we've categorized the remaining 38 papers by various attributes such as 

optimization techniques and existing challenges in optimization techniques in time series data studies. 

 

3.4 Data Extraction  

In this study, Mendeley platform, a tool for managing references, was utilized to document the reference information of each 

article. The extracted data used to address the research inquiries encompasses the fields of study, methodologies employed, and 

the underlying theories. 

 

4. Results and Discussion  

The findings of this review were extracted according to the optimization techniques, time series data prediction and future research 

directions based on the comparative analysis of the current trend in optimization techniques and ML or DL model research field.  

 

4.1 Optimization Techniques Mostly Used for Time Series Prediction 

To answer research question one (1), Based on the results of extensive reading of the selected papers, the optimization algorithm 

methods used by the authors were gradient-based optimization and classified into their approaches to optimize model parameters. 

Which include first-order methods, second-order methods and adaptive learning rate methods respectively as listed below (Table 

6). The findings reveal that only six (6) out of the 11 papers of Adaptive learning rate methods investigate Nadam optimizer a 

variant of Adam.  For example, Sharma et al., examine LSTM networks for long-term solar PV power prediction, employing the 

Nadam optimizer [2]. Focused on the Indian solar context, it aims to enhance forecasting precision and efficiency. In addition, 

Zhang et al. introduce NAI-FGM, combining Nadam optimizer with a fast gradient method for adversarial attacks, enhancing 

efficacy especially in black-box scenarios[53]. Critically, it advances adversarial machine learning but lacks thorough empirical 

validation. Xie et al. explore LSTM with Nadam optimizer for solar PV forecasting in India, aiming to enhance accuracy[54]. 

Kuppusamy et al. compares Adam and Nadam in CNNs for facial emotion recognition, lacking detailed analysis[55]. Ezgi & Onan 

introduce two deep convolutional neural networks to automatically assess OA severity from X-ray images[56]. The first network 

detects knee joints accurately, while the second network, fine-tuned with an ordinal loss function, achieves state-of-the-art 

performance in classifying OA severity based on the Kellgren-Lawrence grading system. Results show high accuracy in knee joint 

detection and grading. As shown in Table 7: 

 

Table 7 Optimization Techniques based Approaches to Optimizing Model 

Gradient-Based Optimization Techniques Mostly Used for Time Series Prediction Number of papers 

First-order methods (i.e Gradient Descent, Stochastic Gradient Descent (SGD), and 

Mini-Batch Gradient Descent) 

25 

Second-order methods  

(i.e Newton's Methods and Quasi-Newton Methods) 

2 

Adaptive learning rate methods (i.e AdaGrad, RMSProp, Adam, Adadelta, AdamW 

and Nadam) 

11 

 

The evidence from this review indicates that data science scholars have yet to significantly contribute to reporting the scientific 

evidence of adaptive learning rate methods, specifically as depicted in Figure 3, the adaptive learning rate optimizer. This deficiency 

arises due to limitations in enhancing faster and smarter predictions for time series data. Therefore, it is imperative to explore this 

opportunity further. 
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Figure 3  The Most Common Optimization Techniques Mostly Used for Time Series Prediction 

 

4.2 What are the existing challenges in optimization techniques in time series data studies? 

This study points out that although machine learning focuses on improving prediction accuracy and modeling complex patterns 

in time series data optimization, there is relatively little research on fast, intelligent prediction[57]. Time series data presents unique 

challenges such as trend, seasonality, and autocorrelation that require technical expertise. While the general approach is helpful, 

it is difficult to solve specific problems such as irregularity, missing values and non-stationarity. Especially in the context of 

infectious disease pandemics such as COVID-19, the importance of real-time or near-real-time predictive models is heightened[58]. 

Although the study by L. Zhou et al. demonstrated the effectiveness of the LSTM model in predicting COVID-19 trends, it failed to 

address the urgent need for rapid adaptive forecasting methods, and lacked a discussion of real-world deployment challenges and 

an assessment of the applicability of the updated technical framework. 

 

Future research will focus on ammonia level prediction in specific fields such as aquaculture, using advanced models such as RNN 

and LSTM to capture complex time patterns, and combining domain knowledge to improve prediction accuracy and robustness. 

At the same time, real-time monitoring and adaptive forecasting methods will be the focus of research to respond to dynamic 

changes in aquaculture conditions and promote water quality maintenance and system health. Although studies have explored 

the potential of machine learning techniques, many lack a clear basis for research. Therefore, future research should focus on 

solving these key problems and provide stronger support for practical applications. 

 

Data science scholars are working on breakthroughs in time series prediction using deep learning models. Although model 

contributions are emphasized, research into optimization techniques and model architectures is equally exciting. These studies 

have important implications for multiple industry roles such as data scientists, consultants, aquaculture, and machine learning 

developers. Challenges include balancing model complexity with interpretability, as well as missing values, outliers, and noise that 

are unique to time series data. The high dimensionality, nonlinearity and non-stationarity of time series data make it difficult for 

traditional optimization algorithms to cope with it. In addition, noise and outliers in the data, as well as complex patterns, trends 

and seasonality, add to the difficulty of optimization. Pretreatment technology is the key to solving these problems, but it is also 

challenging to choose the right pretreatment method and optimization model. The large number of models and parameters 

available makes the optimization process complex and time consuming. At the same time, optimization techniques can face 

compute-intensive and scalability issues, especially when dealing with large amounts of data or complex models. Therefore, future 

studies need to take these factors into account in order to develop more efficient and accurate time series prediction models [59] 

[60]. 

 

4.3 What are the potential future directions for optimization techniques research for time series prediction 

While optimization techniques aim to improve the accuracy of time series forecasting models, ensuring the interpretability of these 

models remains important for decision-making. Complex optimization models may sacrifice interpretability, making it challenging 

for stakeholders to understand the underlying factors driving predictions. The studies presented so far provide an insight that can 

be useful to AI in general and more specifically ML/DL research communities and practitioners. Literature that focuses on examining 

the optimization techniques are merely simple integration of ML and optimization. For example, papers by Dogo et al.,Sharma et 

al., Q. Zhang et al., Z. Zhou et al., provide an insight into the leveraging the strengths of machine learning algorithms, such as deep 
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learning and reinforcement learning, in conjunction with optimization techniques to develop hybrid models capable of handling 

complex temporal dependencies and improving prediction accuracy[2], [53], [61], [62]. It is also found that in many of these papers 

finding the optimal set of hyperparameters can be challenging and often requires significant computational resources and 

expertise. Although some scholars present their scientific findings using certain methodology, more needs to be done by the ML 

scholars in applying existing optimizer training ML/DL models by iteratively adjusting the model parameters to minimize a 

predefined loss function.  

 

During training, gradients can grow exponentially, leading to unstable training and difficulty in convergence. Gradient clipping 

bounds the gradient values to a predefined threshold, preventing them from growing too large and causing numerical instability. 

This is particularly crucial in RNNs and their variants, where the vanishing or exploding gradient problem is common due to the 

nature of backpropagation through time. This study, so far, has provided significant evidence that might be useful for both the 

industry players and academic communities, especially the ML/DL scholars, to look into areas of cryptocurrencies platform 

ecosystem that are worth to be explored in the future. The findings also indicate that both the ML/DL or related focused on 

introducing and explaining the performance by emphasizing the performance of the model in terms of prediction rather than 

actual model training. 

 

The choice of clipping threshold in gradient clipping is often based on empirical observations or heuristics. Further investigation 

could explore methods for automatically determining the optimal clipping threshold based on characteristics of the model 

architecture, dataset, or training dynamics. Adaptive or dynamic clipping strategies could also be explored to adjust the clipping 

threshold during training based on real-time feedback. While gradient clipping is known to stabilize training and prevent exploding 

gradients, its impact on overall model performance ability across different tasks and architectures may vary. Further investigation 

could systematically evaluate the effects of gradient clipping on various deep learning models and benchmark its performance 

against alternative optimization techniques. 

 

While gradient clipping is a widely used technique in DL training, there is still room for further investigation to better understand 

its properties, optimize its parameters, and explore its interactions with other components of the training pipeline. Such 

investigations could lead to improved training methodologies, better-performing models, and deeper insights into the underlying 

optimization dynamics in DL especially using time series data. 

 

Investigate how gradient clipping techniques can be adapted to better handle the temporal dynamics inherent in time series data. 

This could involve dynamic adjustment of clipping thresholds based on changes in the data distribution or temporal context, 

enabling more adaptive and effective gradient clipping strategies. In addition, exploring the interplay between gradient clipping 

and RNN architectures for time series analysis, such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 

(GRUs). Investigating how different clipping strategies impact the training dynamics-based time series models could be another 

potential future research directions. 

 

5. Conclusion  

In spite of many research efforts by data science and other related fields to find accurate predictions through optimization 

techniques, there are still promising possibilities for enhancing faster and smarter predictions. In spite of many research efforts by 

data science, and AI fields in understanding the role of optimization techniques in iteratively adjusting the model parameters to 

minimize a predefined loss function, there are still promising possibilities of mitigating exploding gradients during the training DL 

models. This study has confirmed the need for more investigations on the need for gradient clipping is a valuable technique in 

deep learning training pipelines, providing stability, robustness, and faster convergence, ultimately leading to more reliable and 

effective models. 

 

Even though the gradient clipping is a well-established technique in the field of DL, particularly for addressing issues related to 

exploding gradients during training, not much effort has been made as gradient clipping may ultimately introduce additional 

computational overhead, especially in distributed or parallel training settings. Further investigation could explore scalable and 

efficient implementations of gradient clipping algorithms that minimize computational overhead while maintaining effectiveness 

in stabilizing training. In addition, the use of time series data in the DL models may provide rigorous output in model training the 

emerging phenomenon is still lacking. Therefore, the conclusion cannot be recommended without acknowledging the limitations 

of this study. First and foremost, in conducting this study, the data gathered do not include the linear data that also investigate 

the issue of optimization techniques. Compared to other related SLR papers conducted previously, this study has moved forward 

by not just limiting the inclusion of traditional ML. Furthermore, the study focuses on the optimization techniques used in training 

ML/DL models, even though there are other emerging alternatives.  The other optimizers will be considered as future work. 
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