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| ABSTRACT 

This paper aims to provide a systematic review of the state of the art in the use of deep neural networks (DNNs) in medical 

imaging, an area that has been recently developed because of the emergence of artificial intelligence (AI) and machine learning 

(ML). Deep Neural Networks including Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) 

have shown excellence in handling of a gigantic imaging data and assisting in diagnostics, treatment planning and patient care. 

This review also focuses on the breakthroughs of DNNs in different imaging tasks including classification, segmentation, 

registration, and detection, and has highlighted its potential to enhance diagnostic accuracy in different organs like the brain, 

lung and chest. Some of the key problems related to DNN deployment are also considered, including the problems that arise 

due to limitations of data, computational power, and model interpretability. That is why innovations such as transfer learning 

and synthetic data acquisition contributed to reducing these problems, thereby improving model performance with limited data. 

The paper concludes by discussing future works where the emphasis is made on the higher interpretability of the models and 

the combination of clinical records with images. In this paper, we attempt to offer a comprehensive review of the latest 

developments in DNNs in medical image analysis and delineate potential research directions to help researchers and 

practitioners interested in applying DNNs for medical imaging tasks. 
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1. Introduction  

In health care, Artificial Intelligence (AI) and machine learning (ML) have brought new concepts to the discussion of patient 

treatment and diagnostic methods that form the foundation of concepts such as precision medicine (Bajwa et al., 2021). In the last 

several decades, artificially increased from simple algorithms to complex models that can work with massive data sets in order to 

produce accurate decisions within the clinical context. As a subfield of AI, ML has been most effective in healthcare areas including 

diagnosis, imaging, and cancer (Alowais et al., 2023). Out of the ML approaches, the DNNs have given exceptional results and are 

particularly loved where large quantities of image data need to be processed to help identify patterns or errors which are not 

discernible by human eyes (Ahmed et al., 2023). 
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The development of DNNs in the recent past has revolutionized the field of medical imaging by allowing the analysis of large and 

complicated datasets and providing features beyond that of a diagnostic tool. In contrast to traditional image processing methods, 

DNNs can self-learn and diagnose complex features of medical images, and are more accurate and reliable than human radiologists 

in diagnosing diseases including cancer, cardiovascular diseases, and neurological diseases. As advancements in image 

classification, segmentation and predictive analytics are realized in DNNs, the future of more personalized and patient specific 

healthcare solutions can be expected. Such applications are especially valuable in cases when the speed and accuracy of diagnostics 

can determine the efficacy of the therapy. However, there are issues with regard to the access of the data, interpretability of the 

model and ethical concerns which require more scholarly work to embrace DNNs into clinical practice smoothly. 

 

1.1 Background on AI and ML in Healthcare 

The advancements witnessed in the AI and ML health care settings have been occasioned by the desire to increase diagnostic 

precision and integrate patient-centric models. AI technologies in healthcare were first used for simple data processing tasks but 

have since developed and include DNNs for high level functions such as image classification, disease prediction and treatment 

planning (Alowais et al., 2023). The complexity of medical data has evolved over time from EHRs to multi-modal imaging data and 

the ML algorithms have evolved to match them. Therefore, DNNs are among the primary means of using AI in medical applications 

since they bring specific benefits regarding pattern recognition in medical images (Al Kuwaiti et al., 2023). 

 

1.2 Definition and Importance of Deep Neural Networks 

DNNs are the category of ML that employs multiple layers of connected processing elements known as neurons to recognize data 

hierarchically. Every layer in a DNN is responsible for extracting increasingly complex features and thus is good for purposes such 

as image recognition and analysis. In medical imaging, the use of DNNs has recast diagnosis by defining very early markers of 

diseases that could be invisible to the human eye (Montavon et al., 2017). CNNs are well suited to medical image analysis because 

they can learn spatial features hierarchically within images (Yamashita et al., 2018). As DNNs decode the imaging data with high 

accuracy, diagnostic precision is improved, and early diagnosis and subsequent targeted treatment is possible (Mall et al., 2023). 

 

1.3 Objectives and Scope of the Review 

This review section sought to present a synthesis of the use of DNNs in medical imaging. It aims at the researcher, clinician, and 

AI professional who wants to know the current status and future possibilities of DNN in healthcare (Mall et al., 2023). This paper 

aims to review the latest developments, discuss current issues, and envision the future of DNNs in medical imaging for 

classification, segmentation, registration, and detection (Mall et al., 2023). The strengths of the paper lie in the discussion of 

different DNN architectures together with their applicability to medical imaging and the subsequent effects on patients’ care and 

diagnostic procedures (Mall et al., 2023). 

 

1.4 Significance of DNNs in Medical Imaging 

Radiology and medical imaging are areas where DNNs’ use has had a massive impact on diagnosis completeness, planning, and 

patient benefits (Kumar et al., 2023). Support for this conclusion is based on the fact that DNNs perform image interpretation on 

their own and relieve the healthcare personnel, including radiologists, of this burden as well as minimizing the chances of human 

error in the diagnostic process. While opaque, DNNs provide faster and better quality advice in fields like cancer diagnosis, 

cardiovascular diseases, and neurological disorders enhancing the medical interventions (Bala & Kant, 2019). Moreover, application 

of DNNs in clinical practice settings has expanded the effectiveness of patient care as it means that health care services give 

patients’ tailor-made and evidence-based treatment (Titler, 2008). Based on the findings of this review, DNNs are highlighted to 

be not only valuable technologies, but central to the future of healthcare today. 

 

2. Deep Neural Networks: An Overview 

DNNs have quickly become the standard in medical imaging due to the ability of their architecture to learn and process patterns 

within images. This section introduces the basic structure, major components, and specific types of DNNs, their functions in medical 

imaging. 

 

2.1 Basic Concepts and Architectures of DNNs 

There are several layers of neurons in a deep neural network that are interconnected like the human brain and work in a layered 

fashion (Amazon Web Services, 2024). A typical DNN consists of three types of layers: the input layer; hidden layers; and the output 

layer. Insignts Shared in this context with ‘input layer’, data available in its raw form and/or simply desensitized and forwarded to 

the subsequent hidden layers. Every layer of the hidden layers makes unique transforms, which gradually feature extractions and 

features enhance as data goes deeper in the network. The final layer or the output layer gives out the forecast or categories of 

inputs that have been gone through the process (Masood & Ahmad, 2021). 
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The main structures in the DNNs are CNNs, RNNs, GANs, among others. CNNs are the most popular type of architecture in medical 

imaging because they can process grid-structured data such as images using filters that can learn spatial hierarchies on their own. 

The structure of CNNs by Mall et al., (2023) shows that they are specifically effective at pattern matching in visuals, more preferred 

in healthcare usage for medical images, for features such as tumor, fracture, or lesion. CNN employs the convolutional layer finding 

such elements as edges, texture patterns, and shapes through convolutional filters, which significantly cuts down the parameters, 

making it efficient in computation. 

 

RNNs, on the other hand are structured to work with sequences of data because they use feedback connections to hold a record 

of earlier inputs. While not as widespread in medical imaging as CNNs, RNNs have their use in processing time series medical data, 

including ECGs and other measurements. Mall et al., (2023) pointed out that, RNNs are specifically good at learning dependencies 

over time and therefore useful in healthcare applications for sequence prediction. 

 

 

                            
         Figure 1: Data Deficiency in Medical Imaging 

Another sophisticated structure of DNNs that become popular in medical imaging, especially for data augmentation, is called 

Generative Adversarial Networks (GANs). They are fundamentally composed of two networks; a generator and a discriminator. In 

the spirit of a game, the primary aim of the generator is to generate realistic data while the discriminator aims to identify artificial 

data from actual ones. “The use of GANs is particularly significant for addressing the problem of data deficiency in medical imaging 

as shown in figure 1 above, by creating synthetic images that can complement the scarce data,” according to Islam et al., (2024). 

This is particularly beneficial in rare disease imaging, where there might be limited data in the labeled form. 

2.2 Key Functions and Learning Mechanisms 

The basic functions fundamentals of deep neural networks involve several main operations to learn and enhance the accuracy of 

prediction or solution. Activation functions, for example, are important since they bring non-linearity to the model and thus allow 

the model to learn other than linear relations (Montesinos López et al., 2022). In DNNs some of the most typical activation functions 

are ReLU, sigmoid and Tanh. ReLU is widely used in CNNs owing to its simplicity and efficiency, and because it can minimize the 

vanishing gradient problem since only positive values can be passed through the network (Amanatullah, 2024). 

 

Back propagation is the principal algorithm which makes it the capacity of DNNs to learn by moderating weights in proportion to 

the error. Whenever a DNN comes up with its prognosis, the difference between the prognosis and the true value is known as 

‘loss’. Backpropagation then comes back to the network and begins manipulating weights layer by session in order to minimize 
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the error. This process is done with the help of an optimization called gradient descent which helps in computing direction and 

magnitude of weights adjustment. As Ayush, (2024) pointed out “gradient descent optimizes the neural network’s weights by 

constantly adjusting the parameters in a way that decreases the loss function.” Some of the most popular types of DNNs are SGD 

and Adam optimizer to enhance the rate of convergence as well as stability for handling big (image datasets) medical images. 

 

2.3 Variants of DNN Models in Medical Imaging 

In medical imaging, a variety of specific DNN architectures have been established to solve some of the particular problems such 

as segmentation, classification, and registration. Specifically, there are U-Net and V-Net models which are used for the 

segmentation of medical images where they accurately draw out structures such as organs or tumor within an image. 

 

U-Net shown in Figure 2, is a CNN-based architecture that is especially useful in biomedical image segmentation owing to the 

encoder-decoder structure. The encoder path quantizes the image data, learning context; the decoder path reconstructs this data 

to high resolution, providing accurate segmentations. As per the study done by Zhang et al., (2024) U-Net “there is inclusion of 

skip connections between encoder and decoder streams of the network to assist in the preserving of relevant features and also 

enhancing the problem of accurate segmentation.” This architecture has been used widely in cases like liver, brain and lung 

segmentation, and in these cases it can easily detect boundaries and segment out various tissue types. 

 

 

                          
                                 Figure 2: Sample U-Net is a CNN-based architecture (Ronneberger, 2020). 

V-Net is a 3D version of U-net that is used in volume data, such as MRI scans in liver and kidney segmentation. V-Net uses 3D 

convolution for the depth information in the volumes as compared to the 3D images for better visualization of the three-

dimensional structures (figure 3). Since V-Net can take 3D inputs, as shown in Figure 3, it yields volumetric segmentations that are 

critical in tracking tumor progression and organ size as mentioned by Zhao et al., (2020) 

 

Other are ResNet and DenseNet, which use residual and dense connections to enable gradient flow and avoid the problem of 

vanishing gradients in very deep networks. Here, ResNet is famous for the residual blocks that enable the network to ‘jump’ over 

layers, to negate issues with degradation as seen in deep networks. While DenseNet connects every layer to every other layer, this 

model is efficient for large scale medical imaging due to the improved feature propagation and fewer parameters (Borawar & Kaur, 

2023). 
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    Figure 3: V-net volumetric Convolution (Tsang, 2019). 

 

Apart from the segmentation models, object detection networks such as Faster R-CNN and YOLO also tend to rise in medical 

imaging for discovering abnormalities. Faster R-CNN makes use of a region proposal network for finding objects in an image, 

which is beneficial in applications like tumor detection that need localization of the region in the image (Gandhi, 2024). YOLO 

which detects objects in real-time is beneficial for applications where fast and precise detection is crucial, for instance, triage, or 

during surgery. Figure 4 outlines the MR signal processing chain, where deep learning techniques improve each step, from initial 

image acquisition to registration. 

 

                    

 
 

 

Figure 4: Deep learning in the MR signal processing chain, from image acquisition (in complex-valued k-space) and image 

reconstruction, to image restoration (e.g. denoising) and image registration (Adaloglou, 2020). 

 

3. Application Areas of DNNs in Medical Imaging 

 

DNNs have been well implemented in medical imaging as they improve the accuracy and reliability of diagnosis. Through the use 

of DNNs, healthcare providers will be in a position to analyze the complicated imaging data in order to diagnose diseases in early 
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stages, track their progress as well as come up with better treatment plans (Abir, 2024). In this section, the main areas of utilization 

of DNNs in medical imaging are examined, namely, classification, segmentation, registration, detection, and predictive analysis as 

shown in figure 5. 

                 

Figure 5: Application Areas of DNNs in Medical Imaging 

3.1 Classification Tasks 

Among the most common applications of DNNs in medical imaging is image classification where the goal is to sort images into 

different classes, which in diagnostic settings is important for determining the presence and nature of different medical conditions 

in different anatomical areas such as brain, chest and liver (Mall et al., 2023). Classification tasks using DNN have been very 

successful in identifying diseases by analyzing the abnormality and unique features of images. 

In tissue analysis, for instance, classification problems driven by CNNs have been applied in differentiating between healthy and 

affected tissues. This is especially important in the diagnosis of Alzheimer’s disease as DNNs aid in the distinction between MCI 

and early Alzheimer’s with good performance. Current research reveals that even more ordinary models can be efficient in the 

tasks of Alzheimer’s identification: accuracy is even 95% on models like ResNet and DenseNet, which contribute most essentially 

to early intervention (Alsubaie et al., 2024). 

In chest imaging, DNNs are used in identifying pneumonia and lung cancers using X-ray and CT scans. These models can also 

detect the accurate difference between healthy tissue and abnormal regions in chest images based on the features of the images. 

In one research, the CNN model introduced in this work reported a classification accuracy of 96.5 % for the detection of pneumonia, 

further enhancing the use of conventional testing mechanisms (Kumar et al., 2024). Moreover, DNNs have been useful in the 

diagnosis of the differentiation of different forms of lung cancer, which helps to further enhance the diagnosis procedures. 

In liver disease, classification tasks with DNNs, particularly with CNN-based structures, help diagnose hepatic cirrhosis and liver 

cancer. Recent works have shown that models with accuracies higher than 90% in distinguishing malignant from benign liver 

lesions are important for the management of liver disorders and the selection of therapeutic approaches (Zhen et al., 2020). 

These examples effectively demonstrate that DNNs can achieve in image classification across various areas of the body, the 

contribution of which would serve to enhance diagnostic efficacy and inter-observer correlation in a large number of associated 

diseases. 
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3.2 Segmentation Tasks 

Segmentation divides an image into regions that correspond to certain organs or tumor and is a prerequisite for tasks that involve 

localization and measurement. Segmentation has been enhanced greatly by DNNs due to the high levels of accuracy in delineating 

these regions by the architectures such as U-Net and V-Net which have been developed to address medical image segmentation 

challenges (Sharma et al., 2023). 

In tumor identification segmentation enables the clinician to segment the tumor regions from the surrounding tissues to enable 

accurate measurement and assessment of the tumor growth. For example, in brain tumor segmentation, the U-net models achieved 

the dice similarity coefficient which is measured to check the segmented images accuracy more than 90% that, will prove that they 

are good enough to draw the boundary of the tumor. Such accuracy in defining and measuring tumors is very important in 

treatment planning especially for radiotherapy where targeting is paramount (Nguyen-Tat et al., 2024). 

Segmentation is also important in organ delineation. For example, in liver imaging, the DNN based segmentation models can 

actually delineate the edges of the liver and if there are multiple lobes or lesions in the liver, the segmentation models can segment 

them out. Similar accuracy is useful in both pre- and post-surgical contexts to make sure that the clinician has an accurate picture 

of the state of the organ and whether there are any abnormal processes occurring. 

Furthermore, DNNs have been found to be very useful in the vessel segmentation of the retina images that are used in diagnosing 

diabetic retinopathy and other eye diseases. These models help ophthalmologists identify alterations in the blood vessels’ shape, 

which may signal the progression of a disease (Prathibha & Siddappaji, 2024). Segmentation plays a very crucial role in medical 

imaging since it offers crucial data on diagnosis, treatment, and disease tracking (Sohail & Abir et al., 2019). 

3.3 Registration and Localization 

Registration is a process of bringing images from different modalities or time frames into a spatial correspondence where 

anatomical structures in the images match. In registration, DNNs are useful in automating this process that improves diagnostic 

accuracy and reduces variability (Fu et al., 2020). 

For instance, in multimodal brain imaging, DNNs can register MRI and PET images with supporting information about the structure 

and functionality of the human brain. This line of alignment enables the researchers to provide a more extensive analysis of the 

results by integrating anatomical and functional data where, for instance, one can study epilepsy or a tumor in the brain (Calhoun 

& Sui, 2016). 

Detection tasks entail identifying the presence of an object or a feature of interest within an image, whereas localization tasks 

entail identifying the precise position of a particular feature of interest in an image such as tumors or lesions. For instance, in the 

breast cancer screening, DNNs can locate the tumors within mammogram images, which saves the time of the radiologist to 

analyze those areas of interest. Faster R-CNN or YOLO are often used for such cases and, as the result, real-time localization can 

be achieved with high accuracy (Madani et al., 2022). 

Combined, registration and localization allow for more accurate diagnostic procedures by improving the stability and quality of 

multi-image evaluations required for certain diseases where treatment is based on the identification of changes over time. 

3.4 Detection and Predictive Analytics 

Detection tasks are centered on the recognition of anomalies in the medical images which include tumors, fractures, or lesions. 

DNNs outcompete other models in the detection function because the networks can study the intricate patterns and variations 

within the images. For example, mammography DNN models such as Faster R-CNN are applied to detect breast cancer, and the 

detection rates are comparable to those of a radiologist (Madani et al., 2022). 

Another flourishing field for DNNs is called predictive analytics, which implies the estimation of further course of disease according 

to current pictures and previous experience. DNNs are used to drive predictive models that over time evaluate large sets of imaging 

data to derive features of disease progression. For example, in diabetic retinopathy progression, DNN models can look into 

historical images and estimate the likely disease trajectory, and then intervene before complications occur (Seccia et al., 2021). 

In addition, DNNs are used in assessing fracture risk from bone scans which involve the determination of bone density and structure 

to estimate the likelihood of osteoporosis related fractures in high-risk populations (Sohail & Abir, 2018). These predictions enable 

prophylactic actions to be taken before they result in severe fractures that may harm the patients. 

The utilization of DNNs for detection and predictive analysis has been a great leap in the field of preventive medicine, where early 

intervention is informed by accurate analytical data. 
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3.5 GANs in Medical Image Synthesis 

In medical image synthesis, Generative Adversarial Networks (GANs) are widely applied to synthesize images to enhance the 

dataset. This is particularly helpful for rare diseases because there might be little actual data that can be used to train DNN models. 

GANs are composed of two models, a generator and a discriminator, which help generate images that look like real medical images 

(Showrov et al., 2024). 

For example, figure 6 shows how GANs can synthesize MRI images of brain tumors to train models for the detection of rare forms 

of brain cancer where real datasets are scarce. These synthetic images can then be used to train and validate models and hence 

enhance their capacity to generalize on new cases (Alalwan et al., 2024). 

In liver imaging, GANs have been applied to generate fake images of liver lesions for data that assists in improving segmentation 

and classification models. In this way, the researchers can enhance the performance of DNN models for liver cancer detection even 

when the amount of clinical data is restricted. 

        

Figure 6: Diagram illustrating the process of generating and evaluating synthetic brain activity using neural network models for 

neuroscience research (Sun, Sohrabpour, Worrell, & He, 2022). 

 

4. DNN Models by Imaging Modality 

Deep neural networks (DNNs) have been successfully applied in different types of medical images, and each modality provides a 

different view of the human body. Due to the utilization of modality-specific characteristics, DNNs have been used to increase 

diagnostic correctness, image quality and to detect and segment pathologies. This section looks into the main areas of DNNs in 

medical imaging and focuses on X-ray, MRI, histopathology, and other imaging modalities and the need for multi-modal imaging 

analysis. 
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4.1 X-ray Imaging 

Plain film or the routine x-ray is among the most useful imaging studies for diagnoses most notably in respiratory disorders, 

musculoskeletal and some infection processes. The most effective use of DNNs has been reported in diagnostics of chest X-ray, 

predominantly in pneumonia, lung cancers, and other respiratory diseases (World Health Organization [WHO], 2023). When it 

comes to pneumonia identification, CNNs have shown the highest level of performance. Researchers have found out that deep 

learning models developed from large datasets of chest X-ray images are capable of differentiating between healthy lungs and 

those infected by bacterial or viral pneumonia. For example, CNN model has shown an accuracy of 94% in the diagnosis of 

pneumonia cases and has saved much time for the radiologists while diagnosing the cases (Hariri & Avşar, 2023). 

Lung cancer is another important application area where DNNs have improved the diagnostic capacity for discovering the disease. 

Due to their ability to recognize minor differences in the texture of lung tissues, CNNs have been useful in diagnosing early stage 

lung cancer, which are not easily discernible from simple X-ray images. Faster R-CNN, a frequently used architecture for object 

detection, has been used to detect lung nodules and potential tumors on chest X-rays. This approach assists in cancer diagnosis 

at an early stage and this increases the chances of treatment and therefore enhances patient’s status (Thanoon et al., 2023). 

DNNs are also involved in bone imaging for diagnosing fracture, osteoporosis and other skeletal disorders. For example, CNNs 

can help diagnose wrist X-ray scans to identify possible osteoporosis through bone density and texture. These applications 

demonstrate the general applicability of DNNs in X-ray imaging and future work may help improve diagnostic accuracy for 

numerous pathologies. 

4.2 MRI (Magnetic Resonance Imaging) 

Magnetic Resonance Imaging (MRI) is a high powered technique that offers excellent soft tissue contrast and is essential in 

diagnosing neurological, cardiovascular and musculoskeletal conditions. CNN-based DNNs have been widely employed in MRI 

analysis because of the high dimensionality of the MRI data. 

In brain imaging, DNNs have contributed greatly in the diagnosis of neurological disorders including Alzheimer’s disease, multiple 

sclerosis and brain tumors as shown in figure 7. U-Net architecture and V-Net architecture are used for segmenting brain structure 

and detecting lesions or abnormal growths respectively. These networks can help to outline tumors and the affected area with 

great accuracy, which will be useful for neurosurgeons who decide on the surgery, and oncologists who decide on the therapy. For 

instance, a 3D U-Net model used in Li et al., (2023) was able to obtain a Dice similarity coefficient of over 90% in the segmentation 

of brain tumors and demonstrates the efficiency of the model in isolating region of interest, which in this case are tumors. In 

addition, Figure below demonstrated Axial scans of FLAIR MRI images of DN’s brain. (a1-b2) Comparison of the scans of December 

2017, prior to the development of micropsia (a1 and b1) and February 2018 after the development of micropsia (a2 and b2). An 

increased size of the infarction throughout the occipital and parietal lobe is observed. (c) Sagittal view. (d) Coronal view. 

Imaging of liver is another domain where DNNs have been helpful in the diagnosis of liver cirrhosis and detection of hepatic tumor 

as shown in figure 8 below. By training DNNs on MRI images of livers, it is possible to recognize signs of liver disease such as 

fibrosis or tumor indicators that manifest themselves in changes in texture and color. In case of liver cancer, the CNNs can provide 

the distinction between benign and malignant liver lesions with good precision to help in the diagnosis and management. The 

high sensitivity and specificity make these models helpful for the radiologists and the DNN-assisted MRI analysis for the global 

assessment of the liver (Azizaddini & Mani, 2023). The Figure below is an MRI of the liver showing an elongated gallbladder in an 

ectopic location within the right hepatic lobe on T2 axial and coronal images (A, B) and T1 axial image (C). MRCP revealed 

connection of the ectopic intrahepatic gallbladder with normal biliary tree with cystic duct coming out of the gallbladder as shown 

by orange arrow (D). 
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Figure 7: FLAIR MRI images of DN’s brain (“A Shrunken World – Micropsia after a Right Occipito-Parietal Ischemic Stroke,” 2024) 

                                         

Figure 8: Intrahepatic gallbladder mimicking a cystic liver lesion (“Intrahepatic Gallbladder Mimicking a Cystic Liver Lesion,” 2024) 
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4.3 Histopathology 

Analysis of tissue samples, a historic diagnostic technique called histopathology, has been improved by DNNs, specifically CNNs, 

in the diagnosis of cancer. DNNs can scan high-resolution pathology slides regarding the differences between normal and 

abnormal cells with high accuracy. (Example figure 9) This has been particularly positive in the diagnosis of cancers, where timely 

and accurate diagnosis is the key. 

                            

Figure 9: A digital pathology whole slide image (“The Current Role of Image Compression Standards in Medical Imaging,” 2023). 

In breast cancer diagnostics, CNNs have been employed to categorize tissue sections stained with Hematoxylin and Eosin (H&E) 

as shown in Figure 10. These models can detect malignant cells within a mass of compact tissue and can achieve classification 

rates of more than 90%. A CNN model applied for breast tissue image classification that was trained with a large dataset of breast 

tissue images helped pathologists in making correct diagnoses of benign and malignant samples (Priya et al., 2024).   

                       

Figure 10: The outline of the Faster R-CNN model for CAD in mammography (Ribli, Horváth, Unger, et al., 2018). 

Likewise, DNNs have been used in diagnosing prostate cancer. Using histopathological slides, CNNs can identify and categorize 

prostate tissues as cancerous and non-cancerous. They are accurate based on the large data set used in building models and can, 

therefore, be used to identify small and poorly differentiated tumors. This application helps pathologists reduce their workload 

and avoid errors that may be associated with their work, and hence, the reliability of the diagnosis in critical clinical settings (Tătaru 

et al., 2021). DNNs in histopathology have introduced significant changes in tissue diagnosis by enhancing the speed and accuracy 

of cancer cells identification to help pathologists diagnose diseases in their preliminary stages. 
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4.4 Other Modalities (CT, PET, Ultrasound) 

DNNs has been adapted to other imaging modalities like CT, PET, and ultrasound each of which has its advantages in the medical 

diagnosis. In CT imaging, DNNs have been used for early identification of lung nodules, for diagnosis of bone fractures and for 

evaluation of cardiovascular status. For example, DNNs are applied to assess coronary CT angiograms, to detect plaques and 

narrowing in the coronary arteries. (Figure 11) Such findings are valuable for identifying and addressing the cardiovascular diseases 

where timely treatment is well-documented. In the field of CT-based DNN models, they have reached the detection rates of 95% 

in distinguishing lung nodules, which once again proves that DNNs are helpful in improving CT diagnostics (Gruetzemacher et al., 

2018). 

                                             

Figure 11: Coronal localizer image and topogram in anteroposterior direction of the volume coverage (field of view) needed for 

dedicated coronary CTA (yellow rectangle) and for reading of additional findings (red rectangle) (Hoffmann, Ferencik, Cury, & 

Pena, 2006). 

In PET imaging where used in most cases in oncology DNNs aid in identifying and tracking cancerous lesions based on metabolism. 

DNNs are capable of differentiating between cancerous and non-cancerous lesions from PET scans in order to assist oncologists 

in creating individualized treatment strategies. DNN models are also used in brain PET imaging to determine the reduced or 

increased metabolic activity associated with neurodegenerative diseases such as the patient scan in Figure 12 below. The fused 

image is shown in several color scales. The “rainbow” scale provided better tumor-to-liver contrast compared to other color maps. 
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Figure 12: Patient with metastatic colorectal carcinoma and hepatic metastasis. 

In ultrasound imaging, DNNs help identify pathologies of soft tissues, including liver, kidneys, and thyroid. CNNs which are 

designed to address the peculiarities of ultrasound images can distinguish between cysts, tumors, and other pathologies with high 

accuracy (Zhu et al., 2021). OB ultrasounds are used for fetal monitoring while cardiology uses DNNs to analyze structure and 

functioning of the heart. 

Such applications demonstrate the cross-modality applicability of DNNs, which in all these areas serve to improve diagnostic 

precision and clinical decision-making. 

4.5 Multi-Modal Imaging Analysis 

Multi- modality imaging entails the combination of data obtained by the use of different imaging techniques then fused together 

to give a complete picture of the patient’s status. DNNs can help in combining multiple modalities and facilitate a more 

comprehensive approach to diagnosis and therapy. 

In brain tumor diagnosis for instance, data fusion of MRI and PET image enhances the complete characterization of the tumor 

morphology and metabolic features. The DNNs trained in both modalities can spatial and functional information at the same time, 

which helps to make more accurate evaluation of the tumor aggressiveness and progression. MRI and PET data integration has 

been found to improve the diagnostic performance by about 20% as compared to using each modality in isolation (Yankeelov et 

al., 2012). 

In cardiovascular diagnostics, the use of CT and MRI data can provide information not only about the shape and size of the heart 

but also about its work. These data types can be processed by DNNs to help understand heart health based on coronary artery 

structure through CT scan and heart muscle function through MRI (Nikolaou et al., 2010). This is very useful in a combined mode 

when diagnosing complicated cardiovascular diseases including myocardial infarction or heart failure. 

Multi-modal imaging also enhances the areas of therapeutic management of cancer, in which integration of CT and PET scans 

localize and stage the tumor. Such images can be realigned using DNNs to provide accurate representations of the cancerous 

tissues that can be used to plan radiation therapy and surgery. 

5. Challenges in Using DNNs for Medical Imaging 

DNNs have become an exciting topic in medical imaging since they improve diagnostic accuracy of patients’ conditions. 

Nevertheless, there are several issues as shown in figure 13 which arise when attempting to apply DNNs in clinical practice 

successfully. These issues include acquisition of data, the interpretability of the results, computational demands, ethical concerns 

and especially the problem of model transferability. Overcoming these obstacles is vital to realizing the full potentials of DNNs in 

medical imaging and to guaranteeing their responsible and effective integration into healthcare systems as denoted by (Mall et 

al., 2023). 
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Figure 13: Challenges in Using DNNs for Medical Imaging 

5.1 Data and Annotation Challenges 

The strength of DNN models in medical imaging is highly dependent on the presence of large annotated databases. Nevertheless, 

lack of data and challenges with annotations remain the major challenges for further development. Obtaining medical images of 

good quality is challenging because of the regulatory limitations, patient privacy, and cost of acquiring and storing such images. 

Furthermore, the process of developing labeled dataset is laborious, involving getting labels from profession experts such as the 

radiologist or pathologist (Diaz et al., 2021). This requirement for highly specialized annotation is not only a constraint on the 

amount of data that can be generated but also a source of variation because of the inter-observer variation (Srivastav et al., 2023). 

Adding to this, differences in the equipment, settings, and imaging protocols also across different healthcare organizations makes 

it challenging to achieve standardization in datasets acquisition. Such differences can bring in biases, and thus it becomes hard for 

DNN models to learn generic features. For example, MRI or CT images obtained using different parameters may show variability 

that a DNN may perceive as a clinically relevant feature when it is as a result of the machines settings (Iqbal et al., 2023). 

Unfortunately, there is no uniformity in the form and structure of data which means that before feeding it into the machine for 

analysis they have to go through hours of data preprocessing and normalization. 

Last but not the least, in some specific fields, there can be a lack of labeled examples for rare diseases. For example, in the pediatric 

oncology, some types of cancer are extremely rare, and there are not enough cases to train highly developed DNNs. To overcome 

this limitation researchers, tend to use data augmentation or synthetic data generation approaches such as GANs. However, such 

methods are not without their drawbacks including how to guarantee that the synthetic data closely mimic the real-world cases 

as noted in Mall et al., (2023) and Iqbal et al., (2023). 

5.2 Model Interpretability and Explain Ability 

The interpretability of the DNNs is one of the main concerns when applied to medical imaging. DNNs are proclaimed as black-box 

models because the decision making procedure is not easily explained (Sheu, 2020). In the medical domain, where the decisions 

made can literally mean the difference between life and death, it is important to know how a model arrived at a particular decision. 

DNNs do not possess clear methods to give explanations for their results, although clinicians require DNN outputs to make sound, 

trustworthy decisions. 

The fact is that DNNs are rather opaque, and this is a critical issue when it comes to high-risk diagnostics, for example, cancer, 

where a single mistake can result in critical consequences for the patient. The inability to determine why a specific area in the MRI 

scan was marked as cancerous is also a factor that hampers clinicians’ trust in DNN-based systems. Even if the model is accurate, 
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clinical decision making processes might resist such models because doctors cannot understand how the model arrived at a certain 

decision (Abdusalomov et al., 2023). 

To address this issue, authors of the current review studies are working on the novel methods called explainable AI (XAI) to make 

DNNs explainable. Techniques like saliency maps, Layer-wise Relevance Propagation (LRP), and Grad-CAM point towards certain 

regions in an image, which were responsible for the model’s decision. Despite this, these techniques are still young and can offer 

explanations at a level desirable for many medical applications in part. Therefore, improving the interpretability is still a big issue 

in the clinical application of DNNs. 

5.3 Computational Requirements 

The training and deployment of DNN models in medical images are computationally expensive tasks that demand a lot of 

resources. Medical images are high resolution and require detailed analysis; DNNs for such architectures are computationally 

intensive. For example, using 3D Convolutional Neural Network (CNN) for training volumetric MRI scans is computationally 

intensive because of the nature of MRI data and depth of the CNN. This requirement for high end hardware means that DNN 

development and deployment is usually done in institutions that have plenty of computational power (Mall et al., 2023). 

The need for computational resources does not stop at the training phase, as highlighted in this paper. When deploying DNNs, 

the network might need high-end GPUs or other hardware to provide real-time prediction and this can be a problem for small 

clinics or facilities in areas of low resource. Furthermore, the energy requirement for executing large-scale DNN computations also 

poses the problem of energy efficiency because data centers use a considerable amount of power to support such systems 

(Alzubaidi et al., 2021). 

Some of the solutions are presented with recent achievements, including model compression and new architectures, like 

MobileNets. Nevertheless, these methods are associated with the loss of accuracy of the model. Maintaining a good balance 

between computational speed and diagnostic accuracy is still a problem even in real-world health care settings. 

5.4 Privacy and Ethical Concerns 

Another concern for using DNNs in medical imaging mainly encompasses privacy as well as ethical issues. Health information is 

often confidential and any violation of patient’s rights brings about adverse consequences. DNNs need to be trained using large 

patient data sets which is a problem as it means that patient data will be exposed. HIPAA for the United States and GDPR for the 

European Union, rules and rules the government impose the strongest data protection measures, however, following the rules may 

not be easy for an organization that still does not have a strong data governance program in place. 

Besides privacy, the ethical problems arise from the biases in training datasets are the following. The problem with DNN is if it has 

been trained with data from a certain population it tends to increase the bias when generalizing to other populations. For example, 

a model trained to diagnose disease from images individuals mostly male may fail to do better diagnosis in female patients. This 

lack of fairness can increase the health differences, especially with culturally divergent clinical data sets, and stresses the need to 

balance the data set for a more realistic patient population. 

Ethical issues also include matters concerning informed consent; patients should in an ideal world be fully informed that their data 

is being used to feed AI models. However, getting explicit consent from all people in a dataset can be very cumbersome. There 

are ongoing studies on how to apply federated learning to models to train across various decentralized sources without sharing 

raw data to achieve privacy while scaling up learning. However, the questionable means of achieving these ends continues to be 

a significant conundrum in DNN deployment efforts (Holla, 2024). 

5.5 Generalization and Robustness 

One other significant issues that must be addressed when applying DNNs for medical imaging are the ability to generalize across 

different populations and across different clinical settings. DNNs are vulnerable to changes in input data distribution and hence 

its applicability in real-world scenarios is somewhat restricted. Here, a model that has been trained on data set from one hospital 

may not do very well when exposed to data from another hospital owing to variance in the imaging equipment, protocols or 

patient population (Muoka et al., 2023). 

For instance, DNN models trained for MRI based brain tumor detection may not give similar results when used in another hospital 

where MRI setting are different. This lack of robust ness means that new datasets have to be used to train the model again or to 

fine tune it, both of which are highly resource consumptive and unfeasible in many clinical practice scenarios. 

Besides, DNNs have issues with out of distribution or OOD, which is when the model works in conditions that were not used in the 

training process. This limitation is a threat in the diagnosis of diseases that are not common in the population, for example, rare 
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diseases. Enhancing the resistance of DNNs calls for techniques such as domain adaptation, in which models are trained to work 

on distinct data distribution, and data augmentation, which generates enlarged training datasets with variations in the degrees of 

image tilt, brightness, and noise. 

6. Future Directions and Opportunities 

6.1 Federated Learning and Decentralized Models 

Federated learning is turning out to be a promising approach to overcome data-sharing limitations in medical imaging, allowing 

multiple institutions to train models together without sharing patient data centrally (Ng et al., 2021). This approach minimizes the 

invasion of client privacy, retains data confidentiality, and enhances model extensibility from multiple datasets across demography 

and territory. 

6.2 Explainable AI and Model Interpretability 

The demand for XAI is crucial in critical healthcare environments to interpret the DNN outputs for clinicians. Heating maps and 

attention mechanisms allow for model decision-making analysis and confidence in diagnostic decisions (Ali et al., 2023). 

6.3 Integration of Genomics and Clinical Data 

Using DNNs with multimodal data like genomics and clinical records guarantees progress within the field of personalized medicine. 

When the imaging data is integrated with genetic and patient history data, DNNs may help improve diagnostic accuracy, and 

individualized treatment plans resulting in a better advancement of precision medicine. 

6.4 Enhancements in Model Robustness and Reliability 

DNN stability is also a concern, and the work is still in progress to maintain the model’s performance across different patients and 

different imaging conditions. Since there are variations in medical facilities and imaging technologies, algorithms have to be 

designed to adapt to these strategies and thus increase efficiency of accessing health care services across the globe. 

6.5 Prospects for Real-Time Processing and Edge AI 

Real-time medical applications are possible in Edge AI, and they are much more effective when the decision-making process must 

be fast. With the use of DNNs in portable imaging equipment, physicians could get diagnosis results on the spot, allowing efficient 

patient treatment including in areas with limited resources. As these directions progress, DNNs will have a potential of 

revolutionizing medical imaging in achieving equitable, individualized and effective healthcare solutions. 

7. Conclusion 

8.1 Summary of Findings 

This review has captured the essence of DNNs in medical imaging, and the key areas of use which include image classification, 

segmentation, registration, and predictive modeling. CNNs, GANs, and other architectures such as U-Net and V-Net, have 

contributed to enhancing diagnostic accuracy, time, and work flow in imaging studies involving X-rays, MRI scans and histology 

slides Zhou et al., (2021) and Cai et al., (2020). However, several important issues remain unresolved at present. The lack of data 

and the problem of their annotation, the opaque process of model interpretability, high computational requirements, and 

questions of privacy and bias still pose challenges to the clinical use of DNNs. Nevertheless, the authors are identifying strategies 

to improve model resilience, understanding and privacy measures using novel approaches like federated techniques and 

explainable artificial intelligence (Gao & Guan, 2023). 

8.2 Final Thoughts on the Future of DNNs in Medical Imaging 

The ability of DNNs to transform medical diagnostics and treatment is beyond doubt. While current limitations are being solved 

by the advancement in technology, we can foresee that DNNs will play a central role in real-time diagnostics, precision medicine, 

and real-time clinical decision making in the future. The proposed employment of DNNs with multi-modal data such as genomics 

and EHR will expand the development of personalized medicine in the future. However, the developments in edge AI and federated 

learning will bring these technologies closer and more privacy-oriented, which will enable DNNs to spread to various clinical 

settings around the world. 

The future course of work requires the integration of AI experts, clinicians, and policymakers to safely and effectively implement 

DNN. These barriers can be addressed and DNNs can revolutionize the healthcare sector by providing early diagnosis, personalized 
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treatments and improved patient care and bring medical imaging to a future where AI-based tools are integrated into clinical 

practice. 
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