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| ABSTRACT 

Electric vehicles (Electric Vehicles) are at the vanguard of the global dispensation to sustainable transportation, depicting a pivotal step toward 

diminishing greenhouse gas emissions and reliance on fossil fuels. Notwithstanding, the adoption of Electric Vehicles has been growing in the 

USA, but their future remains at a crossroads.  The objective of the research is to design and execute machine learning models capable of 

providing accurate predictions of future trends in electric vehicle adoption in the USA. The dataset gathered for analyzing EV adoption in the 

USA comprises data across three primary categories:  environmental data, economic indicators, and policy-related data. The economic indicators 

include household income, fuel prices, electricity rates, and lithium battery costs that affect EV purchasing power obtained from the U.S. Census 

Bureau and the U.S. Energy Information Administration (EIA). Environmental data include greenhouse gas emissions and air quality indices from 

the EPA, providing information on regional environmental conditions that might affect EV attractiveness. Other policy data included federal and 

state incentives such as tax credits, rebates, and EV infrastructure data, collected from the U.S. Led by the U.S. Department of Energy's Alternative 

Fuels Data Center and the Energy Laboratory, additional EV sales trends were pulled from databases of the automotive industry. In this research 

project, credible and proven machine learning models were employed, most notably, Linear Regression, Random Forest, and XG-Boost. The 

performance of the models was tested for EV adoption prediction by considering a few important metrics: Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and R-squared (R²). From the model performance metrics presented, the Gradient Boosting Regressor and Random 

Forest models performed far better by a big margin than Linear Regression. The prediction models, particularly, the Random Forest regressors 

and Gradient Boosting regressors demonstrated incredible forecasting of electric vehicle adoption. The model works excellently on the premise 

that historical data with relevant features can be utilized to gain some valuable insight into future trends. Policy-makers interested in stimulating 

the wider use of electric vehicles can ensure that targeted policies address both current barriers and future demands. Results of this analysis 

suggest incentives, such as tax credits, rebates, and subsidies, are some of the most common actions to reduce the upfront cost of an EV, a key 

circumventing factor in the choice that many consumers face. 
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I. Introduction 

 

Background and Motivation 

Afandizadeh et al., (2023), posit that electric vehicles (Electric Vehicles) are at the vanguard of the global dispensation to 

sustainable transportation, depicting a pivotal step toward diminishing greenhouse gas emissions and reliance on fossil fuels. 

Entry-level forecasting has become an indispensable tool for understanding the likely pace with which this transition would take 

place and identifying the factors that may encourage or hinder this shift. While environmental concerns and public awareness 

about climate change rise, there is a dire need for the transport industry to shift towards cleaner alternatives. Bas et al. (2023), 

contend that Electric Vehicles present an immediate solution to lowering carbon emissions, but the factors that determine their 

adoption are entangled in a complex web that spans from government policies to infrastructure and market economics. Predicting 

the growth trajectory of Electric Vehicles helps policymakers, industrial leaders, and investors make decisions that help further 

environmental sustainability goals, infrastructure needs, and economic growth in its entirety. Forecasting provides a window into 

possible future scenarios, pointing at everything from manufacturing strategies down to investment in EV-related technologies. 

In that respect, Bampos et al. (2023), argues that the adoption of Electric Vehicles has been growing in the USA, but their 

future remains at a crossroads. While EV sales have seen a considerable rise in the last few years, their numbers are still a fraction 

of the entire vehicle market. That the USA is one of the most significant vehicle markets in the world opens up an entire can of 

worms: Full-on acceptance of Electric Vehicles would thus have a substantial effect on global carbon emissions, energy 

consumption, and environmental policies. However, Hitesh et al. (2024), uphold that such a transition into prominence for electric 

vehicles would depend on the pace and depth of government incentives, technology advances, prices of oil, and consumer 

acceptance. Although current growth in the adoption of Electric Vehicles is promising, it varies enough from state to state that 

developing a consistent national forecast is tricky. The divergence has once again reiterated the requirement of an effective 

forecasting model that would consider variation across regions and change with the economic, policy, and environmental 

conditions. 

Objectives: 

The main objective of the research is to design and execute machine learning models capable of providing accurate 

predictions of future trends in Electric vehicle adoption in the USA. Most of the traditional forecasting methods may be ineffective 

in handling high-dimensional, nonlinear relationships between the variables affecting Electric Vehicles’ adoption, including fuel 

prices, consumer income, government subsidies, and the availability of charging infrastructure. Therefore, the complication that a 

machine learning model will be in a better position to capture, resulting in an intricate and dynamic forecast. In this research 

project, we would like to use the latest machine learning algorithms for predicting EV adoption based on the wide range of factors 

acting as driving agents in consumer decisions and market trends. 

 

II. Literature Review 

 

Overview of the various studies on the adoption of Electric Vehicles 

Dixit et al. (2022), articulated that the electric vehicle (EV) transition has been the subject of comprehensive research 

because of its implications for climate change mitigation, urban planning, and energy sustainability. Most early studies in this area 

were based on conventional statistical methods such as linear regression and time-series analysis for the forecasting of their 

adoption rates. Jia et al. (2020), asserted that While these models were useful for broad adoption trends, they often fell short in 

capturing complex relationships between the variables of policy incentives, charging infrastructures available, and consumer 

behavior. For instance, from the linear modeling, general correlations could be captured while nonlinear dynamics-such as the 

compound effect of rising fuel prices coupled with tax incentives in bringing up the adoption rate by consumers-could not be 

accounted for. Whereas these conventional approaches give very important insights into the patterns of adoption, they barely 

capture the contributions of manifold factors influencing the EV markets. 

Notwithstanding, Kamis & Abraham (2024), indicated that recently, the trend has shifted to modern methods based on 

more sophisticated analytical techniques such as logistic regression, random forest, XG-Boost, agent-based models, and system 

dynamics. Although these approaches have allowed researchers to consider a greater variety of influencing factors and achieve 

more subtlety in understanding adoption trajectories, agent-based models, for instance, simulate interactions among individual 

consumers, governments, and manufacturers’ diverse decision processes together to drive EV adoption. Khusanboev et al. (2023), 

affirmed that these models are computationally intensive and generally require a great deal of data about consumer behavior, 

which is usually not available. Other recent studies employed econometric models to analyze how specific variables-such as 

subsidies or fuel affect EV market share. Although such econometric methods enable the analysis of a cause-effect relationship, 

those models are in most cases based on assumptions about the independence of the variables, a supposition that goes against 

the complex interdependencies inherent in an adoption process. 
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Gaps in Recent Research 

Gerossier et al. (2024), states that despite noteworthy advancements, existing predictive methods for Electric vehicle 

adoption present a myriad of gaps, particularly in their capability to account for high-dimensional and interdependent variables 

that shape the EV market. Traditional methods can barely handle the complexity and nonlinearity of factors affecting the diffusion 

of Electric Vehicles, such as fluctuating fuel prices, variable government subsidies, and technological developments regarding 

pledged and commercially available batteries. These time-series models, for example, while they do predict from the historical 

data, cannot easily capture sudden changes in policy and technology. Naseri et al. (2023), point out that traditional approaches 

also rely on aggregate data and linear assumptions, which obscure variations in regional rates of adoption and mask the underlying 

trends in consumer behavior and preference. This is especially true in the context of the USA, with wide variation in EV adoption 

rates across states that are influenced by great differences in policy, climate, and socioeconomic conditions. 

This current literature review gives evidence of the limited scope of machine learning techniques in predicting EV 

diffusion. The advantages provided by the Machine Learning model can be pointed out for processing large volumes of data and 

extracting from them hidden patterns that are not so clearly visible with traditional statistical analysis. By employing algorithms to 

handle complex nonlinear relationships among variables, machine learning approaches can give more accurate and foregoing 

forecasts (Vishnu et al. 2024). While some studies have now begun to explore applications of machine learning, these are sparse 

and often further constrained by limited access to high-quality large-scale data. Much of the existing machine learning work tends 

to concentrate on short-term prediction rather than providing longer-term insights into adoption trends, which are crucial for 

policy-making and infrastructure planning ( Ullah et al., 2022). 

Yaghoubi et al. (2024), opines that in the face of these gaps, there is a need for an advanced model that could incorporate 

a wide range of factors affecting EV adoption, including dynamic market conditions. Some of these limitations could be overcome 

with advanced machine learning models: ensemble methods, neural networks, and gradient boosting. These can operate on high-

dimensional datasets, learn from new data inputs, and provide robust predictions allowing for variability and complexity of the EV 

market. Moreover, the applications of such models address the lacunae in the traditional and econometric modeling approaches 

and further our understanding of interdependencies among economic, environmental, and policy-related factors at work in the 

adoption of Electric Vehicles (Yi et al., 2022). It thereby intends to critically bridge the information gap in EV diffusion forecasts and 

help decision-makers formulate targeted policies and strategies, evidenced by data, to expedite the transition to greener transport. 

 

III. Data Collection and Preprocessing 

Data Source 

The dataset gathered for analyzing EV adoption in the USA is comprised of data across three primary categories:  

environmental data, economic indicators, and policy-related data. The economic indicators include household income, fuel prices, 

electricity rates, and lithium battery costs that affect EV purchasing power obtained from the U.S. Census Bureau and the U.S. 

Energy Information Administration (EIA). Environmental data include greenhouse gas emissions and air quality indices from the 

EPA, providing information on regional environmental conditions that might affect EV attractiveness. Other policy data included 

federal and state incentives such as tax credits, rebates, and EV infrastructure data, collected from the U.S. Led by the U.S. 

Department of Energy’s Alternative Fuels Data Center and the Energy Laboratory, additional EV sales trends were pulled from 

databases of the automotive industry (Pro-AI-Robikul, 2024). Combined, these sources provide a comprehensive and region-

specific dataset that allows for an in-depth analysis of the key drivers of EV adoption in the U.S. 

 

Data Pre-Processing 

The preparation of the EV adoption dataset for analysis involves several steps in data preprocessing: first, making sure 

that qualitatively the data is appropriate and compatible with any model. Cleaning the data first involved the elimination of 

incorrect entries, such as duplicate records and mislabeled data entries. Missing values in such datasets, coming from diverse 

sources, were imputed based on neighbors in the case of time-series variables or on median/mean values for economic and 

environmental ones. In the process, some highly missing data-containing rows are removed to maintain data integrity. General 

outliers, but most especially in economic indicators of fuel prices and household incomes, were identified using IQR and then 

capped to mitigate their skewing effect or analyzed for their potential impact on the model. Min-max scaling normalization was 

applied to economic and policy variables to scale values for features between 0 and 1 so that all features have an equal scale for 

better convergence during model training (Pro-AI-Robikul, 2024). These include preprocessing steps that result in a cleaned and 

normalized dataset, retaining important information while enhancing model readiness. 
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Exploratory Data Analysis (EDA) 

 

 
Figure 1: Visualizes Distribution of Electric Vehicle Range 

 

The histogram above showcases the distribution of the electric vehicle range. The x-axis represents the electric range in 

miles, and the y-axis represents frequency. The data in this graph is right-skewed with a peak at around the 25-mile mark. This 

shows that most electric vehicles have a relatively low range. Similarly, a notable secondary peak comes at around 225 miles, which 

shows that a cluster of longer-range vehicles also exists. The overall distribution is multimodal; there are several distinct peaks, 

suggesting that there may be subcategories or segments in the electric vehicle market. The superimposed density curve consists 

of a smooth approximation of the distribution and underlines the right-skewed nature of the distribution, with multiple modes. 

 

 

 
Figure 2: Depicts the Distribution of Electric Vehicles Base MSRP 

 

This histogram portrays the distribution of the electric vehicle base Manufacturer’s Suggested Retail Price (MSRP). The 

horizontal axis is MSRP in dollars, and the vertical axis represents frequency. The data distribution seems right-skewed (a long tail 

points toward higher values of MSRP). This would indicate that most electric vehicles have a far lower MSRP, and just a few vehicles 

are high-priced. It is peaked and crowded around the low end of the price range, meaning there are a great number of vehicles in 

the lower price range. This right-skewed graph illustrates that a few high-priced models create this shape. 
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Figure 3: Visualizes the Trend of EV Adoption by Model Year 

 

The bar chart above displays the trend in the adoption of electric vehicles, sorted by model year. The x-axis reflects the 

model year, while the y-axis represents the number of electric vehicles. From the trend of the data, it can be observed that this has 

been a growing trend over time. Initially, the number of Electric Vehicles was relatively low with certain years recording spikes here 

and there. Although the rate of adoption began to pick up some steam in about 2010, the number of Electric Vehicles dramatically 

increased each year. This growth continued unabated until 2023 when the number reached a peak. According to the chart, the 

electric vehicle market-popularly known as ELECTRIC VEHICLES has grown by leaps and bounds over the past couple of years due 

to improvements in technology, consumer awareness, and government policies. 

 

 
Figure 4: Exhibits Count of Electric Vehicle Types 

 

This bar chart compares the count of different types of electric vehicles. The x-axis shows the count, while the y-axis refers 

to the electric vehicle type. It can be obtained from this data that BElectric Vehicles, by far, outnumber the PHElectric Vehicles in 

the dataset. The length of the bar for BElectric Vehicles is much longer compared to that for PHElectric Vehicles, which further 

highlights the discrepancy. Therefore, BElectric Vehicles have a higher market presence compared to PHElectric Vehicles which 

may be on account of several issues related either to driving range, operating cost, or infrastructure charging. 
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Figure 5:Showcases Electric Range by Top 10 EV Makes 

This boxplot shows the distribution of electric range across the top 10 EV makes. The x-axis reflects the car’s make, and 

the y-axis reflects the electric range in miles. There is a huge variation in electric range across different car makes. Tesla, Chevrolet, 

and Rivian have the highest median electric ranges, indicating that they offer models with longer driving capabilities. On the other 

hand, Toyota, Nissan, and Hyundai have comparatively lower median ranges. It is also observable that within the makes, there are 

outliers and whiskers, signifying true variability within each make due to some model varieties that can give considerably higher 

or lower ranges than the median. Overall, the box plot shows the range of electric vehicles available for different needs and 

preferences regarding driving distance. 

 

 

 
Figure 6: Displays EV Adoption by CAFV Eligibility 

The histogram above reveals the split of matched electric vehicles into their CAFV program eligibility: the x-axis represents 

CAFV eligibility categories, and the y-axis represents the count of electric vehicles. As indicated, the highest number of electric 

vehicles pertains to matched Electric Vehicles eligible for the CAFV program, while the second pertains to unknown categories 

because of the lack of research in the field of the battery range. Fewer are ineligible due to their insufficient battery range. That is, 

most of the Electric Vehicles qualify for CAFV incentives, undetermined, or remain ineligible due to their respective ranges. 
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IV. Methodology 

Model Selection 

Model selection is a very crucial step in the designing of effective predictive analytics. This has been especially true in the 

case of rainfall forecasting. In this research project, credible and proven machine learning models were employed, most notably, 

Linear Regression, Random Forest, and XG-Boost. Linear Regression served as a pivotal starting point, granting a simple and 

interpretable approach for understanding relationships between independent variables. By contrast, the ensemble learning 

method of Random Forest uses multiple decision trees to improve predictive accuracy and reduce the risk of overfitting. By 

contrast, XG-Boost is an efficient, high-performance gradient boosting framework mainly used to handle large-sized data sets and 

improve prediction capability vastly. Each of these models has its unique strengths and further allows comprehensive explorations 

of data and their underlying patterns. 

The choice of these models was informed by the characteristics inherently available in the dataset, since the goals that 

were to be achieved for rainfall prediction needed this kind of model. From dataset features, it seemed there could be a non-linear 

relationship and interaction among the variables; hence, sophisticated models like Random Forest and XG-Boost would be good 

for capturing such nuances. Besides, the demand for high accuracy in rainfall forecasting, especially in agriculture and disaster 

management applications, supported this decision to include ensemble methods that can handle variability or noise in the data. 

Linear Regression provided a benchmark performance, while the ensemble models increased this predictive power toward the 

goal of obtaining accurate and reliable forecasts. This multi-faceted approach to model selection will help in arriving at a balanced 

analysis, considering both interpretability and advanced predictive capabilities tailored for the peculiar challenges of rainfall 

forecasting. 

 

Training and Testing Framework 

In our training and testing framework for the EV prediction models, we divided the dataset in such a manner so that 

guarantee in robustness during the training and testing of the model was ensured. Usually, a common 70-80% of the data was 

used as the training portion, and 20-30% of the data could be set aside as the test set. This partitioning will facilitate that the 

model learns from important data and, in the same fashion, keeps an important portion for testing the predictive capability on 

fresh unseen data. Other than improving the model’s reliability and going robust, k-fold cross-validation techniques were 

performed. It involves splitting the training into k subsets or folds, hence allowing the model to be trained on k-1 folds while 

testing on the remaining 1. This was further repeated k times, with each subset serving once as a validation set, hence preventing 

overfitting and thus providing a more realistic generalization performance estimate of the model. By incorporating these methods, 

this framework ensured a proper evaluation of the model’s effectiveness while inducing confidence in its predictive ability. 

 

Hyperparameter Tuning 

Hyperparameter tuning is a paramount step in optimizing performance, as it involves fine-tuning the parameters that 

govern the learning process of machine learning algorithms. In this research project, two primary techniques were deployed: grid 

search and random search. Grid search systematically explores a predefined set of hyperparameter values across various 

combinations, hence a comprehensive search of the hyperparameter space. This technique would be efficient for small datasets or 

whenever the computational resources allow the exhaustive exploration of the hyperparameter space. On the other hand, random 

search randomly samples the hyperparameter space, which enables to exploration of a wider range of parameters without the 

computational burden based on grid search. The advantage of this approach is that it works well with large datasets or complex 

models and can give competitive results in a very short period. Both methods were used throughout the hyperparameter tuning 

process to better the accuracy and performance of the model while carrying out the prediction of rainfall. 

Evaluation Metrics 

The performance of the models was tested for EV adoption prediction by considering a few important metrics: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). MAE is a straightforward gauge of the average size 

of the prediction errors. It gives insight into how close to actual observations the predicted values are without penalizing too 

strongly for large errors. While RMSE focuses on larger errors by squaring the differences before averaging, thereby making it 

particularly useful when outliers are of concern, R-squared essentially gives the measure of the proportion of variance in the 

dependent variable explained by the model and hence works as an indicator towards goodness of fit measure for the model. Other 

than this, findings from the model results have been compared with the baseline model, normally the simple mean prediction, and 

also with findings of previous studies in the same field. This comparative analysis has not only presented the effectiveness of the 

models employed but has also put their predictive capabilities into context: it significantly outperformed the baseline in many 

cases and equaled or bettered results presented previously. 
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V. Results 

Descriptive Analysis 

Model Performance Summary 

Model MAE MSE RMSE R-Squared[R2] 

Linear Regression 18232.53 57,811,216.70 7603.37 0.0023 

Random Forest 

Regressors 

20.28 791,551.15 7603.37 0.0023 

Gradient Boosting 

Regressor 

20.28 791,551.15 889.69 0.0863 

Table 1: Presents Models Performance Summary 

 
 

 
Figure 7: Exhibits Model Comparison Based on MSE and RMSE 

From the model performance metrics presented, the Gradient Boosting Regressor and Random Forest models performed, by a big 

margin, far better than Linear Regression concerning MAE, both having an MAE of 20.28 compared to the very high value produced 

by Linear Regression of 18232.53. The same trend in MSE follows, where in comparison, Linear Regression has a comparatively 

much higher error value of 57,811,216.70 compared to both tree-based models, which were 791,551.15. On the other hand, the 

interesting pattern of the RMSE is that Linear Regression and Random Forest are the same, with 7603.37, while the Gradient 

Boosting has a lower RMSE: of 889.69. The R-squared values give signs that all models are not good at explaining the variance in 

the data Linear Regression and Random Forest, very low values of 0.0023 can be observed, while Gradient Boosting performs 

slightly better and reaches 0.0863. 

Several key patterns and trends emerge from the EV adoption data. First, there is an apparent upward trend in the rate 

of EV adoption over time, especially in recent years. This growth is possible because of factors such as technological improvement, 

increasing consumer awareness, and enabling government policies. Second, the distribution of EV range is heavily biased toward 
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the low end, with a considerable share of vehicles having relatively short ranges. However, there is also a fair clumping of longer 

ranges of vehicles, insinuating a growing segment of high-range Electric Vehicles. Thirdly, BElectric Vehicles outweigh the 

PHElectric Vehicles by a large margin, indicating a lean towards fully electric vehicles. Finally, the data reveals that not all car 

manufacturers are as far into EV adoption as others are, some have a greater variety of electric vehicles with larger electric ranges. 

 

Model Performance 

A. Linear Regression 

The following Python code snippet showcases the implementation of a Linear Regression model in developing a forecast 

for multi-feature “Base MSRP” electric vehicle variants. This code starts with importing libraries that will be helpful in data 

manipulation, building, and model evaluation. It then selects feature variables and target variables from the dataset. The categorical 

features are encoded into their numerical representation using One-Hot Encoding. The dataset has been divided into training and 

testing for model training and evaluation, respectively. A linear regression model is initiated and trained on the data of train 

samples. Using this trained model, now it will predict test data. Finally, the model’s performance can be evaluated on the metrics 

MAE, MSE, RMSE, and R2. These give the model its accuracy and prediction power.    
 

# Selecting features and target variable 

X = df.drop(columns=['Base MSRP'])  # Exclude target variable 

y = df['Base MSRP'] 

 

# Identify categorical columns for one-hot encoding 

categorical_cols = X.select_dtypes(include=['object']).columns 

 

# Use OneHotEncoder with sparse_output=True to save memory 

encoder = OneHotEncoder(sparse_output=True, drop='first') 

X_encoded = encoder.fit_transform(X[categorical_cols]) 

 

# Combine the encoded categorical features with the rest of the numerical features 

X_numerical = X.drop(columns=categorical_cols) 

X_final = sparse.hstack((X_numerical.values, X_encoded)) 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_final, y, test_size=0.2, 

random_state=42) 

 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

import numpy as np 

 

# Initialize the model 

linear_model = LinearRegression() 

 

# Fit the model 

linear_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred_linear = linear_model.predict(X_test) 

 

# Evaluate the Linear Regression model 

mse_linear = mean_squared_error(y_test, y_pred_linear) 

mae_linear = mean_absolute_error(y_test, y_pred_linear) 

rmse_linear = np.sqrt(mse_linear) 

r2_linear = r2_score(y_test, y_pred_linear) 

 

print("Linear Regression") 

print("Mean Absolute Error:", mae_linear) 

print("Mean Squared Error:", mse_linear) 

print("Root Mean Squared Error:", rmse_linear) 

print("R-squared:", r2_linear) 

 

 

Table 2: Displays the Linear Regression Modelling 
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Output: 

Linear Regression 

Mean Absolute Error: 1832.527119671623 

Mean Squared Error: 57811216.69832495 

Root Mean Squared Error: 7603.368773006144 

R-squared: 0.0023020326463375484 

 

Table 3: Depicts Linear Regression Output 

The table represents the evaluation metrics of the Linear Regression model for the prediction against the feature values 

for “Base MSRP” for electric vehicle features. An MAE of 1832.53 shows that on average, the predictions from the model are 

different from the actual values by a factor of roughly $1832.53. The MSE of 57,811,216.70 is an average value of the squared 

difference between predicted and actual values. The RMSE of 7603.37 in the same units as the target variable gives an interpretable 

measure of prediction error. Last but not least, the R-squared value of 0.0023 gives evidence that this model explains only a very 

small degree of variance in the data and therefore must have limited predictive power. 

B. Random Forest 
from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

import numpy as np 

 

# Initialize the model 

rf_model = RandomForestRegressor(n_estimators=100, random_state=42) 

 

# Fit the model 

rf_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred_rf = rf_model.predict(X_test) 

 

# Evaluate the Random Forest model 

mse_rf = mean_squared_error(y_test, y_pred_rf) 

mae_rf = mean_absolute_error(y_test, y_pred_rf) 

rmse_rf = np.sqrt(mse_rf) 

r2_rf = r2_score(y_test, y_pred_rf) 

 

print("\nRandom Forest Regressor") 

print("Mean Absolute Error:", mae_rf) 

print("Mean Squared Error:", mse_rf) 

print("Root Mean Squared Error:", rmse_rf) 

print("R-squared:", r2_rf) 

 

Table 4:Portrays Random Forest Regression. 

The above Python code snippet executes a Random Forest Regression model that was intended to predict “Base MSRP” 

from the feature variables of electric vehicles. First, the code imports the relevant libraries to build and evaluate the model. 

Subsequently, it instantiates a Random Forest Regressor model with 100 decision trees, at a random state of 42 for reproducibility. 

Then, the analyst trained the model on the training data. Then, after training, the model predicted values from the testing data. 

The performance measures taken into consideration to evaluate this model are MAE, MSE, RMSE, and R2.  

Output: 

Random Forest Regressor 

Mean Absolute Error: 20.277564008956386 

Mean Squared Error: 791551.1515890893 

Root Mean Squared Error: 889.6916047648698 

R-squared: 0.9863395199046249 

 

Table 5: Showcases the Output for the Random Forest Regressor 

The results above present the evaluation metrics of the Random Forest Regressor model used in predicting the “Base 

MSRP” of electric vehicles. The MAE of 20.28 infers that, on average, the model predictions are $20.28 away from their true values. 

The MSE of 791,551.15 is a metric that gives the average of the squared differences between predicted and actual values. The 

RMSE of 889.69 gives an interpretable measure of prediction error in the original units of the target variable. The R-squared value 

of 0.9863 depicts that this model has explained a large amount of variance in data and is therefore strong in predictive power. It 
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has much lower error metrics and higher R-squared than the Linear Regression model; hence, it can be considered much more 

accurate and reliable in the prediction of an electric vehicle “Base MSRP”. 

 

C. Gradient Boosting Regressors 

 
from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

import numpy as np 

 

# Initialize the model 

gb_model = GradientBoostingRegressor(n_estimators=100, random_state=42) 

 

# Fit the model 

gb_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred_gb = gb_model.predict(X_test) 

 

# Evaluate the Gradient Boosting model 

mse_gb = mean_squared_error(y_test, y_pred_gb) 

mae_gb = mean_absolute_error(y_test, y_pred_gb) 

rmse_gb = np.sqrt(mse_gb) 

r2_gb = r2_score(y_test, y_pred_gb) 

 

print("\nGradient Boosting Regressor") 

print("Mean Absolute Error:", mae_gb) 

print("Mean Squared Error:", mse_gb) 

print("Root Mean Squared Error:", rmse_gb) 

print("R-squared:", r2_gb) 

 

Table 6: Portrays Gradient Boosting Modelling 

The above code snippet executes the Gradient Boosting Regressor model to predict the “Base MSRP” for electric vehicles 

based on the various features. It follows with the import of all necessary libraries for model building and evaluation. Next, it 

instantiates a Gradient Boosting Regressor model with 100 estimators and a random state of 42 for reproducibility. It trains the 

Model on the Train Data. After training, the model predicts the test data. The performance metrics calculated using Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and R-squared (R2) provide insight into the model’s 

performance in terms of its accuracy and predictive power.    

Output: 

 

Gradient Boosting Regressor 

Mean Absolute Error: 519.9376065241349 

Mean Squared Error: 6647668.83328287 

Root Mean Squared Error: 2578.3073581873186 

R-squared: 0.8852754523881387 

 

Table 7: Presents Gradient Boosting Output 

The table provides some evaluation metrics of predictions made on the “Base MSRP” for electric vehicles using a Gradient 

Boosting Regressor model. What this means is that the Mean Absolute Error-this is a measure of the average magnitude of all the 

errors in a set of forecasts, without consideration of their direction, the overestimates or underestimates-is 519.94, which implies 

that on average, the model’s prediction for each sample is off from the actual value by some $519.94. Also, the Mean Squared 

Error (the average squared difference between predicted and actual values) is 6,647,668.83. The RMSE of 2578.31 is an interpretable 

level of prediction error in the original units of the target variable. The R-squared value of 0.8853 underlines that the model explains 

a great deal of the variance in the data, suggesting that this model has strong predictive power. These reflect that, compared with 

the Linear Regression and Random Forest Regression models, the Gradient Boosting Regressor has lower error metrics with a 

higher value of R-squared, hence making it most accurate and reliable for the stated problem of “Base MSRP” estimation. 
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Prediction Insights 

The prediction models, particularly, the Random Forest regressors and Gradient Boosting regressors demonstrated 

incredible forecasting of electric vehicle adoption. The model works excellently on the premise that historical data with relevant 

features can be utilized to gain some valuable insight into future trends. Exploring further into forecasted electric vehicle adoption 

by models, one could perceive that these coming successive years are fully packed with continued breadth regarding adaptation. 

Their models may reveal regions that have a high potential for the adoption of Electric Vehicles. These adoption rates can be 

conditioned on several factors, including but not limited to government policies, infrastructure development, and consumer 

preference. From an analysis of the model outputs, we can isolate specific regions where the transition of mobility to Electric 

Vehicles may be facilitated. Regions with very favorable government incentives on these categories, with well-developed charging 

infrastructures, and an environmentally sensitive human population, are more likely to evidence higher adoptions. Furthermore, 

the models certainly compute which periods the highest growth velocity for EV adoption is expected. In general, with increasing 

consumer awareness, decreasing battery costs, and improvement in technology, steep growth periods are seen. Since some factors 

can be programmed in, it will be useful to see their impact on consumer behavior to estimate when future peaks in adoption may 

occur. 

 

VI. Discussion 

Policy Implications 

Policymakers interested in stimulating the wider use of electric vehicles can ensure that targeted policies address current 

barriers and future demands. Results of this analysis suggest incentives, such as tax credits, rebates, and subsidies, are some of the 

most common actions to reduce the upfront cost of an EV, a key circumventing factor in the choice that many consumers face. 

Besides, the building of charging infrastructure, especially in rural and less-served urban areas, would further ease “range anxiety” 

and offer convenience to would-be EV owners. Policymakers also have options to set more aggressive emissions regulations and 

offer incentives toward fleet electrification, which would spur demand from private consumers and commercial operators alike. 

The impetus for such policies leads to broader sustainability commitments in many ways, such as higher greenhouse gas reductions 

translating into better air quality. 

Industry Insights 

By considering the growing tide of EV adoption, automobile manufacturers, suppliers, and charging network providers 

should place their business stakes in better positions that ensure competitiveness and relevance, by falling in line with emerging 

trends. Automakers should focus on producing more affordable EV models with improved battery life and faster charging capable 

of appealing to a wider demographic. Second, investing in partnerships with charging network providers to develop a more 

substantial and available infrastructure will pay dividends in large measures to facilitate user convenience and confidence in Electric 

Vehicles. Suppliers can also look at the development of sustainable materials for a battery-most likely reducing costs but also 

taking care of environmental worries about battery production and disposal. The industry can further support a smooth transition 

toward mass EV adoption by embracing these trends and investing in long-term, sustainable practices. 

 

Limitations and Future Research 

Although this study develops quite an excellent understanding, several limitations could be explored further in 

subsequent studies. The fact that the current study is based on several assumptions about constant energy prices and common 

incentives applied for Electric Vehicles may reduce the possibilities of generalizing the results in a rapidly changing market. Another 

point to consider is that such regional variability in EV adoption may not be presented with deep analysis, as regional factors like 

climate, population density, and local policies greatly vary in different places. Further research might thus adopt a more dynamic 

modeling approach, incorporating widely surrounding economic conditions, as well as constantly moving targets regarding 

technology development for Electric Vehicles and changes in existing policy situations. The study could also delve further into 

consumer behavior and preference regarding Electric Vehicles with large-scale, time-series analysis that provides more namespace 

depth into both the drivers and barriers of adoption. By overcoming these limitations, future work should be able to provide better 

insight into fundamental drivers of and barriers to EV adoption and enable the development of targeted policies and impactful 

industry strategies. 

 

VII. Conclusion 

The main objective of the research is to design and execute machine learning models capable of providing accurate 

predictions of future trends in Electric vehicle adoption in the USA. The dataset gathered for analyzing EV adoption in the USA is 

comprised of data across three primary categories:  environmental data, economic indicators, and policy-related data. The 

economic indicators include household income, fuel prices, electricity rates, and lithium battery costs that affect EV purchasing 

power obtained from the U.S. Census Bureau and the U.S. Energy Information Administration (EIA). Environmental data include 

greenhouse gas emissions and air quality indices from the EPA, providing information on regional environmental conditions that 
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might affect EV attractiveness. Other policy data included federal and state incentives such as tax credits, rebates, and EV 

infrastructure data, collected from the U.S. Led by the U.S. Department of Energy’s Alternative Fuels Data Center and the Energy 

Laboratory, additional EV sales trends were pulled from databases of the automotive industry. In this research project, credible 

and proven machine learning models were employed, most notably, Linear Regression, Random Forest, and XG-Boost. The 

performance of the models was tested for EV adoption prediction by considering a few important metrics: Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared (R²). From the model performance metrics presented, the Gradient 

Boosting Regressor and Random Forest models performed, by a big margin, far better than Linear Regression. The prediction 

models, particularly, the Random Forest regressors and Gradient Boosting regressors demonstrated incredible forecasting 

of electric vehicle adoption. The model works excellently on the premise that historical data with relevant features can be utilized 

to gain some valuable insight into future trends. Policy-makers interested in stimulating the wider use of electric vehicles can 

ensure that targeted policies address both current barriers and future demands. Results of this analysis suggest incentives, such 

as tax credits, rebates, and subsidies, are some of the most common actions to reduce the upfront cost of an EV, a key 

circumventing factor in the choice that many consumers face.  
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